

Welcome to NNGT’s documentation!

[image: _images/commits.svg]
 [https://builds.sr.ht/~tfardet/nngt][image: _images/zenodo.3402493.svg]
 [https://doi.org/10.5281/zenodo.3402493]
Overview

The Neural Networks and Graphs’ Topology (NNGT) module provides a unified
interface to access, generate, and analyze networks via any of the well-known
Python graph libraries: networkx [https://networkx.github.io/], igraph [http://igraph.org/], and graph-tool [http://graph-tool.skewed.de].

For people in neuroscience, the library also provides tools to grow and
study detailed biological networks by interfacing efficient graph libraries
with highly distributed activity simulators.

The library has two main targets:

	people looking for a unifying interface for these three graph libraries,
allowing to run and share a single code on different platforms

	neuroscience people looking for an easy way to generate complex networks
while keeping track of neuronal populations and their biological properties

Main classes

NNGT provides four main classes, the two first being aimed at the
graph-theoretical community, the third and fourth are more for the neuroscience
community:

	Graph

	provides a simple implementation over graphs objects from graph libraries
(namely the addition of a name, management of detailed nodes and connection
properties, and simple access to basic graph measurements).

	SpatialGraph

	a Graph embedded in space (nodes have positions and connections are
associated to a distance)

	Network

	provides more detailed characteristics to emulate biological neural
networks, such as classes of inhibitory and excitatory neurons, synaptic
properties…

	SpatialNetwork

	combines spatial embedding and biological properties

Generation of graphs

	Structured graphs and connectivity:

	connectivity between the nodes can be chosen from various well-known graph
models, specific groups and structures can be generated to simplify edge
generation

	Populations:

	populations of neurons can be used and be set to respect various constraints
(for instance a given fraction of inhibitory neurons), they simplify
network generation and make it highly efficient to interact with the NEST
simulator

	Synaptic properties:

	synaptic weights and delays can be set from various distributions or
correlated to edge properties

Interacting with NEST

The generated graphs can be used to easily create complex networks using the
NEST simulator, on which you can then simulate their activity.

The docs

User Documentation

	Installation
	Dependencies

	Simple install

	Local install

	Configuration

	Using NEST

	Intro & user manual
	Yet another graph library?

	Description

	Tutorial
	NNGT properties and configuration

	The Graph object

	Generating and analyzing more complex networks

	Using random numbers

	Structuring nodes: Group and Structure

	The same with neurons: NeuralGroup, NeuralPop

	Real neuronal networks and NEST interaction: the Network

	Underlying graph objects and libraries

	Gallery
	Visualizing graph structures

	Visualizing graph properties

	Visualizing graph structures

	Visualizing graph properties

Contributing

	Contributing to NNGT
	Signaling issues and bugs

	Preparing a contribution

	Sending a patch to SourceHut

	Making a PR on GitHub

Modules

	Main module (API)

	Analysis module

	Database module

	Generation module

	Geometry module

	Lib module

	Plot module

	Simulation module

Indices and tables

	Index

	Module Index

	Search Page

Installation

Dependencies

This package depends on several libraries (the number varies according to which
modules you want to use).

Basic dependencies

Regardless of your needs, the following libraries are required:

	numpy [http://www.numpy.org/] (>= 1.11 required for full support)

	scipy [http://www.scipy.org/scipylib/index.html]

Though NNGT implements a default (limited) backend, installing one of the
following libraries is highly recommended to do some proper network
analysis:

	graph_tool [http://graph-tool.skewed.de] (> 2.22)

	or igraph [http://igraph.org/]

	or networkx [https://networkx.github.io/] (>= 2.4)

Additionnal dependencies

	matplotlib [http://matplotlib.org/] (optional but will limit the functionalities if not present)

	shapely [http://shapely.readthedocs.io/en/latest/index.html] for complex spatial embedding

	peewee (> 3) for database features

Note

If they are not present on your computer, pip will directly try
to install scipy and numpy.
However, if you want advanced network analysis features, you will have to
install the graph library yourself (only networkx can be installed
directly using pip)

Simple install

Linux

Install the requirements (through apt on debian/ubuntu/mint,
pacman and trizen on arch-based distributions, or
yum on fedora/centos. Otherwise you can also install the latest
versions via pip:

pip install --user numpy scipy matplotlib networkx

To install the last stable release, just use:

pip install --user nngt

Under most linux distributions, the simplest way to get the latest version
of NNGT is to install to install both
pip [https://pip.pypa.io/en/stable/installing/] and
git [https://git-scm.com/], then simply type into a terminal:

pip install --user git+https://github.com/Silmathoron/NNGT.git

Mac

I recommend using Homebrew [https://brew.sh/] or Macports [https://guide.macports.org/#installing] with which you can install all
required features to use NEST and NNGT with graph-tool. The following
command lines are used with python 3.7 but you can use any python >= 3.5
(just replace all 37/3.7 by the desired version).

Homebrew

brew tap homebrew/core
brew tap brewsci/science

brew install gcc-8 cmake gsl autoconf automake libtool
brew install python

if you want nest, add

brew install nest --with-python

(note that setting --with-python=3 might be necessary)

Macports

sudo port select gcc mp-gcc8 && sudo port install gsl +gcc8
sudo port install autoconf automake libtool
sudo port install python37 pip
sudo port select python python37
sudo port install py37-cython
sudo port select cython cython37
sudo port install py37-numpy py37-scipy py37-matplotlib py37-ipython
sudo port select ipython ipython-3.7
sudo port install py-graph-tool gtk3

Once the installation is done, you can just install:

export CC=gcc-8
export CXX=gcc-8
pip install --user nngt

Windows

It’s the same as Linux for windows users once you’ve installed
Python [http://docs.python-guide.org/en/latest/starting/install/win/] and
pip, but NEST [http://www.nest-simulator.org/] won’t work.

Note

igraph can be installed on windows if you need something faster than
networkx.

Using the multithreaded algorithms

Install a compiler (the default msvc should already be present,
otherwise you can install VisualStudio) before you make the installation.

In case of problems with msvc:

	install MinGW [http://mingw.org/] or
MinGW-W64 [https://mingw-w64.org/doku.php]

	use it to install gcc with g++ support

	open a terminal, add the compiler to your PATH and set it as default:
e.g.

set PATH=%PATH%;C:\MinGW\bin
set CC=C:\MinGW\bin\mingw32-gcc.exe
set CXX=C:\MinGW\bin\mingw32-g++.exe

	in that same terminal window, run pip install --user nngt

Local install

If you want to modify the library more easily, you can also install it locally,
then simply add it to your PYTHONPATH environment variable:

cd && mkdir .nngt-install
cd .nngt-install
git clone https://github.com/Silmathoron/NNGT.git .
git submodule init
git submodule update
nano .bash_profile

Then add:

export PYTHONPATH="/path/to/your/home/.nngt-install/src/:PYTHONPATH"

In order to update your local repository to keep it up to date, you will need
to run the two following commands:

git pull origin master
git submodule update --remote --merge

Configuration

The configuration file is created in ~/.nngt/nngt.conf after you first run
import nngt in python. Here is the default file:

#-------------------------#
NNGT configuration file
#-------------------------#

version = {version}

#-------------------------
default backend ---
#-------------------------

library that will be used in the background to handle graph generation
(choose among "graph-tool", "igraph", "networkx", or "nngt"). Note that only
the 3 first options will allow full graph analysis features while only the
last one allows for fully distributed memory on clusters.

backend = graph-tool

#----------------------
Matplotlib backend --
#----------------------

Uncomment and choose among your available backends.
See http://matplotlib.org/faq/usage_faq.html#what-is-a-backend for details

#mpl_backend = Qt5Agg

use TeX rendering for axis labels
use_tex = False

color library either matplotlib or seaborn
color_lib = matplotlib

palette to use
palette_continuous = magma
palette_discrete = Set1

#-----------------------------
Settings for database ---
#-----------------------------

use_database = False

use a database (by default, will be stored in SQLite database)
db_to_file = False
db_folder = ~/.nngt/database
db_name = main

database url if you do not want to use a SQLite file
example of real database url: db_url = mysql://user:password@host:port/my_db
db_url = mysql:///nngt_db

#-----------------------------
Settings for data logging ---
#-----------------------------

which messages are printed? (see logging module levels:
https://docs.python.org/2/library/logging.html#levels)
set to INFO or below to add the config messages on import
set to WARNING or above to remove the messages on import
log_level = WARNING

write log to file?
log_to_file = True
if True, write to default folder '~/.nngt/log'
#log_folder = ~/.nngt/log

#----------------------------
Multithreaded/MPI algorithms --
#----------------------------

C++ algorithms using OpenMP are compiled and imported using Cython if True,
otherwise regular numpy/scipy algorithms are used.
Multithreaded algorithms should be prefered if available.

multithreading = True

If using MPI, current MT or normal functions will be used except for the
distance_rule algorithm, which will be overloaded by its MPI version.
Note that the MPI version is not locally multithreaded.

mpi = False

It can be necessary to modify this file to use the desired graph library, but
mostly to correct problems with GTK and matplotlib (if the plot module
complains, try Gtk3Agg and Qt4Agg/Qt5Agg).

Using NEST

If you want to simulate activities on your complex networks, NNGT can directly
interact with the NEST simulator [http://www.nest-simulator.org/] to implement the network inside PyNEST.
For this, you will need to install NEST with Python bindings, which requires:

	the python headers (python-dev package on debian-based distribs)

	autoconf

	automake

	libtool

	libltdl

	libncurses

	readlines

	gsl (the GNU Scientific Library) for many neuronal models

Intro & user manual

Yet another graph library?

It is not ;)

This library is based on existing graph libraries (such as
graph-tool [http://graph-tool.skewed.de], igraph [http://igraph.org/], networkx [https://networkx.github.io/], and possibly soon
SNAP [http://snap.stanford.edu/snap/]) and acts as a convenient interface to
build various networks from efficient and verified algorithms.
Most importantly, it provides a series of analysis functions that are
guaranteed to provide the same results with all backends, enabling fully
portable codes (see Consistent tools for graph analysis).

Moreover, it also acts as an interface between those graph libraries and the
NEST [http://www.nest-simulator.org/] and DeNSE [https://dense.readthedocs.io] simulators.

Documentation structure

For users that are in a hurry, you can go directly to the Tutorial section.
For more specific and detailed examples, several topics are then detailed
separately in the following pages:

	Graph generation

	Properties of graph components

	Consistent tools for graph analysis

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

Note

This library provides many tools which will (or not) be loaded on startup
depending on the python packages available on your computer.
The default behaviour of those tools is set in the ~/.nngt/nngt.conf file
(see Configuration).
Moreover, to see all potential messages related to the import of those tools,
you can use the logging function of NNGT, either by setting the log_level
value to INFO, or by setting log_to_file to True, and having a look
at the log file in ~/.nngt/log/.

Description

The graph objects

Neural networks are described by four graph classes which contain a graph
object from the chosen graph library (e.g. gt.Graph,
igraph.Graph, or networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]):

	Graph: base for simple topological graphs with no spatial
structure, nor biological properties

	SpatialGraph: subclass for spatial graphs without
biological properties

	Network: subclass for topological graphs with biological
properties (to interact with NEST)

	SpatialNetwork: subclass with spatial and biological
properties (to interact with NEST)

Using these objects, the user can access to the topological structure of the
network (for neuroscience, this includes the connections’ type – inhibitory or
excitatory – and its synaptic weight, which is always positive)

Additional properties

Nodes/neurons are defined by a unique index which can be used to access their
properties and those of the connections between them.

The graph objects can have other attributes, such as:

	shape, for SpatialGraph and
SpatialNetwork, describes the spatial delimitations of
the nodes’ environment (e.g. many in vitro culture of neurons are
contained in circular dishes),

	structure divides the graph into groups and can
facilitate graph generation and analysis,

	population, for Network, contains
informations on the various groups of neurons that exist in the network
(for instance inhibitory and excitatory neurons can be grouped together),
and is the updated version of structure for neuroscientific projects.

Graph-theoretical models

Several classical graphs are efficiently implemented and the generation
procedures are detailed in the documentation.

	Graph generation

	Main module (API)

Known bugs

	erratic key release issue with animation of spiking networks,

	see the issue tracker [https://github.com/Silmathoron/NNGT/issues] for an
updated list.

Graph generation

This page gives example on how to generate increasingly complex network
structures.
The example files can be found at: docs/examples/simple_graphs.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/simple_graphs.py],
docs/examples/multi_groups_network.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/multi_groups_network.py],
docs/examples/basic_nest_network.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/basic_nest_network.py], and
docs/examples/nest_receptor_ports.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/nest_receptor_ports.py].

Content:

	Principle

	Modularity

	Setting weights

	Examples

	Simple generation

	Networks composed of heterogeneous groups

	Use with NEST

	Advanced examples

	Receptor ports in NEST

Principle

In order to keep the code as generic and easy to maintain as possible, the
generation of graphs or networks is divided in several steps:

	Structured connectivity: a simple graph is generated as an assembly of
nodes and edges, without any biological properties. This allows us to
implement known graph-theoretical algorithms in a straightforward fashion.

	Populations: detailed properties can be implemented, such as inhibitory
synapses and separation of the neurons into inhibitory and excitatory
populations – these can be done while respecting user-defined constraints.

	Synaptic properties: eventually, synaptic properties such as
weight/strength and delays can be added to the network.

Modularity

The library as been designed so that these various operations can be realized
in any order!

	Juste to get work on a topological graph/network:

	
	Create graph class

	Connect

	Set connection weights (optional)

	Spatialize (optional)

	Set types (optional: to use with NEST)

	To work on a really spatially embedded graph/network:

	
	Create spatial graph/network

	Connect (can depend on positions)

	Set connection weights (optional, can depend on positions)

	Set types (optional)

	Or to model a complex neural network in NEST:

	
	Create spatial network (with space and neuron types)

	Connect (can depend on types and positions)

	Set connection weights and types (optional, can depend on types
and positions)

Setting weights

The weights can be either user-defined or generated by one of the available
distributions (Attributes and distributions).
User-defined weights are generated via:

	a list of edges

	a list of weights

Pre-defined distributions require the following variables:

	a distribution name (“constant”, “gaussian”…)

	a dictionary containing the distribution properties

	an optional attribute for distributions that are correlated to another (e.g.
the distances between neurons)

	a optional value defining the variance of the Gaussian noise that should be
applied on the weights

There are several ways of settings the weights of a graph which depend on the
time at which you assign them.

	At graph creation

	You can define the weights by entering a weights argument to the
constructor; this should be a dictionary containing at least the name of
the weight distribution: {"distrib": "distribution_name"}.
If entered, this will be stored as a graph property and used to assign the
weights whenever new edges are created unless you specifically assign rules
for those new edges’ weights.

	At any given time

	You can use the set_weights() function to set the weights
of a graph explicitely by using:

graph.set_weights(elist=edges_to_weigh, distrib="distrib_of_choice", ...)

For more details on weights, other attributes, and available distributions, see
Properties of graph components.

Examples

import nngt
import nngt.generation as ng

Simple generation

num_nodes = 1000
avg_deg_er = 25
avg_deg_sf = 100

random graphs
g1 = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg_er)

the same graph but undirected
g2 = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg_er, directed=False)

2-step generation of a scale-free with Gaussian weight distribution
w = {
 "distribution": "gaussian",
 "avg": 60.,
 "std": 5.
}

g3 = nngt.Graph(num_nodes, weights=w)
ng.random_scale_free(2.2, 2.9, avg_deg=avg_deg_sf, from_graph=g3)

same in 1 step
g4 = ng.random_scale_free(
 2.2, 2.9, avg_deg=avg_deg_sf, nodes=num_nodes, weights=w)

Networks composed of heterogeneous groups

'''
Make the population
'''

two groups
g1 = nngt.Group(500) # nodes 0 to 499
g2 = nngt.Group(500) # nodes 500 to 999

make structure
struct = nngt.Structure.from_groups((g1, g2), ("left", "right"))

create network from this population
net = nngt.Graph(structure=struct)

'''
Connect the groups
'''

inter-groups (Erdos-Renyi)
prop_er1 = {"density": 0.005}
ng.connect_groups(net, "left", "right", "erdos_renyi", **prop_er1)

intra-groups (Newman-Watts)
prop_nw = {
 "coord_nb": 20,
 "proba_shortcut": 0.1,
 "reciprocity_circular": 1.
}

ng.connect_groups(net, "left", "left", "newman_watts", **prop_nw)
ng.connect_groups(net, "right", "right", "newman_watts", **prop_nw)

Use with NEST

Generating a network with excitatory and inhibitory neurons:

'''
Build a network with two populations:
* excitatory (80%)
* inhibitory (20%)
'''
num_nodes = 1000

800 excitatory neurons, 200 inhibitory
net = nngt.Network.exc_and_inhib(num_nodes, ei_ratio=0.2)

'''
Connect the populations.
'''
exc -> inhib (Erdos-Renyi)
ng.connect_neural_types(net, 1, -1, "erdos_renyi", density=0.035)

exc -> exc (Newmann-Watts)
prop_nw = {
 "coord_nb": 10,
 "proba_shortcut": 0.1,
 "reciprocity_circular": 1.
}
ng.connect_neural_types(net, 1, 1, "newman_watts", **prop_nw)

inhib -> exc (Random scale-free)
prop_rsf = {
 "in_exp": 2.1,
 "out_exp": 2.6,
 "density": 0.2
}
ng.connect_neural_types(net, -1, 1, "random_scale_free", **prop_rsf)

inhib -> inhib (Erdos-Renyi)

Send the network to NEST:

if nngt.get_config('with_nest'):
 import nest
 import nngt.simulation as ns

 '''
 Prepare the network and devices.
 '''
 # send to NEST
 gids = net.to_nest()
 # excite
 ns.set_poisson_input(gids, rate=100000.)
 # record
 groups = [key for key in net.population]
 recorder, record = ns.monitor_groups(groups, net)

 '''
 Simulate and plot.
 '''
 simtime = 100.
 nest.Simulate(simtime)

 if nngt.get_config('with_plot'):
 ns.plot_activity(
 recorder, record, network=net, show=True, limits=(0,simtime))

You can check that connections from neurons that are marked as inhibitory are
automatically assigned a negative sign in NEST:

 # sign of NNGT versus NEST inhibitory connections
 igroup = net.population["inhibitory"]
 # in NNGT
 iedges = net.get_edges(source_node=igroup.ids)
 w_nngt = set(net.get_weights(edges=iedges))
 # in NEST
 iconn = nest.GetConnections(
 source=list(net.population["inhibitory"].nest_gids),
 target=list(net.population.nest_gids))
 w_nest = set(nest.GetStatus(iconn, "weight"))
 # in NNGT, inhibitory weights are positive to work with graph analysis
 # methods; they are automatically converted to negative weights in NEST

Returns: NNGT weights: {1.0} versus NEST weights {-1.0}.

Advanced examples

Receptor ports in NEST

Some models, such as multisynaptic neurons, or advanced models incorporating
various neurotransmitters use an additional information, called "port" to
identify the synapse that will be used by the nest.Connect method.
These models can also be used with NNGT by telling the
NeuralGroup which type of port the neuron should try to bind to.

NB: the port is specified in the source neuron and declares which synapse
of the target neuron is concerned.

'''
Build a network with two populations:
* excitatory (80%)
* inhibitory (20%)
'''
num_neurons = 50 # number of neurons
avg_degree = 20 # average number of neighbours
std_degree = 3 # deviation for the Gaussian graph

parameters
neuron_model = "ht_neuron" # hill-tononi model
exc_syn = {'receptor_type': 1} # 1 is 'AMPA' in this model
inh_syn = {'receptor_type': 3} # 3 is 'GABA_A' in this model

synapses = {
 (1, 1): exc_syn,
 (1, -1): exc_syn,
 (-1, 1): inh_syn,
 (-1, -1): inh_syn,
}

pop = nngt.NeuralPop.exc_and_inhib(
 num_neurons, en_model=neuron_model, in_model=neuron_model,
 syn_spec=synapses)

create the network and send it to NEST
w_prop = {"distribution": "gaussian", "avg": 0.2, "std": .05}
net = nngt.generation.gaussian_degree(
 avg_degree, std_degree, population=pop, weights=w_prop)

'''
Send to NEST and set excitation and recorders
'''
if nngt.get_config('with_nest'):
 import nest
 import nngt.simulation as ns

 nest.ResetKernel()

 gids = net.to_nest()

 # add noise to the excitatory neurons
 excs = list(pop["excitatory"].nest_gids)
 inhs = list(pop["inhibitory"].nest_gids)
 ns.set_noise(excs, 10., 2.)
 ns.set_noise(inhs, 5., 1.)

 # record
 groups = [key for key in net.population]
 recorder, record = ns.monitor_groups(groups, net)

 '''
 Simulate and plot.
 '''
 simtime = 2000.
 nest.Simulate(simtime)

 if nngt.get_config('with_plot'):
 ns.plot_activity(
 recorder, record, network=net, show=True, histogram=False,
 limits=(0, simtime))

Go to other tutorials:

	Intro & user manual

	Properties of graph components

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

Properties of graph components

This section details the different attributes and properties which can be
associated to nodes/neurons and connections in graphs and networks.

Content:

	Components of a graph

	Node attributes

	Three types of node attributes

	Standard attributes

	Biological/group properties

	Edge attributes

	Weights and delays

	Custom edge attributes

	Attributes and distributions

	Example

Components of a graph

In the graph libraries used by NNGT, the main components of a graph are nodes
(also called vertices in graph theory), which correspond to neurons in
neural networks, and edges, which link nodes and correspond to synaptic
connections between neurons in biology.

The library supposes for now that nodes/neurons and edges/synapses are always
added and never removed. Because of this, we can attribute indices to the nodes
and the edges which will be directly related to the order in which they have
been created (the first node will have index 0, the second index 1, etc).

The source file for the examples given here can be found at
doc/examples/attributes.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/doc/examples/attributes.py].

Node attributes

If you are just working with basic graphs (for instance looking at the
influence of topology with purely excitatory networks), then your nodes do not
necessarily need to have attributes.
This is the same if you consider only the average effect of inhibitory neurons
by including inhibitory connections between the neurons but not a clear
distinction between populations of purely excitatory and purely inhibitory
neurons.
However, if you want to include additional information regarding the nodes, to
account for specific differences in their properties, then node attributes
are what you need. They are stored in node_attributes.
Furthermore, to model more realistic neuronal networks, you might also want to
define different groups and types of neurons, then connect them in specific
ways. This specific feature will be provides by NeuralGroup
objects.

Three types of node attributes

In the library, there is a difference between:

	standard attributes, which are stored in any type of Graph
and can be created, modified, and accessed via the
new_node_attribute(),
set_node_attribute(), and
get_node_attributes() functions.

	spatial properties (the positions of the neurons), which are stored in a
specific positions numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] and can be accessed using the
get_positions() function,

	biological/group properties, which define assemblies of nodes sharing common
properties, and are stored inside a NeuralPop object.

Standard attributes

Standard attributes can be any given label that might vary among the nodes in
the network and will be attached to each node.

Users can define any attribute, through the
new_node_attribute() function.

''' -------------- #
Generate a graph
-------------- '''

num_nodes = 1000
avg_deg = 25

graph = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg)

''' ----------------- #
Add node attributes
----------------- '''

Let's make a network of animals where nodes represent either cats or dogs.
(no discrimination against cats or dogs was intended, no animals were harmed
while writing or running this code)
animals = ["cat" for _ in range(600)] # 600 cats
animals += ["dog" for _ in range(400)] # and 400 dogs
np.random.shuffle(animals) # which we assign randomly to the nodes

graph.new_node_attribute("animal", value_type="string", values=animals)

Attributes can have different types:

	"double" for floating point numbers

	"int” for integers

	"string" for strings

	"object" for any other python object

Here we create a second node attribute of type "double":

Nodes can have attributes of multiple types, let's add a size to our animals
catsizes = np.random.normal(50, 5, 600) # cats around 50 cm
dogsizes = np.random.normal(80, 10, 400) # dogs around 80 cm

We first create the attribute without values (for "double", default to NaN)
graph.new_node_attribute("size", value_type="double")

We now have to attributes: one containing strings, the other numbers (double)
print(graph.node_attributes)

get the cats and set their sizes
cats = graph.get_nodes(attribute="animal", value="cat")
graph.set_node_attribute("size", values=catsizes, nodes=cats)

We set 600 values so there are 400 NaNs left
assert np.sum(np.isnan(graph.get_node_attributes(name="size"))) == 400, \
 "There were not 400 NaNs as predicted."

None of the NaN values belongs to a cat
assert not np.any(np.isnan(graph.get_node_attributes(cats, name="size"))), \
 "Got some cats with NaN size! :'("

get the dogs and set their sizes
dogs = graph.get_nodes(attribute="animal", value="dog")
graph.set_node_attribute("size", values=dogsizes, nodes=dogs)

Biological/group properties

Note

All biological/group properties are stored in a
NeuralPop object inside a Network
instance; this attribute can be accessed through
population.
NeuralPop objects can also be created from a
Graph or SpatialGraph but they will not be
stored inside the object.

The NeuralPop class allows you to define specific
groups of neurons (described by a NeuralGroup).
Once these populations are defined, you can constrain the connections between
those populations.
If the connectivity already exists, you can use the
GroupProperty class to create a population with
groups that respect specific constraints.

For more details on biological properties, see Groups, structures, and neuronal populations.

Edge attributes

Like nodes, edges can also be attributed specific values to characterize them.
However, where nodes are directly numbered and can be indexed and accessed
easily, accessing edges is more complicated, especially since, usually, not all
possible edges are present in a graph.

To easily access the desired edges, it is thus recommended to use the
get_edges() function.

Edge attributes can then be created and recovered using similar functions as
node attributes, namely new_edge_attribute(),
set_edge_attribute(), and
get_edge_attributes().

Weights and delays

By default, graphs in NNGT are weighted: each edge is associated a “weight”
value (this behavior can be changed by setting weighted=False upon
creation).

Similarly, Network objects always have a “delay” associated to
their connections.

Both attributes can either be set upon graph creation, through the weights
and delays keyword arguments, or any any time using
set_weights() and set_delays().

Note

When working with NEST and using excitatory and inhibitory neurons via
groups (see Groups, structures, and neuronal populations), the weight of all connections
(including inhibitory connections) should be positive: the excitatory or
inhibitory type of the synapses will be set automatically when the NEST
network is created based on the type of the source neuron.

In general, it is also not a good idea to use negative weights directly
since standard graph analysis methods cannot handle them.
If you are not working with biologically realistic neurons and want to
set some inhibitory connections that do not depend on a “neuronal type”,
use the set_types() method.

Let us see how the get_edges() function can be used to
facilitate the creation of various weight patterns:

Same as for node attributes, one can give attributes to the edges
Let's give weights to the edges depending on how often the animals interact!
cat's interact a lot among themselves, so we'll give them high weights
cat_edges = graph.get_edges(source_node=cats, target_node=cats)

check that these are indeed only between cats
cat_set = set(cats)
node_set = set(np.unique(cat_edges))

assert cat_set == node_set, "Damned, something wrong happened to the cats!"

uniform distribution of weights between 30 and 50
graph.set_weights(elist=cat_edges, distribution="uniform",
 parameters={"lower": 30, "upper": 50})

dogs have less occasions to interact except some which spend a lot of time
together, so we use a lognormal distribution
dog_edges = graph.get_edges(source_node=dogs, target_node=dogs)
graph.set_weights(elist=dog_edges, distribution="lognormal",
 parameters={"position": 2.2, "scale": 0.5})

Cats do not like dogs, so we set their weights to -5
Dogs like chasing cats but do not like them much either so we let the default
value of 1
cd_edges = graph.get_edges(source_node=cats, target_node=dogs)
graph.set_weights(elist=cd_edges, distribution="constant",
 parameters={"value": -5})

Let's check the distribution (you should clearly see 4 separate shapes)
if nngt.get_config("with_plot"):
 nngt.plot.edge_attributes_distribution(graph, "weight")

Note that here, the weights were generated randomly from specific
distributions; for more details on the available distributions and their
parameters, see Attributes and distributions.

Custom edge attributes

Non-default edge attributes (besides “weights” or “delays”) can also be created
through smilar functions as node attributes:

class Human:
 def __init__(self, name):
 self.name = name
 def __repr__(self):
 return "Human<{}>".format(self.name)

let's create a class for humans and store it when two animals have interacted
with the same human (the default will be an empty list if they did not)

Alice interacted with all animals between 8 and 48
Alice = Human("Alice")
animals = [i for i in range(8, 49)]
edges = graph.get_edges(source_node=animals, target_node=animals)

graph.new_edge_attribute("common_interaction", value_type="object", val=[])
graph.set_edge_attribute("common_interaction", val=[Alice], edges=edges)

Now suppose another human, Bob, interacted with all animals between 0 and 40
Bob = Human("Bob")
animals = [i for i in range(0, 41)]
edges2 = graph.get_edges(source_node=animals, target_node=animals)

to update the values, we need to get them to add Bob to the list
ci = graph.get_edge_attributes(name="common_interaction", edges=edges2)

for interactions in ci:
 interactions.append(Bob)

graph.set_edge_attribute("common_interaction", values=ci, edges=edges2)

now some of the initial `edges` should have had their attributes updated
new_ci = graph.get_edge_attributes(name="common_interaction", edges=edges)
print(np.sum([0 if len(interaction) < 2 else 1 for interaction in new_ci]),
 "interactions have been updated among the", len(edges), "from Alice.")

Attributes and distributions

Node and edge attributes can be generated based on the following
distributions:

	uniform

	
	a flat distribution with identical probability for all values,

	parameters: "lower" and "upper" values.

	delta

	
	the Dirac delta “distribution”, where a single value can be drawn,

	parameters: "value".

	Gaussian

	
	the normal distribution [image: P(x) = P_0 e^{(x - \mu)^2/(2\sigma^2)}]

	parameters: "avg" ([image: \mu]) and "std" ([image: \sigma]).

	lognormal

	
	[image: P(x) = P_0 e^{(\log(x) - \mu)^2/(2\sigma^2)}]

	parameters: "position" ([image: \mu]) and "scale" ([image: \sigma]).

	linearly correlated

	
	distribution name: "lin_corr"

	a distribution which evolves linearly between two values depending on the
value of a reference variable

	parameters: "correl_attribute" (the reference variable, usually
another attribute), "lower" and "upper", the minimum and maximum
values.

Example

Generating a graph with delays that are linearly correlated to the distance
between nodes.

dmin = 1.
dmax = 8.

d = {
 "distribution": "lin_corr", "correl_attribute": "distance",
 "lower": dmin, "upper": dmax
}

g = nngt.generation.distance_rule(200., nodes=100, avg_deg=10, delays=d)

Go to other tutorials:

	Intro & user manual

	Graph generation

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

Consistent tools for graph analysis

NNGT provides several functions for topological analysis that return consistent
results for all backends (the results will always be the same regardless of
which library is used under the hood).
This section describes these functions and gives an overview of the currently
supported methods.

Note

It is of course possible to use any function from the library on the
graph attribute; however, not using one of the
supported NNGT functions below will usually return results that are not
consistent between libraries (and the code will obviously no longer be
portable).

Supported functions

The following table details which functions are supported for directed and
undirected networks, and whether they also work with weighted edges.

The test file where these functions are checked can be found here:
testing/library_compatibility.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/testing/library_compatibility.py].

For each type of graph, the table tells which libraries are supported for the
given function (graph-tool is gt, networkx is nx and igraph is ig).
Custom implementation of a function is denoted by nngt, meaning that the
function can be used even if no graph library is installed.
A library marked between parentheses denotes partial support and additional
explanation is usually given in the footnotes.
A cross means that no consistent implementation is currently provided and
the function will raise an error if one tries to use it on such graphs.
Methods that are not defined for weighted or directed graphs are marked by NA.

	Method

	Unweighted undirected

	Unweighted directed

	Weighted undirected

	Weighted directed

	all_shortest_paths()

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	average_path_length()

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	assortativity() 1

	gt, nx, ig

	gt, nx, ig

	gt, ig

	gt, ig

	betweenness()

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	betweenness_distrib()

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	closeness() 2

	gt, nx, (ig)

	gt, nx, (ig)

	gt, nx, (ig)

	gt, nx, (ig)

	connected_components()

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	degree_distrib()

	gt, nx, ig, nngt

	gt, nx, ig, nngt

	gt, nx, ig, nngt

	gt, nx, ig, nngt

	diameter() 3

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	global_clustering()

	gt, nx, ig, nngt

	nngt

	nngt

	nngt

	local_clustering() 4

	gt, nx, ig, nngt

	nngt

	nngt

	nngt

	reciprocity()

	gt, nx, ig, nngt

	gt, nx, ig, nngt

	NA

	NA

	shortest_distance()

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	shortest_path()

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	gt, nx, ig

	spectral_radius()

	nngt

	nngt

	nngt

	nngt

	subgraph_centrality()

	nngt

	nngt

	nngt

	nngt

	transitivity() 5

	gt, nx, ig, nngt

	nngt

	nngt

	nngt

	1

	networkx could be used via a workaround but an issue [https://github.com/networkx/networkx/issues/3917] has been raised to
find out how to best deal with this.

	2

	since definitions of the maximum distances differ between libraries,
igraph is currently not usable if the in- or out-degree of any of the
nodes is zero; it also does not provide an implementation for the
harmonic closeness.

	3

	the implementation of the diameter for graph-tool is approximmate so
results may occasionaly be inexact with this backend.

	4

	for directed and weighted networks, definitions and implementations
differ between graph libraries, so generic implementations are provided
in NNGT. See “Clustering in weighted and directed networks” for details.

	5

	identical to global_clustering.

Clustering in weighted and directed networks

For directed clustering, NNGT provides the total clustering porposed in
[Fagiolo2007]

[image: C_i^d = \frac{\frac{1}{2} (A + A^T)^3}{d_i^{tot}(d_i^{tot} - 1) - d_i^{\leftrightarrow}}]

with [image: d_i^{\leftrightarrow} = A^2_{ii}] is the reciprocal degree.

For undirected weighted clustering, NNGT provides the definition proposed in
[Barrat2004], [Onnela2005] as well as a new continuous definition.

[image: C_{B,i}^u = \frac{(WA^2)_{ii}}{s_i (d_i - 1)}]

[image: C_{O,i}^u = \frac{(W^{\left[\frac{1}{3}\right]})^3_{ii}}{d_i (d_i - 1)}]

[image: C_{c,i}^u = \frac{\left(W^{\left[\frac{2}{3}\right]}\right)^3_{ii}}{\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - s_i}]

with [image: s^{\left[\frac{1}{2}\right]}] the generalized strength associated to the
matrix [image: W^{\left[\frac{1}{2}\right]} = \{\sqrt{w_{ij}}\}].

For directed weighted clustering, the generalization of Barrat from
[Clemente2018] is provided, as well as a generalization of Onnela and of the
continuous clustering:

[image: C_{B,i}^d = \frac{\frac{1}{2}((W + W^T)(A+A^T)^2)_{ii}}{s_i (d_i^{tot} - 1) - s_{c,i}^{\leftrightarrow}}]

with [image: s] the total strength and
[image: s_{c,i}^{\leftrightarrow} = \frac{1}{2} (WA + AW)_{ii}] the arithmetic
reciprocal strength,

[image: C_{O,i}^d = \frac{\frac{1}{2}(W^{\left[\frac{1}{3}\right]} + (W^{\left[\frac{1}{3}\right]})^T)^3_{ii}}{d_i^{tot}(d_i^{tot} - 1) - d_i^{\leftrightarrow}}]

[image: C_{c,i}^d = \frac{\frac{1}{2}\left(W^{\left[\frac{2}{3}\right]} + W^{\left[\frac{2}{3}\right],T}\right)^3_{ii}}{\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - 2s^{\leftrightarrow}_i - s_i}]

with [image: s^{\left[\frac{1}{2}\right]}] the total generalized strength and
[image: s_i^\leftrightarrow = \left(W^{\left[\frac{1}{2}\right]} \right)^2] the
geometric reciprocal strength.

Global clusterings are defined as the sum of all numerators divided by the sum
of all denominators for all definitions.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Clemente2018

	Clemente, Grassi. Directed Clustering in Weighted Networks:
A New Perspective. Chaos, Solitons & Fractals 2018, 107, 26–38.
DOI: 10.1016/j.chaos.2017.12.007 [https://dx.doi.org/10.1016/j.chaos.2017.12.007], arXiv: 1706.07322 [https://arxiv.org/abs/1706.07322].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence of
Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6), 065103.
DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arXiv: cond-mat/0408629 [https://arxiv.org/abs/cond-mat/0408629].

	Saramaki2007

	Saramäki, Kivelä, Onnela, Kaski, Kertész. Generalizations
of the Clustering Coefficient to Weighted Complex Networks.
Phys. Rev. E 2007, 75 (2), 027105. DOI: 10.1103/PhysRevE.75.027105 [https://dx.doi.org/10.1103/PhysRevE.75.027105],
arXiv: cond-mat/0608670 [https://arxiv.org/abs/cond-mat/0608670].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

Go to other tutorials:

	Intro & user manual

	Graph generation

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

Parallelism

	Principle

	Parallelism and random numbers

	Using OpenMP (shared-memory parallelism)

	Setting multithreading

	Graph-tool caveat

	Using MPI (distributed-memory parallelism)

	Fully distributed setup

	Parallelized generation algorithms

Principle

The NNGT package provides the possibility to use multithreaded algorithms to
generate networks.
This feature means that the computation is distributed on several CPUs and can
be useful for:

	machines with several cores but low frequency

	generation functions requiring large amounts of computation

	very large graphs

However, the multithreading part concerns only the generation of the edges; if
a graph library such as graph-tool, igraph, or networkx is used,
the building process of the graph object will be taken care of by this library.
Since this process is not multithreaded, obtaining the graph object can be much
longer than the actual generation process.

NNGT provides two types of parallelism:

	shared-memory parallelism, using OpenMP [http://www.openmp.org/], which can be set using
nngt.set_config() ("multithreading", True) or, setting the
number of threads, with nngt.set_config("omp", 8) to use 8 threads.

	distributed-memory parallelism using
MPI [https://en.wikipedia.org/wiki/Message_Passing_Interface], which is set through nngt.set_config("mpi", True). In that case,
the python script must be run as mpirun -n 8 python name_of_the_script.py
to be run in parallel.

These two ways of running code in parallel differ widely, both regarding the
situations in which they can be useful, and in the way the user should interact
with the resulting graph.

The easiest tool, because it does not significantly differ from the
single-thread case on the user side, is OpenMP, which is why we will describe
it first.
Using MPI is a lot different and will require the user to adapt the code
to use it and will depend on the backend used.

Parallelism and random numbers

When using parallel algorithms, additional care is necessary when dealing with
random number generation.
Here again, the situation differs between the OpenMP and MPI cases.

Warning

Never use the standard random module, only use numpy.random!

When using OpenMP, the parallel algorithms will use the random seeds defined
by the user through nngt.set_config("seeds", list_of_seeds). One seed per
thread is necessary.
These seeds are not used on the python level, so they are independent from
whatever random generation could happen using numpy
(e.g. to set node positions in space, or to generate attributes).
To make a simulation fully reproducible, the user must set both the random
seeds and the python level random number generators through the master seed.
For instance, with 4 threads:

master_seed = 0
nngt.set_config({"msd": master_seed, "seeds": [1, 2, 3, 4]})

Note

If the seeds are not provided, then they are generated automatically,
from the master seed for the first call to a graph-generation method
(using [image: \{MSD + 1 + i\}_{i \in {0.. N}}], with N the number of
threads), then using a random number generated through numpy. This means
that all previous calls to numpy.random [https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random] will affect the
random seeds used for the second or later calls to graph-generation
methods unless new seeds are manually set by the user befor each new
call (this does not mean that the code will not be reproducible, only
that changes in the random calls in the code that occur before calls to
graph-generation methods would affect the random structure of the
generated graphs).

Warning

This is also how you should initialize random numbers when using MPI!

This may surprise experienced MPI users, but NNGT is implemented in such a way
that shared properties are generated on all threads through the initial python
master seed, then generation algorithms save the current common state, then
re-initialize the RNGs for parallel generation, and finally restore the
previous, common random state once the parallel generation is done.
Of course the parallel initialization differs every time, but it is changed in
a reproducible way through the master seed.

Using OpenMP (shared-memory parallelism)

Setting multithreading

Multithreading in NNGT can be set via

>>> nngt.set_config({"multithreading": True, "omp": num_omp_threads})

and you can then switch it off using

>>> nngt.set_config("multithreading", False)

This will automatically switch between the standard and multithreaded
algorithms for graph generation.

Graph-tool caveat

The graph-tool library also provides some multithreading capabilities,
using

>>> graph_tool.openmp_set_num_threads(num_omp_threads)

However, this sets the number of OpenMP threads session-wide, which means that
it will interfere with the ``NEST`` setup!
Hence, if you are working with both NEST and graph-tool, you have
to use the same number of OpenMP threads in both libraries.

To prevent bad surprises as much as possible, NNGT will raise an error if
a value of "omp" is provided, which differs from the current NEST
configuration.
Regardless of this precaution, keeping only one value for the number of threads
and using it consistently throughout the code is strongly advised.

Using MPI (distributed-memory parallelism)

Note

MPI algorithms are currently restricted to
gaussian_degree() and
distance_rule() only.

Handling MPI can be significantly more difficult than using OpenMP because it
differs more strongly from the “standard” single-thread case.

NNGT provides two different ways of using MPI:

	When using one of the three graph libraries (graph-tool, igraph, or
networkx), the connections are generated in parallel, but the final object is
stored only on the master process. This means that in this case, the memory
load will weigh only on this process, leading to a strong load imbalance.
This feature is aimed at people who would require parallelism to speed up
their graph generation but, for some reason, cannot use the OpenMP
parallelism.

	For “real” memory distribution, e.g. for people working on clusters, who
require a balanced memory-load, NNGT provides a custom backend, that can be
set using nngt.set_config('backend', 'nngt'). In this case, each process
stores only a fraction of all the edges. However, nodes and graph
properties are fully available on all processes.

Warning

When using MPI with graph-tool, igraph, or networkx, all operations on the
graph that has been generated must be limited to the root process. To that
end, NNGT provides the on_master_process() function that
returns True only on the root MPI process.
Using the ‘nngt’ backend, the edge_nb() method, as well
as all other edge-related methods will return information on the local
edges only!

Fully distributed setup

The python file should include (before any graph generation):

import nngt

msd = 0 # choose a master seed
seeds = [1, 2, 3, 4] # choose initial seeds, one per MPI process

nngt.set_config({
 "mpi": True,
 "backend": "nngt",
 "msd": msd,
 "seeds": seeds,
})

The file should then be executed using:

>>> mpirun -n 4 python name_of_the_script.py

Note

Graph saving is available in parallel in the fully distributed setup
through the to_file() and save_to_file()
functions as in any other configuration.

Parallelized generation algorithms

Generation of some directed graphs are available with parallel
implementations (see table below).
No undirected graph generation mechanisms are currently implemented.

	Function

	OMP

	MPI

	all_to_all()

	no

	no

	circular()

	no

	no

	distance_rule()

	yes

	yes

	erdos_renyi()

	no

	no

	fixed_degree()

	yes

	yes

	from_degree_list()

	yes

	yes

	gaussian_degree()

	yes

	yes

	newman_watts()

	no

	no

	random_scale_free()

	no

	no

Go to other tutorials:

	Intro & user manual

	Graph generation

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

	Properties of graph components

Groups, structures, and neuronal populations

One notable feature of NNGT is to enable users to group nodes (neurons)
into groups sharing common properties in order to facilitate the generation of
a network, the analysis of its properties, or complex simulations with NEST [https://www.nest-simulator.org/].

The complete example file containing the code discussed here, as well as
additional information on how to access NeuralGroup and
NeuralPop properties can be found there:
docs/examples/introduction_to_groups.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/introduction_to_groups.py].

Contents

	Neuronal groups

	Creating simple groups

	Creating a structured graph

	More realistic neuronal groups

	Populations

	Simple populations

	NEST-enabled populations

	Complex populations and metagroups

Neuronal groups

Neuronal groups are entities containing neurons which share common properties.
Inside a population, a single neuron belongs to a single
NeuralGroup object. Conversely the union of all groups contains
all neurons in the network once and only once.

When creating a group, it is therefore important to make sure that it forms a
coherent set of neurons, as this will make network handling easier.

For more versatile grouping, where neurons can belong to multiple ensembles,
see the section about meta-groups below: Complex populations and metagroups.

Creating simple groups

Groups can be created easily through calls to Group or
NeuralGroup.

>>> group = nngt.Group()
>>> ngroup = nngt.NeuralGroup()

create empty groups (nothing very interesting).

Minimally, any useful group requires at least neuron ids and, for a neuronal
group, a type (excitatory or inhibitory) to be useful.

To create a useful group, one can therefore either just tell how many
nodes/neurons it should contain:

group1 = Group(500) # a group with 500 nodes

or directly pass it a list of ids (to avoid typing nngt. all
the time, we do from nngt import Group, NeuralGroup at the beginning)

group2 = NeuralGroup(range(10, 20)) # neurons with ids from 10 to 19

Note that if you set ids directly you will be responsible for their
consistency.

Creating a structured graph

To create a structured graph, the groups are gathered into a Structure
which can then be used to create a graph and connect the nodes.

room1 = nngt.Group(25)
room2 = nngt.Group(50)
room3 = nngt.Group(40)
room4 = nngt.Group(35)

names = ["R1", "R2", "R3", "R4"]

struct = nngt.Structure.from_groups((room1, room2, room3, room4), names)

g = nngt.Graph(structure=struct)

for room in struct:
 nngt.generation.connect_groups(g, room, room, "all_to_all")

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
 avg_deg=10, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=20)

nngt.generation.connect_groups(g, room4, room3, "erdos_renyi", avg_deg=10)

More realistic neuronal groups

When designing neuronal networks, one usually cares about their type
(excitatory or inhibitory for instance), their properties, etc.

By default, neural groups are created excitatory and the following lines are
therefore equivalent:

exc = NeuralGroup(800, neuron_type=1) # excitatory group
exc2 = NeuralGroup(800, neuron_type=1) # also excitatory

To create an inhibitory group, the neural type must be set to -1:

inhib = NeuralGroup(200, neuron_type=-1) # inhibitory group

Moving towards really realistic groups to run simulation on NEST afterwards,
the last step is to associate a neuronal model and set the properties of these
neurons (and optionally give them names):

pyr = NeuralGroup(800, neuron_type=1, neuron_model="iaf_psc_alpha",
 neuron_param={"tau_m": 50.}, name="pyramidal_cells")

fsi = NeuralGroup(200, neuron_type=-1, neuron_model="iaf_psc_alpha",
 neuron_param={"tau_m": 20.},
 name="fast_spiking_interneurons")

Populations

Populations are ensembles of neuronal groups which describe all neurons in a
corresponding network.
They are usually created before the network and then used to generate
connections, but the can also be generated after the network creation, then
associated to it.

Simple populations

To create a population, you can start from scratch by creating an empty
population, then adding groups to it:

pop = nngt.NeuralPop(with_models=False) # empty population
pop.create_group(200, "first_group") # create excitatory group
pop.create_group(5, "second_group", neuron_type=-1) # create inhibitory group

NNGT also provides a two default routine to create simple populations:

	uniform(), to generate a single population where all
neurons belong to the same group,

	exc_and_inhib(), to generate a mixed excitatory and
inhibitory population.

As before, we do from nngt import NeuralPop to avoid typing nngt. all
the time.

To create such populations, just use:

Eventually, a population can be created from exiting groups using
from_groups():

print(exc.neuron_type, exc2.neuron_type, inhib.neuron_type)
ei_pop2 = NeuralPop.from_groups([exc, exc2, inhib], ["e1", "e2", "i"],

Note that, here, we pass with_models=False to the population because these
groups were created without the information necessary to create a network in
NEST [https://www.nest-simulator.org/] (a valid neuron model).

NEST-enabled populations

To create a NEST-enabled population, one can use one of the standard
classmethods (uniform() and
exc_and_inhib()) and pass it valid parameters for the
neuronal models (optionally also a synaptic model and neuronal/synaptic
parameters).

Otherwise, one can build the population from groups that already contain these
properties, e.g. the previous pyr and fsi groups:

optional synaptic properties
syn_spec = {
 'default': {"model": "tsodyks2_synapse"}, # default connections
 ("pyramidal_cells", "pyramidal_cells"): {"U": 0.6} # change a parameter
}

nest_pop = NeuralPop.from_groups([pyr, fsi], syn_spec=syn_spec)

Warning

syn_spec can contain any synaptic model and parameters associated to the
NEST model; however, neither the synaptic weight nor the synaptic delay
can be set there. For details on how to set synaptic weight and delays
between groups, see connect_groups().

To see how to use a population to create a Network and send it
to NEST [https://www.nest-simulator.org/], see Use with NEST.

Complex populations and metagroups

When building complex neuronal networks, it may be useful to have neurons
belong to multiple groups at the same time.
Because standard groups can contain a neuron only once, meta-groups were
introduced to provide this additional functionality.

Contrary to normal groups, a neuron can belong to any number of metagroups,
which allow to make various sub- or super-groups.
For instance, when modeling a part of cortex, neurons will belong to a layer,
and to a given cell class whithin that layer.
In that case, you may want to create specific groups for cell classes, like
L3Py, L5Py, L3I, L5I for layer 4 and 5 pyramidal cells as well
as interneurons, but you can then also group neurons in a same layer together,
and same with pyramidal neurons or interneurons.

First create the normal groups:

nmod = "iaf_psc_exp"

idsL2gc = range(100)
idsL3py, idsL3i = range(100, 200), range(200, 300)
idsL4gc = range(300, 400)
idsL5py, idsL5i = range(400, 500), range(500, 600)
idsL6 = range(600, 700)

L2GC = NeuralGroup(idsL2gc, neuron_model=nmod, name="L2GC", neuron_type=1)
L3Py = NeuralGroup(idsL3py, neuron_model=nmod, name="L3Py", neuron_type=1)
L3I = NeuralGroup(idsL3i, neuron_model=nmod, name="L3I", neuron_type=-1)
L4GC = NeuralGroup(idsL4gc, neuron_model=nmod, name="L4GC", neuron_type=1)
L5Py = NeuralGroup(idsL5py, neuron_model=nmod, name="L5Py", neuron_type=1)
L5I = NeuralGroup(idsL5i, neuron_model=nmod, name="L5I", neuron_type=-1)
L6c = NeuralGroup(idsL6, neuron_model=nmod, name="L6c", neuron_type=1)

Then make the metagroups for the layers:

L2 = MetaGroup(idsL2gc, name="L2")
L3 = MetaNeuralGroup(L3Py.ids + L3I.ids, name="L3")
L4 = MetaGroup(idsL4gc, name="L4")
L5 = MetaNeuralGroup(L5Py.ids + L5I.ids, name="L5")
L6 = MetaGroup(idsL6, name="L6")

Note that I used MetaNeuralGroup for layers 3 and 5 because it enables
to differenciate inhibitory and excitatory neurons using
inhibitory and
excitatory.
Otherwise normal MetaGroup are equivalent and sufficient.

Create the population:

pop_column = NeuralPop.from_groups(
 [L2GC, L3Py, L3I, L4GC, L5Py, L5I, L6c], meta_groups=[L2, L3, L4, L5, L6])

Then add additional metagroups for cell types:

pyr = MetaGroup(L3Py.ids + L5Py.ids, name="pyramidal")
pop_column.add_meta_group(pyr) # add from existing meta-group

pop_column.create_meta_group(L3I.ids + L5I.ids, "interneurons") # single line

pop_column.create_meta_group(L2GC.ids + L4GC.ids, "granule")

Go to other tutorials:

	Intro & user manual

	Graph generation

	Parallelism

	Interacting with the NEST simulator

	Activity analysis

	Properties of graph components

Interacting with the NEST simulator

This section details how to create detailed neuronal networks, then run
simulations on them using the NEST simulator.

Readers are supposed to have a good grap of the way NEST handles neurons and
models, and how to create and setup NEST nodes.
If this is not the case, please see the NEST user doc [http://www.nest-simulator.org/documentation/] and the
PyNEST tutorials [http://www.nest-simulator.org/introduction-to-pynest/] first.

NNGT tools with regard to NEST [https://www.nest-simulator.org/] can be separated into

	the structural tools (Network, NeuralPop …)
that are used to prepare the neuronal network and setup its properties and
connectivity; these tools should be used before

	the make_nest_network() and the associated,
to_nest() functions that are used to send the previously
prepared network to NEST;

	then, after using one of the previous functions, all the other functions
contained in the nngt.simulation module can be used to add
stimulations to the neurons or monitor them.

Note

Calls to nest.ResetKernel will also reset all networks and populations,
which means that after such a call, populations, parameters, etc, can again
be changed until the next invocation of
make_nest_network() or to_nest().

Example files associated to the interactions between NEST [https://www.nest-simulator.org/] and NNGT can be
found here: docs/examples/nest_network.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/nest_network.py] /
docs/examples/nest_receptor_ports.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/nest_receptor_ports.py].

Content:

	Creating detailed neuronal networks

	NeuralPop and NeuralGroup

	The Network class

	Changing the parameters of neurons

	Before sending the network to NEST

	After sending the network to NEST, randomizing

Creating detailed neuronal networks

NeuralPop and NeuralGroup

These two classes are the basic blocks to design neuronal networks: a
NeuralGroup is a set of neurons sharing common properties while
the NeuralPop is the main container that represents the whole
network as an ensemble of groups.

Depending on your perspective, you can either create the groups first, then
build the population from them, or create the population first, then split
it into various groups.

For more details on groups and populations, see Groups, structures, and neuronal populations.

Neuronal groups before the population

Neural groups can be created as follow:

100 inhibitory neurons
basic_group = nngt.NeuralGroup(100, neuron_type=-1)
10 excitatory (default) aeif neurons
aeif_group = nngt.NeuralGroup(10, neuron_model="aeif_psc_alpha")
an unspecified number of aeif neurons with specific parameters
p = {"E_L": -58., "V_th": -54.}
aeif_g2 = nngt.NeuralGroup(neuron_model="aeif_psc_alpha", neuron_param=p)

In the case where the number of neurons is specified upon creation, NNGT can
check that the number of neurons matches in the network and the associated
population and raise a warning if they don’t. However, it is just a security
check and it does not prevent the network for being created if the numbers
don’t match.

Once the groups are created, you can simply generate the population using

pop = nngt.NeuralPop.from_groups([basic_group, aeif_group], ["b", "a"])

This created a population separated into “a” and “b” from the previously
created groups.

Population before the groups

A population with excitatory and inhibitory neurons

pop = nngt.NeuralPop(1000)
pop.create_group(800, "first")
pop.create_group(200, "second", neuron_type=-1)

or, more compact

pop = nngt.NeuralPop.exc_and_inhib(1000, iratio=0.2)

The Network class

Besides connectivity, the main interest of the NeuralGroup is
that you can pass it the biological properties that the neurons belonging to
this group will share.

Since we are using NEST, these properties are:

	the model’s name

	its non-default properties

	the synapses that the neurons have and their properties

	the type of the neurons (1 for excitatory or -1 for inhibitory)

''' Create groups with different parameters '''
adaptive spiking neurons
base_params = {
 'E_L': -60., 'V_th': -58., 'b': 20., 'tau_w': 100.,
 'V_reset': -65., 't_ref': 2., 'g_L': 10., 'C_m': 250.
}
oscillators
params1, params2 = base_params.copy(), base_params.copy()
params1.update(
 {'E_L': -65., 'b': 40., 'I_e': 200., 'tau_w': 400., "V_th": -57.})
bursters
params2.update({'b': 25., 'V_reset': -55., 'tau_w': 300.})

oscill = nngt.NeuralGroup(
 nodes=400, neuron_model='aeif_psc_alpha', neuron_type=1,
 neuron_param=params1)

burst = nngt.NeuralGroup(
 nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
 neuron_param=params2)

adapt = nngt.NeuralGroup(
 nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
 neuron_param=base_params)

synapses = {
 'default': {'model': 'tsodyks2_synapse'},
 ('oscillators', 'bursters'): {'model': 'tsodyks2_synapse', 'U': 0.6},
 ('oscillators', 'oscillators'): {'model': 'tsodyks2_synapse', 'U': 0.7},
 ('oscillators', 'adaptive'): {'model': 'tsodyks2_synapse', 'U': 0.5}
}

'''
Create the population that will represent the neuronal
network from these groups
'''
pop = nngt.NeuralPop.from_groups(
 [oscill, burst, adapt],
 names=['oscillators', 'bursters', 'adaptive'], syn_spec=synapses)

'''
Create the network from this population,
using a Gaussian in-degree
'''
net = ng.gaussian_degree(

Once this network is created, it can simply be sent to nest through the
command: gids = net.to_nest(), and the NEST gids are returned.

In order to access the gids from each group, you can do:

oscill_gids = net.nest_gids[oscill.ids]

or directly:

oscill_gids = oscill.nest_gids

As shown in “Use with NEST”, synaptic strength from inhibitory neurons in
NNGT are positive (for compatibility with graph analysis tools) but they are
automatically converted to negative values when the network is created in NEST.

Changing the parameters of neurons

Before sending the network to NEST

Once the NeuralPop has been created, you can change the
parameters of the neuron groups before you send the network to NEST.

To do this, you can use the set_param() function, to
which you pass the parameter dict and the name of the
NeuralGroup you want to modify.

If you are dealing directly with NeuralGroup objects, you can
access and modify their neuron_param attribute as long as the network has
not been sent to nest. Once sent, these parameters become unsettable and any
wourkaround to circumvent this will not change the values inside NEST anyway.

After sending the network to NEST, randomizing

Once the network has been sent to NEST, neuronal parameters can still be
changed, but only for randomization purposes.
It is possible to randomize the neuronal parameters through the
randomize_neural_states() function.
This sets the parameters using a specified distribution and stores their
values inside the network nodes’ attributes.

Go to other tutorials:

	Intro & user manual

	Graph generation

	Parallelism

	Groups, structures, and neuronal populations

	Activity analysis

	Properties of graph components

Activity analysis

	Principle

	Sorted rasters

	Activity properties

Principle

The interesting fact about having a link between the graph and the simulation
is that you can easily analyze the activity be taking into account what you
know from the graph structure.

Sorted rasters

Rater plots can be sorted depending on some specific node property, e.g. the
degree or the betweenness:

import nest

import nngt
from nngt.simulation import monitor_nodes, plot_activity

pop = nngt.NeuralPop.uniform(1000, neuron_model="aeif_psc_alpha")
net = nngt.generation.gaussian_degree(100, 20, population=pop)

nodes = net.to_nest()
recorders, recordables = monitor_nodes(nodes)
simtime = 1000.
nest.Simulate(simtime)

fignums = plot_activity(
 recorders, recordables, network=net, show=True, hist=False,
 limits=(0.,simtime), sort="in-degree")

Activity properties

NNGT can also be used to analyze the general properties of a raster.

Either from a .gdf file containing the raster data

import nngt
from nngt.simulation import analyze_raster

a = analyze_raster("path/to/raster.gdf")
print(a.phases)
print(a.properties)

Or from a spike detector gid sd:

a = analyze_raster(sd)

Additional information:

	Simulation module

Go to other tutorials:

	Intro & user manual

	Graph generation

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Properties of graph components

Simulation module

Module to interact easily with the NEST simulator. It allows to:

	build a NEST network from Network or
SpatialNetwork objects,

	monitor the activity of the network (taking neural groups into account)

	plot the activity while separating the behaviours of predefined neural groups

Content

	nngt.simulation.ActivityRecord(spike_data, …)

	Class to record the properties of the simulated activity.

	nngt.simulation.activity_types(…[, …])

	Analyze the spiking pattern of a neural network.

	nngt.simulation.analyze_raster([raster, …])

	Return the activity types for a given raster.

	nngt.simulation.get_nest_adjacency([…])

	Get the adjacency matrix describing a NEST network.

	nngt.simulation.get_recording(network, record)

	Return the evolution of some recorded values for each neuron.

	nngt.simulation.make_nest_network(network[, …])

	Create a new network which will be filled with neurons and connector objects to reproduce the topology from the initial network.

	nngt.simulation.monitor_groups(group_names, …)

	Monitoring the activity of nodes in the network.

	nngt.simulation.monitor_nodes(gids[, …])

	Monitoring the activity of nodes in the network.

	nngt.simulation.plot_activity([…])

	Plot the monitored activity.

	nngt.simulation.randomize_neural_states(…)

	Randomize the neural states according to the instructions.

	nngt.simulation.raster_plot(times, senders)

	Plotting routine that constructs a raster plot along with an optional histogram.

	nngt.simulation.reproducible_weights(…[, …])

	Find the values of the connection weights that will give PSP responses of min_weight and max_weight in mV.

	nngt.simulation.save_spikes(filename[, …])

	Plot the monitored activity.

	nngt.simulation.set_minis(network, …[, …])

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or “minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs) synapses.

	nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	nngt.simulation.set_poisson_input(gids, rate)

	Submit neurons to a Poissonian rate of spikes.

	nngt.simulation.set_step_currents(gids, …)

	Set step-current excitations

Details

	
class nngt.simulation.ActivityRecord(spike_data, phases, properties, parameters=None)

	Class to record the properties of the simulated activity.

Initialize the instance using spike_data (store proxy to an optional
network) and compute the properties of provided data.

	Parameters

	
	spike_data (2D array) – Array of shape (num_spikes, 2), containing the senders on the 1st
row and the times on the 2nd row.

	phases (dict) – Limits of the different phases in the simulated period.

	properties (dict) – Values of the different properties of the activity (e.g.
“firing_rate”, “IBI”…).

	parameters (dict, optional (default: None)) – Parameters used to compute the phases.

Note

The firing rate is computed as num_spikes / total simulation time,
the period is the sum of an IBI and a bursting period.

	
data

	Returns the (N, 2) array of (senders, spike times).

	
phases

	
	“bursting” for periods of high activity where a large fraction
of the network is recruited.

	“quiescent” for periods of low activity

	“mixed” for firing rate in between “quiescent” and “bursting”.

	“localized” for periods of high activity but where only a small
fraction of the network is recruited.

Note

See parameters for details on the conditions used to
differenciate these phases.

	Type

	Return the phases detected

	
properties

	Returns the properties of the activity.
Contains the following entries:

	“firing_rate”: average value in Hz for 1 neuron in the network.

	“bursting”: True if there were bursts of activity detected.

	“burst_duration”, “IBI”, “ISI”, and “period” in ms, if
“bursting” is True.

	“SpB” (Spikes per Burst): average number of spikes per neuron
during a burst.

	
simplify()

	

	
nngt.simulation.activity_types(spike_detector, limits, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, simplify=False, fignums=[], show=False)

	Analyze the spiking pattern of a neural network.

	@todo:

	think about inserting t=0. and t=simtime at the beginning and at the
end of times.

	Parameters

	
	spike_detector (NEST node(s) (tuple or list of tuples)) – The recording device that monitored the network’s spikes.

	limits (tuple of floats) – Time limits of the simulation region which should be studied (in ms).

	network (Network, optional (default: None)) – Neural network that was analyzed

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	return_steps (bool, optional (default: False)) – If True, a second dictionary, phases_steps will also be returned.
@todo: not implemented yet

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the limits[0]
first milliseconds are ignored, then the skip_bursts first bursts of the
remaining activity are ignored.

	Returns

	phases (dict) – Dictionary containing the time intervals (in ms) for all four phases
(bursting’, `quiescent’, `mixed’, and `localized) as lists.
E.g: phases["bursting"] could give [[123.5,334.2],
[857.1,1000.6]].

	
nngt.simulation.analyze_raster(raster=None, limits=None, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, skip_ms=0.0, simplify=False, fignums=[], show=False)

	Return the activity types for a given raster.

	Parameters

	
	raster (array-like (N, 2) or str) – Either an array containing the ids of the spiking neurons on the first
column, then the corresponding times on the second column, or the path
to a NEST .gdf recording.

	limits (tuple of floats) – Time limits of the simulation regrion which should be studied (in ms).

	network (Network, optional (default: None)) – Network on which the recorded activity was simulated.

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the
limits[0] first milliseconds are ignored, then the skip_bursts
first bursts of the remaining activity are ignored.

	Returns

	activity (ActivityRecord) – Object containing the phases and the properties of the activity
from these phases.

	
nngt.simulation.get_nest_adjacency(id_converter=None)

	Get the adjacency matrix describing a NEST network.

	Parameters

	id_converter (dict, optional (default: None)) – A dictionary which maps NEST gids to the desired neurons ids.

	Returns

	mat_adj (lil_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix]) – Adjacency matrix of the network.

	
nngt.simulation.get_recording(network, record, recorder=None, nodes=None)

	Return the evolution of some recorded values for each neuron.

	Parameters

	
	network (nngt.Network) – Network for which the activity was simulated.

	record (str or list) – Name of the record(s) to obtain.

	recorder (tuple of ints, optional (default: all multimeters)) – GID of the “spike_detector” objects recording the network activity.

	nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the recording should be returned.

	Returns

	values (dict of dict of arrays) – Dictionary containing, for each record, an M array with the
recorded values for n-th neuron is stored under entry n (integer).
A times entry is also added; it should be the same size for all
records, otherwise an error will be raised.

Examples

After the creation of a Network called net, use the
following code:

import nest

rec, _ = monitor_nodes(
 net.nest_gids, "multimeter", {"record_from": ["V_m"]}, net)
nest.Simulate(100.)
recording = nngt.simulation.get_recording(net, "V_m")

access the membrane potential of first neuron + the times
V_m = recording["V_m"][0]
times = recording["times"]

	
nngt.simulation.make_nest_network(network, send_only=None, weights=True)

	Create a new network which will be filled with neurons and
connector objects to reproduce the topology from the initial network.

Changed in version 0.8: Added send_only parameter.

	Parameters

	
	network (nngt.Network or nngt.SpatialNetwork) – the network we want to reproduce in NEST.

	send_only (int, str, or list of str, optional (default: None)) – Restrict the nodes that are created in NEST to either inhibitory or
excitatory neurons send_only [image: \in \{ 1, -1\}] to a group or a
list of groups.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	Returns

	gids (tuple (nodes in NEST)) – GIDs of the neurons in the network.

	
nngt.simulation.monitor_groups(group_names, network, nest_recorder=None, params=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	group_name (list of strings) – Names of the groups that should be recorded.

	network (Network or subclass) – Network which population will be used to differentiate groups.

	nest_recorder (strings or list, optional (default: “spike_detector”0)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	Returns

	
	recorders (list or NodeCollection of the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.monitor_nodes(gids, nest_recorder=None, params=None, network=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	gids (tuple of ints or list of tuples) – GIDs of the neurons in the NEST subnetwork; either one list per
recorder if they should monitor different neurons or a unique list
which will be monitored by all devices.

	nest_recorder (strings or list, optional (default: “spike_detector”)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	network (Network or subclass, optional (default: None)) – Network which population will be used to differentiate groups.

	Returns

	
	recorders (list or NodeCollection containing the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.plot_activity(gid_recorder=None, record=None, network=None, gids=None, axis=None, show=False, limits=None, histogram=False, title=None, fignum=None, label=None, sort=None, average=False, normalize=1.0, decimate=None, transparent=True, kernel_center=0.0, kernel_std=None, resolution=None, cut_gaussian=5.0, **kwargs)

	Plot the monitored activity.

Changed in version 1.2: Switched hist to histogram and default value to False.

Changed in version 1.0.1: Added axis parameter, restored missing fignum parameter.

	Parameters

	
	gid_recorder (tuple or list of tuples, optional (default: None)) – The gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	record (tuple or list, optional (default: None)) – List of the monitored variables for each device. If gid_recorder is
None, record can also be None and only spikes are considered.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	gids (tuple, optional (default: None)) – NEST gids of the neurons which should be monitored.

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity. This takes precedence
over fignum.

	show (bool, optional (default: False)) – Whether to show the plot right away or to wait for the next plt.show().

	histogram (bool, optional (default: False)) – Whether to display the histogram when plotting spikes rasters.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike for raster plots).

	title (str, optional (default: None)) – Title of the plot.

	fignum (int, or dict, optional (default: None)) – Plot the activity on an existing figure (from figure.number). This
parameter is ignored if axis is provided.

	label (str or list, optional (default: None)) – Add labels to the plot (one per recorder).

	sort (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”, “out-degree”,
“total-degree” or “betweenness”), an activity-related property
(“firing_rate” or neuronal property) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the sort
property from bottom to top inside each group.

	normalize (float or list, optional (default: None)) – Normalize the recorded results by a given float. If a list is provided,
there should be one entry per voltmeter or multimeter in the recorders.
If the recording was done through monitor_groups, the population can
be passed to normalize the data by the nuber of nodes in each group.

	decimate (int or list of ints, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 5 will lead
to only 20% of the neurons being represented). If a list is provided,
it must have one entry per NeuralGroup in the population.

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms (for the histogram).

	kernel_std (float, optional (default: 0.5% of simulation time)) – Characteristic width of the Gaussian kernel (standard deviation) in ms
(for the histogram).

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed (for the histogram).

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	**kwargs (dict) – “color” and “alpha” values can be overriden here.

Warning

Sorting with “firing_rate” only works if NEST gids form a continuous
integer range.

	Returns

	lines (list of lists of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted, grouped by figure.

	
nngt.simulation.randomize_neural_states(network, instructions, groups=None, nodes=None, make_nest=False)

	Randomize the neural states according to the instructions.

Changed in version 0.8: Changed ids to nodes argument.

	Parameters

	
	network (Network subclass instance) – Network that will be simulated.

	instructions (dict) – Variables to initialize. Allowed keys are “V_m” and “w”. Values are
3-tuples of type ("distrib_name", double, double).

	groups (list of NeuralGroup, optional (default: None)) – If provided, only the neurons belonging to these groups will have their
properties randomized.

	nodes (array-like, optional (default: all neurons)) – NNGT ids of the neurons that will have their status randomized.

	make_nest (bool, optional (default: False)) – If True and network has not been converted to NEST, automatically
generate the network, else raises an exception.

Example

instructions = {
 "V_m": ("uniform", -80., -60.),
 "w": ("normal", 50., 5.)
}

	
nngt.simulation.raster_plot(times, senders, limits=None, title='Spike raster', histogram=False, num_bins=1000, color='b', decimate=None, axis=None, fignum=None, label=None, show=True, sort=None, sort_attribute=None, network=None, transparent=True, kernel_center=0.0, kernel_std=30.0, resolution=None, cut_gaussian=5.0, **kwargs)

	Plotting routine that constructs a raster plot along with
an optional histogram.

Changed in version 1.2: Switched hist to histogram.

Changed in version 1.0.1: Added axis parameter.

	Parameters

	
	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Spike times.

	senders (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Index for the spiking neuron for each time in times.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike).

	title (string, optional (default: ‘Spike raster’)) – Title of the raster plot.

	histogram (bool, optional (default: True)) – Whether to plot the raster’s histogram.

	num_bins (int, optional (default: 1000)) – Number of bins for the histogram.

	color (string or float, optional (default: ‘b’)) – Color of the plot lines and markers.

	decimate (int, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 10 will lead
to only 10% of the neurons being represented).

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity.

	fignum (int, optional (default: None)) – Id of another raster plot to which the new data should be added.

	label (str, optional (default: None)) – Label the current data.

	show (bool, optional (default: True)) – Whether to show the plot right away or to wait for the next plt.show().

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

	kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel (standard deviation) in ms.

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed.

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	Returns

	lines (list of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted.

	
nngt.simulation.reproducible_weights(weights, neuron_model, di_param={}, timestep=0.05, simtime=50.0, num_bins=1000, log=False)

	Find the values of the connection weights that will give PSP responses of
min_weight and max_weight in mV.

	Parameters

	
	weights (list of floats) – Exact desired synaptic weights.

	neuron_model (string) – Name of the model used.

	di_param (dict, optional (default: {})) – Parameters of the model, default parameters if not supplied.

	timestep (float, optional (default: 0.01)) – Timestep of the simulation in ms.

	simtime (float, optional (default: 10.)) – Simulation time in ms (default: 10).

	num_bins (int, optional (default: 10000)) – Number of bins used to discretize the exact synaptic weights.

	log (bool, optional (default: False)) – Whether bins should use a logarithmic scale.

Note

If the parameters used are not the default ones, they MUST be provided,
otherwise the resulting weights will likely be WRONG.

	
nngt.simulation.save_spikes(filename, recorder=None, network=None, save_positions=True, **kwargs)

	Plot the monitored activity.

New in version 0.7.

	Parameters

	
	filename (str) – Path to the file where the activity should be saved.

	recorder (tuple or list of tuples, optional (default: None)) – The NEST gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	save_positions (bool, optional (default: True)) – Whether to include the position of the neurons in the file; this
requires network to be provided.

	**kwargs (see numpy.savetxt() [https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt])

	
nngt.simulation.set_minis(network, base_rate, weight, syn_type=1, nodes=None, gids=None)

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or
“minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs)
synapses.
These minis consists in only a fraction of the usual strength of a spike-
triggered PSC and can be modeled by a Poisson process.
This Poisson process occurs independently at every synapse of a neuron, so
a neuron receiving [image: k] inputs will be subjected to these events with
a rate [image: k*\lambda], where [image: \lambda] is the base rate.

	Parameters

	
	network (Network object) – Network on which the minis should be simulated.

	base_rate (float) – Rate for the Poisson process on one synapse ([image: \lambda]), in Hz.

	weight (float or array of size N) – Amplitude of a minitature post-synaptic event.

	syn_type (int, optional (default: 1)) – Synaptic type of the noisy connections. By default, mEPSCs are
generated, by taking into account only the excitatory degrees and
synaptic weights. To setup mIPSCs, used syn_type=-1.

	nodes (array-like (size N), optional (default: all nodes)) – NNGT ids of the neurons that should be subjected to minis.

	gids (array-like (size N), optional (default: all neurons)) – NEST gids of the neurons that should be subjected to minis.

Note

nodes and gids are not compatible, only one one the two arguments can
be used in any given call to set_minis.

	
nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	mean (float) – Mean current value.

	std (float) – Standard deviation of the current

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

	
nngt.simulation.set_poisson_input(gids, rate, syn_spec=None, **kwargs)

	Submit neurons to a Poissonian rate of spikes.

Changed in version 2.0: Added kwargs.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	rate (float) – Rate of the spike train (in Hz).

	syn_spec (dict, optional (default: static synapse with weight 1)) – Properties of the connection between the poisson_generator object
and the target neurons.

	**kwargs (dict) – Other optional parameters for the poisson_generator.

	Returns

	poisson_input (tuple) – The NEST gid of the poisson_generator.

	
nngt.simulation.set_step_currents(gids, times, currents)

	Set step-current excitations

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the times where the current will change (by default the current
generator is initiated at I=0. for t=0.)

	currents (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the new current value after the associated time value in
times.

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

Graph generation

This page gives example on how to generate increasingly complex network
structures.
The example files can be found at: docs/examples/simple_graphs.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/simple_graphs.py],
docs/examples/multi_groups_network.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/multi_groups_network.py],
docs/examples/basic_nest_network.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/basic_nest_network.py], and
docs/examples/nest_receptor_ports.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/nest_receptor_ports.py].

Content:

	Principle

	Modularity

	Setting weights

	Examples

	Simple generation

	Networks composed of heterogeneous groups

	Use with NEST

	Advanced examples

	Receptor ports in NEST

Principle

In order to keep the code as generic and easy to maintain as possible, the
generation of graphs or networks is divided in several steps:

	Structured connectivity: a simple graph is generated as an assembly of
nodes and edges, without any biological properties. This allows us to
implement known graph-theoretical algorithms in a straightforward fashion.

	Populations: detailed properties can be implemented, such as inhibitory
synapses and separation of the neurons into inhibitory and excitatory
populations – these can be done while respecting user-defined constraints.

	Synaptic properties: eventually, synaptic properties such as
weight/strength and delays can be added to the network.

Modularity

The library as been designed so that these various operations can be realized
in any order!

	Juste to get work on a topological graph/network:

	
	Create graph class

	Connect

	Set connection weights (optional)

	Spatialize (optional)

	Set types (optional: to use with NEST)

	To work on a really spatially embedded graph/network:

	
	Create spatial graph/network

	Connect (can depend on positions)

	Set connection weights (optional, can depend on positions)

	Set types (optional)

	Or to model a complex neural network in NEST:

	
	Create spatial network (with space and neuron types)

	Connect (can depend on types and positions)

	Set connection weights and types (optional, can depend on types
and positions)

Setting weights

The weights can be either user-defined or generated by one of the available
distributions (Attributes and distributions).
User-defined weights are generated via:

	a list of edges

	a list of weights

Pre-defined distributions require the following variables:

	a distribution name (“constant”, “gaussian”…)

	a dictionary containing the distribution properties

	an optional attribute for distributions that are correlated to another (e.g.
the distances between neurons)

	a optional value defining the variance of the Gaussian noise that should be
applied on the weights

There are several ways of settings the weights of a graph which depend on the
time at which you assign them.

	At graph creation

	You can define the weights by entering a weights argument to the
constructor; this should be a dictionary containing at least the name of
the weight distribution: {"distrib": "distribution_name"}.
If entered, this will be stored as a graph property and used to assign the
weights whenever new edges are created unless you specifically assign rules
for those new edges’ weights.

	At any given time

	You can use the set_weights() function to set the weights
of a graph explicitely by using:

graph.set_weights(elist=edges_to_weigh, distrib="distrib_of_choice", ...)

For more details on weights, other attributes, and available distributions, see
Properties of graph components.

Examples

import nngt
import nngt.generation as ng

Simple generation

num_nodes = 1000
avg_deg_er = 25
avg_deg_sf = 100

random graphs
g1 = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg_er)

the same graph but undirected
g2 = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg_er, directed=False)

2-step generation of a scale-free with Gaussian weight distribution
w = {
 "distribution": "gaussian",
 "avg": 60.,
 "std": 5.
}

g3 = nngt.Graph(num_nodes, weights=w)
ng.random_scale_free(2.2, 2.9, avg_deg=avg_deg_sf, from_graph=g3)

same in 1 step
g4 = ng.random_scale_free(
 2.2, 2.9, avg_deg=avg_deg_sf, nodes=num_nodes, weights=w)

Networks composed of heterogeneous groups

'''
Make the population
'''

two groups
g1 = nngt.Group(500) # nodes 0 to 499
g2 = nngt.Group(500) # nodes 500 to 999

make structure
struct = nngt.Structure.from_groups((g1, g2), ("left", "right"))

create network from this population
net = nngt.Graph(structure=struct)

'''
Connect the groups
'''

inter-groups (Erdos-Renyi)
prop_er1 = {"density": 0.005}
ng.connect_groups(net, "left", "right", "erdos_renyi", **prop_er1)

intra-groups (Newman-Watts)
prop_nw = {
 "coord_nb": 20,
 "proba_shortcut": 0.1,
 "reciprocity_circular": 1.
}

ng.connect_groups(net, "left", "left", "newman_watts", **prop_nw)
ng.connect_groups(net, "right", "right", "newman_watts", **prop_nw)

Use with NEST

Generating a network with excitatory and inhibitory neurons:

'''
Build a network with two populations:
* excitatory (80%)
* inhibitory (20%)
'''
num_nodes = 1000

800 excitatory neurons, 200 inhibitory
net = nngt.Network.exc_and_inhib(num_nodes, ei_ratio=0.2)

'''
Connect the populations.
'''
exc -> inhib (Erdos-Renyi)
ng.connect_neural_types(net, 1, -1, "erdos_renyi", density=0.035)

exc -> exc (Newmann-Watts)
prop_nw = {
 "coord_nb": 10,
 "proba_shortcut": 0.1,
 "reciprocity_circular": 1.
}
ng.connect_neural_types(net, 1, 1, "newman_watts", **prop_nw)

inhib -> exc (Random scale-free)
prop_rsf = {
 "in_exp": 2.1,
 "out_exp": 2.6,
 "density": 0.2
}
ng.connect_neural_types(net, -1, 1, "random_scale_free", **prop_rsf)

inhib -> inhib (Erdos-Renyi)

Send the network to NEST:

if nngt.get_config('with_nest'):
 import nest
 import nngt.simulation as ns

 '''
 Prepare the network and devices.
 '''
 # send to NEST
 gids = net.to_nest()
 # excite
 ns.set_poisson_input(gids, rate=100000.)
 # record
 groups = [key for key in net.population]
 recorder, record = ns.monitor_groups(groups, net)

 '''
 Simulate and plot.
 '''
 simtime = 100.
 nest.Simulate(simtime)

 if nngt.get_config('with_plot'):
 ns.plot_activity(
 recorder, record, network=net, show=True, limits=(0,simtime))

You can check that connections from neurons that are marked as inhibitory are
automatically assigned a negative sign in NEST:

 # sign of NNGT versus NEST inhibitory connections
 igroup = net.population["inhibitory"]
 # in NNGT
 iedges = net.get_edges(source_node=igroup.ids)
 w_nngt = set(net.get_weights(edges=iedges))
 # in NEST
 iconn = nest.GetConnections(
 source=list(net.population["inhibitory"].nest_gids),
 target=list(net.population.nest_gids))
 w_nest = set(nest.GetStatus(iconn, "weight"))
 # in NNGT, inhibitory weights are positive to work with graph analysis
 # methods; they are automatically converted to negative weights in NEST

Returns: NNGT weights: {1.0} versus NEST weights {-1.0}.

Advanced examples

Receptor ports in NEST

Some models, such as multisynaptic neurons, or advanced models incorporating
various neurotransmitters use an additional information, called "port" to
identify the synapse that will be used by the nest.Connect method.
These models can also be used with NNGT by telling the
NeuralGroup which type of port the neuron should try to bind to.

NB: the port is specified in the source neuron and declares which synapse
of the target neuron is concerned.

'''
Build a network with two populations:
* excitatory (80%)
* inhibitory (20%)
'''
num_neurons = 50 # number of neurons
avg_degree = 20 # average number of neighbours
std_degree = 3 # deviation for the Gaussian graph

parameters
neuron_model = "ht_neuron" # hill-tononi model
exc_syn = {'receptor_type': 1} # 1 is 'AMPA' in this model
inh_syn = {'receptor_type': 3} # 3 is 'GABA_A' in this model

synapses = {
 (1, 1): exc_syn,
 (1, -1): exc_syn,
 (-1, 1): inh_syn,
 (-1, -1): inh_syn,
}

pop = nngt.NeuralPop.exc_and_inhib(
 num_neurons, en_model=neuron_model, in_model=neuron_model,
 syn_spec=synapses)

create the network and send it to NEST
w_prop = {"distribution": "gaussian", "avg": 0.2, "std": .05}
net = nngt.generation.gaussian_degree(
 avg_degree, std_degree, population=pop, weights=w_prop)

'''
Send to NEST and set excitation and recorders
'''
if nngt.get_config('with_nest'):
 import nest
 import nngt.simulation as ns

 nest.ResetKernel()

 gids = net.to_nest()

 # add noise to the excitatory neurons
 excs = list(pop["excitatory"].nest_gids)
 inhs = list(pop["inhibitory"].nest_gids)
 ns.set_noise(excs, 10., 2.)
 ns.set_noise(inhs, 5., 1.)

 # record
 groups = [key for key in net.population]
 recorder, record = ns.monitor_groups(groups, net)

 '''
 Simulate and plot.
 '''
 simtime = 2000.
 nest.Simulate(simtime)

 if nngt.get_config('with_plot'):
 ns.plot_activity(
 recorder, record, network=net, show=True, histogram=False,
 limits=(0, simtime))

Go to other tutorials:

	Intro & user manual

	Properties of graph components

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

Main module (API)

Overview

	NNGT

	Available modules

	Units

	Main classes and functions

	Details

For more details regarding the main classes, see:

	Graph classes

	Main functions

	Side classes

NNGT

Package aimed at facilitating the analysis of Neural Networks and Graphs’
Topologies in Python by providing a unified interface for network generation
and analysis.

The library mainly provides algorithms for

	generating networks

	studying their topological properties

	doing some basic spatial, topological, and statistical visualizations

	interacting with neuronal simulators and analyzing neuronal activity

Available modules

	analysis

	Tools to study graph topology and neuronal activity.

	core

	Where the main classes are coded; however, most useful classes and methods
for users are loaded at the main level (nngt) when the library is imported,
so nngt.core should generally not be used.

	generation

	Functions to generate specific networks.

	geometry

	Tools to work on metric graphs (see
PyNCulture [https://github.com/SENeC-Initiative/PyNCulture]).

	io

	Tools for input/output operations.

	lib

	Basic functions used by several most other modules.

	simulation

	Tools to provide complex network generation with NEST and help analyze the
influence of the network structure on neuronal activity.

	plot

	Plot data or graphs using matplotlib.

Units

Functions related to spatial embedding of networks are using micrometers
(um) as default unit; other units from the metric system can also be
provided:

	mm for milimeters

	cm centimeters

	dm for decimeters

	m for meters

Main classes and functions

	nngt.Graph([nodes, name, weighted, …])

	The basic graph class, which inherits from a library class such as graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

	nngt.Group([nodes, properties, name])

	Class defining groups of nodes.

	nngt.GroupProperty(size[, constraints, …])

	Class defining the properties needed to create groups of neurons from an existing Graph or one of its subclasses.

	nngt.MetaGroup([nodes, name])

	Class defining a meta-group of nodes.

	nngt.MetaNeuralGroup([nodes, name, properties])

	Class defining a meta-group of neurons.

	nngt.Network([name, weighted, directed, …])

	The detailed class that inherits from Graph and implements additional properties to describe various biological functions and interact with the NEST simulator.

	nngt.NeuralGroup([nodes, neuron_type, …])

	Class defining groups of neurons.

	nngt.NeuralPop([size, parent, meta_groups, …])

	The basic class that contains groups of neurons and their properties.

	nngt.SpatialGraph([nodes, name, weighted, …])

	The detailed class that inherits from Graph and implements additional properties to describe spatial graphs (i.e.

	nngt.SpatialNetwork(population[, name, …])

	Class that inherits from Network and SpatialGraph to provide a detailed description of a real neural network in space, i.e.

	nngt.Structure([size, parent, meta_groups])

	The basic class that contains groups of nodes and their properties.

	nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict containing all the relevant informations.

	nngt.get_config([key, detailed])

	Get the NNGT configuration as a dictionary.

	nngt.load_from_file(filename[, fmt, …])

	Load a Graph from a file.

	nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0) if MPI is used.

	nngt.save_to_file(graph, filename[, fmt, …])

	Save a graph to file.

	nngt.seed([msd, seeds])

	Seed the random generator used by NNGT (i.e.

	nngt.set_config(config[, value, silent])

	Set NNGT’s configuration.

	nngt.use_backend(backend[, reloading, silent])

	Allows the user to switch to a specific graph library as backend.

Details

	
class nngt.Graph(nodes=None, name='Graph', weighted=True, directed=True, copy_graph=None, structure=None, **kwargs)

	The basic graph class, which inherits from a library class such as
graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

The objects provides several functions to easily access some basic
properties.

Initialize Graph instance

Changed in version 2.0: Renamed from_graph to copy_graph.

Changed in version 2.2: Added structure argument.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	copy_graph (Graph, optional) – An optional Graph that will be copied.

	structure (Structure, optional (default: None)) – A structure dividing the graph into specific groups, which can
be used to generate specific connectivities and visualise the
connections in a more coarse-grained manner.

	kwargs (optional keywords arguments) – Optional arguments that can be passed to the graph, e.g. a dict
containing information on the synaptic weights
(weights={"distribution": "constant", "value": 2.3} which is
equivalent to weights=2.3), the synaptic delays, or a
type information.

Note

When using copy_graph, only the topological properties are
copied (nodes, edges, and attributes), spatial and biological
properties are ignored.
To copy a graph exactly, use copy().

	Returns

	self (Graph)

	
adjacency_matrix(types=False, weights=False, mformat='csr')

	Return the graph adjacency matrix.

Note

Source nodes are represented by the rows, targets by the
corresponding columns.

	Parameters

	
	types (bool, optional (default: False)) – Wether the edge types should be taken into account (negative values
for inhibitory connections).

	weights (bool or string, optional (default: False)) – Whether the adjacecy matrix should be weighted. If True, all
connections are multiply bythe associated synaptic strength; if
weight is a string, the connections are scaled bythe corresponding
edge attribute.

	mformat (str, optional (default: “csr”)) – Type of scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix that will be returned, by
default scipy.sparse.csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix].

	Returns

	mat (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix) – The adjacency matrix of the graph.

	
copy()

	Returns a deepcopy of the current Graph
instance

	
edge_attributes

	Access edge attributes.

See also

node_attributes,
get_edge_attributes,
new_edge_attribute,
set_edge_attribute.

	
static from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', from_string=False, name=None, directed=True, cleanup=False)

	Import a saved graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: deduced from filename)) – The format used to save the graph. Supported formats are:
“neighbour” (neighbour list), “ssp” (scipy.sparse), “edge_list”
(list of all the edges in the graph, one edge per line,
represented by a source target-pair), “gml” (gml format,
default if filename ends with ‘.gml’), “graphml” (graphml format,
default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot
format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats
(namely “neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of
custom formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a
notifier is present in the file, names will be deduced from it;
otherwise the attributes will be numbered.
For “edge_list”, attributes may also be present as additional
columns after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that
will take the argument value as a string input and convert it to
the proper type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information.
Relevant information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are
@type=SpatialGraph/Network/SpatialNetwork, which must be
followed by the relevant notifiers among @shape,
@population, and @graph.

	from_string (bool, optional (default: False)) – Load from a string instead of a file.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
classmethod from_library(library_graph, name='ImportedGraph', weighted=True, directed=True, **kwargs)

	Create a Graph by wrapping a graph object from one of
the supported libraries.

	Parameters

	
	library_graph (object) – Graph object from one of the supported libraries (graph-tool,
igraph, networkx).

	name (str, optional (default: “ImportedGraph”))

	**kwargs – Other standard arguments (see __init__())

	
classmethod from_matrix(matrix, weighted=True, directed=True, population=None, shape=None, positions=None, name=None, **kwargs)

	Creates a Graph from a scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or
a dense matrix.

	Parameters

	
	matrix (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Adjacency matrix.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	population (NeuralPop) – Population to associate to the new Network.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	name (str, optional) – Graph name.

	Returns

	Graph

	
get_attribute_type(attribute_name, attribute_class=None)

	Return the type of an attribute (e.g. string, double, int).

	Parameters

	
	attribute_name (str) – Name of the attribute.

	attribute_class (str, optional (default: both)) – Whether attribute_name is a “node” or an “edge” attribute.

	Returns

	type (str) – Type of the attribute.

	
get_betweenness(btype='both', weights=None)

	Returns the normalized betweenness centrality of the nodes and edges.

	Parameters

	
	g (Graph) – Graph to analyze.

	btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’, ‘edge’, or
‘both’). By default, both betweenness centralities are computed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or
False then use binary edges; if True, uses the ‘weight’
edge attribute, otherwise uses any valid edge attribute required.

	Returns

	
	nb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The nodes’ betweenness if btype is ‘node’ or ‘both’

	eb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The edges’ betweenness if btype is ‘edge’ or ‘both’

See also

betweenness()

	
get_degrees(mode='total', nodes=None, weights=None, edge_type='all')

	Degree sequence of all the nodes.

Changed in version 2.0: Changed deg_type to mode, node_list to nodes, use_weights
to weights, and edge_type to edge_type.

	Parameters

	
	mode (string, optional (default: “total”)) – Degree type (among ‘in’, ‘out’ or ‘total’).

	nodes (list, optional (default: None)) – List of the nodes which degree should be returned

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

	edge_type (int or str, optional (default: all)) – Restrict to a given synaptic type (“excitatory”, 1, or
“inhibitory”, -1), using either the “type” edge attribute for
non-Network or the
inhibitory nodes.

	Returns

	
	degrees (numpy.array)

	.. warning :: – When using MPI with “nngt” (distributed) backend, returns only the
degrees associated to local edges. “Complete” degrees are obtained
by taking the sum of the results on all MPI processes.

	
get_delays(edges=None)

	Returns the delays of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of delays

	
get_density()

	Density of the graph: [image: \frac{E}{N^2}], where E is the number
of edges and N the number of nodes.

	
get_edge_attributes(edges=None, name=None)

	Attributes of the graph’s edges.

Changed in version 1.0: Returns the full dict of edges attributes if called without
arguments.

New in version 0.8.

	Parameters

	
	edge (tuple or list of tuples, optional (default: None)) – Edge whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all graph’s attributes (synaptic weights, delays…)

	by default. If edge is specified, returns only the values for these

	edges. If name is specified, returns value of the attribute for each

	edge.

Note

The attributes values are ordered as the edges in
edges_array() if edges is None.

See also

get_node_attributes(),
new_edge_attribute(),
set_edge_attribute(),
new_node_attribute(),
set_node_attribute()

	
get_edge_types(edges=None)

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_edges(attribute=None, value=None, source_node=None, target_node=None)

	Return the edges in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned edges should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only edges with attribute
being equal to value will be returned.

	source_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those stemming from source_node.

	target_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those arriving at target_node.

See also

get_nodes(), edge_attributes

	
get_node_attributes(nodes=None, name=None)

	Attributes of the graph’s edges.

Changed in version 1.0.1: Corrected default behavior and made it the same as
get_edge_attributes().

New in version 0.9.

	Parameters

	
	nodes (list of ints, optional (default: None)) – Nodes whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all nodes attributes by default. If nodes is

	specified, returns a dict containing only the attributes of these

	nodes. If name is specified, returns a list containing the values of

	the specific attribute for the required nodes (or all nodes if

	unspecified).

See also

get_edge_attributes(),
new_node_attribute(),
set_node_attribute(),
new_edge_attributes(),
set_edge_attribute()

	
get_nodes(attribute=None, value=None)

	Return the nodes in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned nodes should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only nodes with attribute
being equal to value will be returned.

See also

get_edges(), node_attributes

	
get_structure_graph()

	Return a coarse-grained version of the graph containing one node
per nngt.Group.
Connections between groups are associated to the sum of all connection
weights.
If no structure is present, returns an empty Graph.

	
get_weights(edges=None)

	Returns the weights of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of weights

	
graph

	Returns the underlying library object.

Warning

Do not add or remove edges directly through this object.

See also

Underlying graph objects and libraries, Consistent tools for graph analysis

	
graph_id

	Unique int [https://docs.python.org/3/library/functions.html#int] identifying the instance.

	
is_connected(mode='strong')

	Return whether the graph is connected.

	Parameters

	mode (str, optional (default: “strong”)) – Whether to test connectedness with directed (“strong”) or
undirected (“weak”) connections.

References

	ig-connected

	igraph - is_connected [https://igraph.org/python/doc/igraph.GraphBase-class.html#is_connected]

	
is_directed()

	Whether the graph is directed or not

	
is_network()

	Whether the graph is a subclass of Network (i.e. if it
has a NeuralPop attribute).

	
is_spatial()

	Whether the graph is embedded in space (i.e. is a subclass of
SpatialGraph).

	
is_weighted()

	Whether the edges have weights

	
static make_network(graph, neural_pop, copy=False, **kwargs)

	Turn a Graph object into a Network, or a
SpatialGraph into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert

	neural_pop (NeuralPop) – Population to associate to the new Network

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a Network.

	
static make_spatial(graph, shape=None, positions=None, copy=False)

	Turn a Graph object into a SpatialGraph,
or a Network into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a SpatialGraph.
The shape argument can be skipped if positions are given; in that
case, the neurons will be embedded in a rectangle that contains them
all.

	
name

	Name of the graph.

	
neighbours(node, mode='all')

	Return the neighbours of node.

	Parameters

	
	node (int) – Index of the node of interest.

	mode (string, optional (default: “all”)) – Type of neighbours that will be returned: “all” returns all the
neighbours regardless of directionality, “in” returns the
in-neighbours (also called predecessors) and “out” retruns the
out-neighbours (or successors).

	Returns

	neighbours (set) – The neighbours of node.

	
new_edge_attribute(name, value_type, values=None, val=None)

	Create a new attribute for the edges.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	
new_node_attribute(name, value_type, values=None, val=None)

	Create a new attribute for the nodes.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the node attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all nodes.

See also

new_edge_attribute(),
set_node_attribute(),
get_node_attributes(),
set_edge_attribute(),
get_edge_attributes()

	
node_attributes

	Access node attributes.

See also

edge_attributes,
get_node_attributes,
new_node_attribute,
set_node_attribute.

	
classmethod num_graphs()

	Returns the number of alive instances.

	
set_delays(delay=None, elist=None, distribution=None, parameters=None, noise_scale=None)

	Set the delay for spike propagation between neurons.

	Parameters

	
	delay (float or class:numpy.array, optional (default: None)) – Value or list of delays (for user defined delays).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined delays).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the delay distribution.

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the delays.

	
set_edge_attribute(attribute, values=None, val=None, value_type=None, edges=None)

	Set attributes to the connections between neurons.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	edges (list of edges or array of shape (E, 2), optional (default: all)) – Edges whose attributes should be set. Others will remain unchanged.

See also

set_node_attribute(),
get_edge_attributes(),
new_edge_attribute(),
new_node_attribute(),
get_node_attributes()

	
set_name(name='')

	set graph name

	
set_node_attribute(attribute, values=None, val=None, value_type=None, nodes=None)

	Set attributes to the connections between neurons.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	nodes (list of nodes, optional (default: all)) – Nodes whose attributes should be set. Others will remain unchanged.

See also

set_edge_attribute(),
new_node_attribute(),
get_node_attributes(),
new_edge_attribute(),
get_edge_attributes(),

	
set_types(edge_type, nodes=None, fraction=None)

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
set_weights(weight=None, elist=None, distribution=None, parameters=None, noise_scale=None)

	Set the synaptic weights.

	Parameters

	
	weight (float or class:numpy.array, optional (default: None)) – Value or list of the weights (for user defined weights).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined weights).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the weight distribution.
Properties are as follow for the distributions

	‘constant’: ‘value’

	‘uniform’: ‘lower’, ‘upper’

	‘gaussian’: ‘avg’, ‘std’

	‘lognormal’: ‘position’, ‘scale’

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the weights.

Note

If distribution and parameters are provided and the weights are set
for the whole graph (elist is None), then the distribution properties
will be kept as the new default for subsequent edges. That is, if new
edges are created without specifying their weights, then these new
weights will automatically be drawn from this previous distribution.

	
structure

	Object structuring the graph into specific groups.

Note

Points to population if the graph is a
Network.

	
to_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')

	Save graph to file; options detailed below.

See also

nngt.lib.save_to_file() function for options.

	
to_undirected(combine_numeric_eattr='sum')

	Convert the graph to its undirected variant.

Note

All non-numeric edge attributes will be discarded from the returned
undirected graph.

	Parameters

	combine_numeric_eattr (str, optional (default: “sum”)) – How to combine numeric attributes from reciprocal edges.
Can be either:

	“sum” (attributes are summed)

	“min” (smallest value is kept)

	“max” (largest value is kept)

	“mean” (the average of both attributes is taken)

In addition, combine_numeric_eattr can be a dictionary with one
entry for each edge attribute.

	
type

	Type of the graph.

	
class nngt.Group(nodes=None, properties=None, name=None, **kwargs)

	Class defining groups of nodes.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

	properties – dict, optional (default: {})
properties associated to the nodes

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not.

Note

A Group contains a set of nodes that are unique;
the size of the group is the number of unique nodes contained in the group.
Passing non-unique nodes will automatically convert them to a unique set.

Warning

Equality between Group`s only compares
the size and ``properties` attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
nodes in an existing graph.

	properties (dict, optional (default: {})) – Dictionary containing the properties associated to the nodes.

	Returns

	A new Group instance.

	
add_nodes(nodes)

	Add nodes to the group.

	Parameters

	nodes (list of ids)

	
copy()

	Return a deep copy of the group.

	
ids

	

	
is_metagroup

	

	
is_valid

	i.e. if it has
either a size or some ids associated to it.

	Type

	Whether the group can be used in a structure

	
name

	

	
parent

	Return the parent Structure of the group

	
properties

	

	
size

	

	
class nngt.GroupProperty(size, constraints={}, neuron_model=None, neuron_param={}, syn_model=None, syn_param={})

	Class defining the properties needed to create groups of neurons from an
existing Graph or one of its subclasses.

	Variables

	
	size – int [https://docs.python.org/3/library/functions.html#int]
Size of the group.

	constraints – dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})
Constraints to respect when building the
NeuralGroup .

	neuron_model – str, optional (default: None)
name of the model to use when simulating the activity of this group.

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

Create a new instance of GroupProperties.

Notes

	The constraints can be chosen among:

	
	“avg_deg”, “min_deg”, “max_deg” (int [https://docs.python.org/3/library/functions.html#int]) to constrain the
total degree of the nodes

	“avg/min/max_in_deg”, “avg/min/max_out_deg”, to work with the
in/out-degrees

	“avg/min/max_betw” (double) to constrain the betweenness
centrality

	“in_shape” (nngt.geometry.Shape) to chose neurons inside
a given spatial region

Examples

>>> di_constrain = { "avg_deg": 10, "min_betw": 0.001 }
>>> group_prop = GroupProperties(200, constraints=di_constrain)

	
class nngt.MetaGroup(nodes=None, name=None, **kwargs)

	Class defining a meta-group of nodes.

Its main variables are:

	Variables

	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the nodes in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaGroup object.

	
class nngt.MetaNeuralGroup(nodes=None, name=None, properties=None, **kwargs)

	Class defining a meta-group of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is
None for meta-groups)

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the neurons in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaNeuralGroup object.

	
excitatory

	Return the ids of all excitatory nodes inside the meta-group.

	
inhibitory

	Return the ids of all inhibitory nodes inside the meta-group.

	
properties

	

	
class nngt.Network(name='Network', weighted=True, directed=True, from_graph=None, population=None, inh_weight_factor=1.0, **kwargs)

	The detailed class that inherits from Graph and implements
additional properties to describe various biological functions
and interact with the NEST simulator.

Initializes Network instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	from_graph (GraphObject, optional (default: None)) – An optional GraphObject to serve as base.

	population (nngt.NeuralPop, (default: None)) – An object containing the neural groups and their properties:
model(s) to use in NEST to simulate the neurons as well as their
parameters.

	inh_weight_factor (float, optional (default: 1.)) – Factor to apply to inhibitory synapses, to compensate for example
the strength difference due to timescales between excitatory and
inhibitory synapses.

	Returns

	self (Network)

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, **kwargs)

	Generate a network containing a population of two neural groups:
inhibitory and excitatory neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	i_ratio (double, optional (default: 0.2)) – Ratio of inhibitory neurons: [image: \frac{N_i}{N_e+N_i}].

	en_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the excitatory neuron.

	en_param (dict, optional (default: {})) – Dictionary of parameters for the the excitatory neuron.

	in_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the inhibitory neuron.

	in_param (dict, optional (default: {})) – Dictionary of parameters for the the inhibitory neuron.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	Returns

	net (Network or subclass) – Network of disconnected excitatory and inhibitory neurons.

See also

exc_and_inhib()

	
classmethod from_gids(gids, get_connections=True, get_params=False, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)

	Generate a network from gids.

Warning

Unless get_connections and get_params is True, or if your
population is homogeneous and you provide the required information, the
information contained by the network and its population attribute
will be erroneous!
To prevent conflicts the to_nest() function is not
available. If you know what you are doing, you should be able to find a
workaround…

	Parameters

	
	gids (array-like) – Ids of the neurons in NEST or simply user specified ids.

	get_params (bool, optional (default: True)) – Whether the parameters should be obtained from NEST (can be very
slow).

	neuron_model (string, optional (default: None)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
get_edge_types()

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_neuron_type(neuron_ids)

	Return the type of the neurons (+1 for excitatory, -1 for inhibitory).

	Parameters

	neuron_ids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
id_from_nest_gid(gids)

	Return the ids of the nodes in the nngt.Network instance from
the corresponding NEST gids.

	Parameters

	gids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
nest_gids

	

	
neuron_properties(idx_neuron)

	Properties of a neuron in the graph.

	Parameters

	idx_neuron (int) – Index of a neuron in the graph.

	Returns

	dict of the neuron’s properties.

	
classmethod num_networks()

	Returns the number of alive instances.

	
population

	NeuralPop that divides the neurons into groups with
specific properties.

	
set_types(edge_type, nodes=None, fraction=None)

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
to_nest(send_only=None, weights=True)

	Send the network to NEST.

See also

make_nest_network() for parameters

	
classmethod uniform(size, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)

	Generate a network containing only one type of neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	neuron_model (string, optional (default: ‘aief_cond_alpha’)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
class nngt.NeuralGroup(nodes=None, neuron_type=1, neuron_model=None, neuron_param=None, name=None, **kwargs)

	Class defining groups of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	neuron_type – int [https://docs.python.org/3/library/functions.html#int]
the default is 1 for excitatory neurons; -1 is for inhibitory
neurons; meta-groups must have neuron_type set to None

	neuron_model – str, optional (default: None)
the name of the model to use when simulating the activity of this group

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Warning

Equality between NeuralGroup`s only compares
the size and neuronal type, ``model` and param attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
neurons in an existing graph.

	neuron_type (int, optional (default: 1)) – Type of the neurons (1 for excitatory, -1 for inhibitory) or None
if not relevant (only allowed for metag roups).

	neuron_model (str, optional (default: None)) – NEST model for the neuron.

	neuron_param (dict, optional (default: model defaults)) – Dictionary containing the parameters associated to the NEST model.

	Returns

	A new NeuralGroup instance.

	
copy()

	Return a deep copy of the group.

	
has_model

	

	
ids

	

	
nest_gids

	

	
neuron_model

	

	
neuron_param

	

	
neuron_type

	

	
properties

	

	
class nngt.NeuralPop(size=None, parent=None, meta_groups=None, with_models=True, **kwargs)

	The basic class that contains groups of neurons and their properties.

	Variables

	
	has_models – bool [https://docs.python.org/3/library/functions.html#bool],
True if every group has a model attribute.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of neurons in the population.

	syn_spec – dict [https://docs.python.org/3/library/stdtypes.html#dict],
Dictionary containing informations about the synapses between the
different groups in the population.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether this population can be used to create a network in NEST.

Initialize NeuralPop instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of neurons that the population will contain.

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (dict of str/NeuralGroup items) – Optional set of groups. Contrary to the primary groups which
define the population and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	with_models (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the population’s groups contain models to use in NEST

	*args (items for OrderedDict parent)

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	pop (NeuralPop object.)

	
add_to_group(group_name, ids)

	Add neurons to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Neuron ids.

	
copy()

	Return a deep copy of the population.

	
create_group(neurons, name, neuron_type=1, neuron_model=None, neuron_param=None, replace=False)

	Create a new group in the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(neurons, name, neuron_param=None, replace=False)

	Create a new meta group and add it to the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, parent=None, meta_groups=None)

	Make a NeuralPop with a given ratio of inhibitory and excitatory
neurons.

Changed in version 0.8: Added syn_spec parameter.

Changed in version 1.2: Added meta_groups parameter

	Parameters

	
	size (int) – Number of neurons contained by the population.

	iratio (float, optional (default: 0.2)) – Fraction of the neurons that will be inhibitory.

	en_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe excitatory
neurons.

	en_param (dict, optional (default: default NEST parameters)) – Parameters of the excitatory neuron model.

	in_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe inhibitory
neurons.

	in_param (dict, optional (default: default NEST parameters)) – Parameters of the inhibitory neuron model.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (list dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary ‘excitatory’
and ‘inhibitory’ groups, meta groups are therefore no necessarily
disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

See also

nest.Connect(), as()

	
excitatory

	Return the ids of all excitatory nodes inside the population.

New in version 1.3.

	
classmethod from_groups(groups, names=None, syn_spec=None, parent=None, meta_groups=None, with_models=True)

	Make a NeuralPop object from a (list of) NeuralGroup
object(s).

	Parameters

	
	groups (list of NeuralGroup objects) – Groups that will be used to form the population. Note that a given
neuron can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a population named pop
will be retreived by either pop[0] or pop[‘0’].

	parent (Graph, optional (default: None)) – Parent if the population is created from an exiting graph.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value.
If a ‘default’ entry is provided, all unspecified connections will
be set to its value.

	meta_groups (list or dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	with_model (bool, optional (default: True)) – Whether the groups require models (set to False to use populations
for graph theoretical purposes, without NEST interaction)

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we created groups `g1`, `g2`, and `g3`
prop = {
 ('g1', 'g2'): {'model': 'tsodyks2_synapse', 'tau_fac': 50.},
 ('g1', g3'): {'weight': 100.},
 ...
}
pop = NeuronalPop.from_groups(
 [g1, g2, g3], names=['g1', 'g2', 'g3'], syn_spec=prop)

Note

If the population is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon population creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
classmethod from_network(graph, *args)

	Make a NeuralPop object from a network. The groups of neurons are
determined using instructions from an arbitrary number of
GroupProperties.

	
get_param(groups=None, neurons=None, element='neuron')

	Return the element (neuron or synapse) parameters for neurons or
groups of neurons in the population.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	neurons (int or array-like, optional (default: None)) – IDs of the neurons for which parameters should be returned.

	element (list of str, optional (default: "neuron")) – Element for which the parameters should be returned (either
"neuron" or "synapse").

	Returns

	param (list) – List of all dictionaries with the elements’ parameters.

	
has_models

	

	
inhibitory

	Return the ids of all inhibitory nodes inside the population.

New in version 1.3.

	
nest_gids

	Return the NEST gids of the nodes inside the population.

New in version 1.3.

	
set_model(model, group=None)

	Set the groups’ models.

	Parameters

	
	model (dict) – Dictionary containing the model type as key (“neuron” or “synapse”)
and the model name as value (e.g. {“neuron”: “iaf_neuron”}).

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups which models
should be updated.

Note

By default, synapses are registered as “static_synapse”s in NEST;
because of this, only the neuron_model attribute is checked by
the has_models function: it will answer True if all groups
have a ‘non-None’ neuron_model attribute.

Warning

No check is performed on the validity of the models, which means
that errors will only be detected when building the graph in NEST.

	
set_neuron_param(params, neurons=None, group=None)

	Set the parameters of specific neurons or of a whole group.

New in version 1.0.

	Parameters

	
	params (dict) – Dictionary containing parameters for the neurons. Entries can be
either a single number (same for all neurons) or a list (one entry
per neuron).

	neurons (list of ints, optional (default: None)) – Ids of the neurons whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying neurons from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both neurons and group are None, all neurons will be modified.

Warning

No check is performed on the validity of the parameters, which means
that errors will only be detected when building the graph in NEST.

	
syn_spec

	The properties of the synaptic connections between groups.
Returns a dict [https://docs.python.org/3/library/stdtypes.html#dict] containing tuples as keys and dicts of parameters
as values.

The keys are tuples containing the names of the groups in the
population, with the projecting group first (presynaptic neurons) and
the receiving group last (post-synaptic neurons).

Example

For a population of excitatory (“exc”) and inhibitory (“inh”) neurons.

syn_spec = {
 ("exc", "exc"): {'model': 'stdp_synapse', 'weight': 2.5},
 ("exc", "inh"): {'model': 'static_synapse'},
 ("exc", "inh"): {'model': 'stdp_synapse', 'delay': 5.},
 ("inh", "inh"): {
 'model': 'stdp_synapse', 'weight': 5.,
 'delay': ('normal', 5., 2.)}
 }
}

New in version 0.8.

	
classmethod uniform(size, neuron_type=1, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, parent=None, meta_groups=None)

	Make a NeuralPop of identical neurons belonging to a single “default”
group.

Changed in version 1.2: Added neuron_type and meta_groups parameters

	Parameters

	
	size (int) – Number of neurons in the population.

	neuron_type (int, optional (default: 1)) – Type of the neurons in the population: 1 for excitatory or -1 for
inhibitory.

	neuron_model (str, optional (default: default neuron model)) – Neuronal model for the simulator.

	neuron_param (dict, optional (default: default neuron parameters)) – Parameters associated to neuron_model.

	syn_model (str, optional (default: default static synapse)) – Synapse model for the simulator.

	syn_param (dict, optional (default: default synaptic parameters)) – Parameters associated to syn_model.

	parent (Graph object, optional (default: None)) – Parent graph described by the population.

	meta_groups (list or dict of str/NeuralGroup items) – Set of groups which can overlap: a neuron can belong to
several different meta groups, i.e. they do no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	
class nngt.SpatialGraph(nodes=0, name='SpatialGraph', weighted=True, directed=True, from_graph=None, shape=None, positions=None, **kwargs)

	The detailed class that inherits from Graph and implements
additional properties to describe spatial graphs (i.e. graph where the
structure is embedded in space.

Initialize SpatialClass instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of
side 1 cm)

	positions (numpy.array (N, 2), optional (default: None)) – Positions of the neurons; if not specified and nodes is not 0,
then neurons will be reparted at random inside the
Shape object of the instance.

	**kwargs (keyword arguments for Graph or) – Shape if no shape was given.

	Returns

	self (SpatialGraph)

	
get_positions(nodes=None)

	Returns a copy of the nodes’ positions as a (N, 2) array.

	Parameters

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be returned.

	
set_positions(positions, nodes=None)

	Set the nodes’ positions as a (N, 2) array.

	Parameters

	
	positions (array-like) – List of positions, of shape (N, 2).

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be set.

	
shape

	The environment’s spatial structure.

	
class nngt.SpatialNetwork(population, name='SpatialNetwork', weighted=True, directed=True, shape=None, from_graph=None, positions=None, **kwargs)

	Class that inherits from Network and
SpatialGraph to provide a detailed description of a real
neural network in space, i.e. with positions and biological properties to
interact with NEST.

Initialize SpatialNetwork instance

	Parameters

	
	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of side
1 cm)

	positions (numpy.array, optional (default: None)) – Positions of the neurons; if not specified and nodes != 0, then
neurons will be reparted at random inside the
Shape object of the instance.

	population (class:~nngt.NeuralPop, optional (default: None)) – Population from which the network will be built.

	Returns

	self (SpatialNetwork)

	
set_types(syn_type, nodes=None, fraction=None)

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
class nngt.Structure(size=None, parent=None, meta_groups=None, **kwargs)

	The basic class that contains groups of nodes and their properties.

	Variables

	
	ids – lst,
Returns the ids of nodes in the structure.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether the structure is consistent with its associated network.

	parent – Network,
Parent network.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of nodes in the structure.

Initialize Structure instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of nodes that the structure will contain.

	parent (Network, optional (default: None)) – Network associated to this structure.

	meta_groups (dict of str/Group items) – Optional set of groups. Contrary to the primary groups which
define the structure and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	struct (Structure object.)

	
add_meta_group(group, name=None, replace=False)

	Add an existing meta group to the structure.

	Parameters

	
	group (Group) – Meta group.

	name (str, optional (default: group name)) – Name of the meta group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

Note

The name of the group is automatically updated to match the name
argument.

	
add_to_group(group_name, ids)

	Add nodes to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Node ids.

	
copy()

	Return a deep copy of the structure.

	
create_group(nodes, name, properties=None, replace=False)

	Create a new group in the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(nodes, name, properties=None, replace=False)

	Create a new meta group and add it to the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod from_groups(groups, names=None, parent=None, meta_groups=None)

	Make a Structure object from a (list of)
Group object(s).

	Parameters

	
	groups (list of Group objects) – Groups that will be used to form the structure. Note that a given
node can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a structure named struct
will be retreived by either struct[0] or struct[‘0’].

	parent (Graph, optional (default: None)) – Parent if the structure is created from an exiting graph.

	meta_groups (list or dict of str/Group items) – Additional set of groups which can overlap: a node can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we already created groups `g1`, `g2`, and `g3`
struct = Structure.from_groups([g1, g2, g3],
 names=['g1', 'g2', 'g3'])

Note

If the structure is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon structure creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
get_group(nodes, numbers=False)

	Return the group of the nodes.

	Parameters

	
	nodes (int or array-like) – IDs of the nodes for which the group should be returned.

	numbers (bool, optional (default: False)) – Whether the group identifier should be returned as a number; if
False, the group names are returned.

	
get_properties(key=None, groups=None, nodes=None)

	Return the properties of nodes or groups of nodes in the structure.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	nodes (int or array-like, optional (default: None)) – IDs of the nodes for which parameters should be returned.

	Returns

	props (list) – List of all dictionaries with properties.

	
ids

	Return all the ids of the nodes inside the structure.

New in version 1.2.

	
is_valid

	Whether the structure is consistent with the associated network.

	
meta_groups

	

	
parent

	Parent Network, if it exists, otherwise None.

	
set_properties(props, nodes=None, group=None)

	Set the parameters of specific nodes or of a whole group.

New in version 2.2.

	Parameters

	
	props (dict) – Dictionary containing parameters for the nodes. Entries can be
either a single number (same for all nodes) or a list (one entry
per nodes).

	nodes (list of ints, optional (default: None)) – Ids of the nodes whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying nodes from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both nodes and group are None, all nodes will be modified.

	
size

	Number of nodes in this structure.

	
nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict
containing all the relevant informations.

	Parameters

	di_instructions (dict) – Dictionary containing the instructions to generate the graph. It must
have at least "graph_type" in its keys, with a value among
"distance_rule", "erdos_renyi", "fixed_degree", "newman_watts",
"price_scale_free", "random_scale_free". Depending on the type,
di_instructions should also contain at least all non-optional
arguments of the generator function.

See also

generation

	
nngt.get_config(key=None, detailed=False)

	Get the NNGT configuration as a dictionary.

Note

This function has no MPI barrier on it.

	
nngt.load_from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', name='LoadedGraph', directed=True, cleanup=False)

	Load a Graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Warning

Support for GraphML and DOT formats are currently limited and require
one of the non-default backends (DOT requires graph-tool).

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: “neighbour”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool`<http://graph-tool.skewed.de/>_ as library,
detected if `filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a notifier
is present in the file, names will be deduced from it; otherwise the
attributes will be numbered.
For “edge_list”, attributes may also be present as additional columns
after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper
type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which must be followed by the relevant notifiers among @shape,
@structure, and @graph.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	
nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0)
if MPI is used.

	Returns

	
	True if rank is 0, if mpi4py is not present or if MPI is not used,

	otherwise False.

	
nngt.save_to_file(graph, filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')

	Save a graph to file.

@todo: implement dot, xml/graphml, and gt formats

	Parameters

	
	graph (Graph or subclass) – Graph to save.

	filename (str) – The path to the file.

	fmt (str, optional (default: “auto”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: None)) – List of names for the edge attributes present in the graph that will be
saved to disk; by default (None), all attributes will be saved.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, with
info_name in (“attributes”, “attr_types”, “directed”, “name”,
“size”).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which are followed by the relevant notifiers among @shape,
@structure, and @graph to separate the sections.

Note

Positions are saved as bytes by numpy.nparray.tostring()

	
nngt.seed(msd=None, seeds=None)

	Seed the random generator used by NNGT
(i.e. the numpy RandomState: for details, see
numpy.random.RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]).

	Parameters

	
	msd (int, optional) – Master seed for numpy RandomState.
Must be convertible to 32-bit unsigned integers.

	seeds (list of ints, optional) – Seeds for RandomState (when using MPI).
Must be convertible to 32-bit unsigned integers, one entry per MPI
process.

	
nngt.set_config(config, value=None, silent=False)

	Set NNGT’s configuration.

	Parameters

	
	config (dict or str) – Either a full configuration dictionary or one key to be set together
with its associated value.

	value (object, optional (default: None)) – Value associated to config if config is a key.

Examples

>>> nngt.set_config({'multithreading': True, 'omp': 4})
>>> nngt.set_config('multithreading', False)

Notes

See the config file nngt/nngt.conf.default or ~/.nngt/nngt.conf for
details about your configuration.

This function has an MPI barrier on it, so it must always be called on all
processes.

See also

get_config()

	
nngt.use_backend(backend, reloading=True, silent=False)

	Allows the user to switch to a specific graph library as backend.

Warning

If Graph objects have already been created, they will no
longer be compatible with NNGT methods.

	Parameters

	
	backend (string) – Name of a graph library among ‘graph_tool’, ‘igraph’, ‘networkx’, or
‘nngt’.

	reloading (bool, optional (default: True)) – Whether the graph objects should be reloaded through reload
(this should always be set to True except when NNGT is first initiated!)

	silent (bool, optional (default: False)) – Whether the changes made to the configuration should be logged at the
DEBUG (True) or INFO (False) level.

Graph classes

	nngt.Graph([nodes, name, weighted, …])

	The basic graph class, which inherits from a library class such as graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

	nngt.SpatialGraph([nodes, name, weighted, …])

	The detailed class that inherits from Graph and implements additional properties to describe spatial graphs (i.e.

	nngt.Network([name, weighted, directed, …])

	The detailed class that inherits from Graph and implements additional properties to describe various biological functions and interact with the NEST simulator.

	nngt.SpatialNetwork(population[, name, …])

	Class that inherits from Network and SpatialGraph to provide a detailed description of a real neural network in space, i.e.

Details

	
class nngt.Graph(nodes=None, name='Graph', weighted=True, directed=True, copy_graph=None, structure=None, **kwargs)[source]

	The basic graph class, which inherits from a library class such as
graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

The objects provides several functions to easily access some basic
properties.

Initialize Graph instance

Changed in version 2.0: Renamed from_graph to copy_graph.

Changed in version 2.2: Added structure argument.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	copy_graph (Graph, optional) – An optional Graph that will be copied.

	structure (Structure, optional (default: None)) – A structure dividing the graph into specific groups, which can
be used to generate specific connectivities and visualise the
connections in a more coarse-grained manner.

	kwargs (optional keywords arguments) – Optional arguments that can be passed to the graph, e.g. a dict
containing information on the synaptic weights
(weights={"distribution": "constant", "value": 2.3} which is
equivalent to weights=2.3), the synaptic delays, or a
type information.

Note

When using copy_graph, only the topological properties are
copied (nodes, edges, and attributes), spatial and biological
properties are ignored.
To copy a graph exactly, use copy().

	Returns

	self (Graph)

	
adjacency_matrix(types=False, weights=False, mformat='csr')[source]

	Return the graph adjacency matrix.

Note

Source nodes are represented by the rows, targets by the
corresponding columns.

	Parameters

	
	types (bool, optional (default: False)) – Wether the edge types should be taken into account (negative values
for inhibitory connections).

	weights (bool or string, optional (default: False)) – Whether the adjacecy matrix should be weighted. If True, all
connections are multiply bythe associated synaptic strength; if
weight is a string, the connections are scaled bythe corresponding
edge attribute.

	mformat (str, optional (default: “csr”)) – Type of scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix that will be returned, by
default scipy.sparse.csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix].

	Returns

	mat (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix) – The adjacency matrix of the graph.

	
clear_all_edges()

	Remove all edges from the graph

	
copy()[source]

	Returns a deepcopy of the current Graph
instance

	
delete_edges(edges)

	Remove a list of edges

	
delete_nodes(nodes)

	Remove nodes (and associated edges) from the graph.

	
edge_attributes

	Access edge attributes.

See also

node_attributes,
get_edge_attributes,
new_edge_attribute,
set_edge_attribute.

	
edge_id(edge)

	Return the ID a given edge or a list of edges in the graph.
Raises an error if the edge is not in the graph or if one of the
vertices in the edge is nonexistent.

	Parameters

	edge (2-tuple or array of edges) – Edge descriptor (source, target).

	Returns

	index (int or array of ints) – Index of the given edge.

	
edge_nb()

	Number of edges in the graph

	
edges_array

	Edges of the graph, sorted by order of creation, as an array of
2-tuple.

	
static from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', from_string=False, name=None, directed=True, cleanup=False)[source]

	Import a saved graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: deduced from filename)) – The format used to save the graph. Supported formats are:
“neighbour” (neighbour list), “ssp” (scipy.sparse), “edge_list”
(list of all the edges in the graph, one edge per line,
represented by a source target-pair), “gml” (gml format,
default if filename ends with ‘.gml’), “graphml” (graphml format,
default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot
format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats
(namely “neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of
custom formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a
notifier is present in the file, names will be deduced from it;
otherwise the attributes will be numbered.
For “edge_list”, attributes may also be present as additional
columns after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that
will take the argument value as a string input and convert it to
the proper type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information.
Relevant information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are
@type=SpatialGraph/Network/SpatialNetwork, which must be
followed by the relevant notifiers among @shape,
@population, and @graph.

	from_string (bool, optional (default: False)) – Load from a string instead of a file.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
classmethod from_library(library_graph, name='ImportedGraph', weighted=True, directed=True, **kwargs)[source]

	Create a Graph by wrapping a graph object from one of
the supported libraries.

	Parameters

	
	library_graph (object) – Graph object from one of the supported libraries (graph-tool,
igraph, networkx).

	name (str, optional (default: “ImportedGraph”))

	**kwargs – Other standard arguments (see __init__())

	
classmethod from_matrix(matrix, weighted=True, directed=True, population=None, shape=None, positions=None, name=None, **kwargs)[source]

	Creates a Graph from a scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or
a dense matrix.

	Parameters

	
	matrix (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Adjacency matrix.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	population (NeuralPop) – Population to associate to the new Network.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	name (str, optional) – Graph name.

	Returns

	Graph

	
get_attribute_type(attribute_name, attribute_class=None)[source]

	Return the type of an attribute (e.g. string, double, int).

	Parameters

	
	attribute_name (str) – Name of the attribute.

	attribute_class (str, optional (default: both)) – Whether attribute_name is a “node” or an “edge” attribute.

	Returns

	type (str) – Type of the attribute.

	
get_betweenness(btype='both', weights=None)[source]

	Returns the normalized betweenness centrality of the nodes and edges.

	Parameters

	
	g (Graph) – Graph to analyze.

	btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’, ‘edge’, or
‘both’). By default, both betweenness centralities are computed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or
False then use binary edges; if True, uses the ‘weight’
edge attribute, otherwise uses any valid edge attribute required.

	Returns

	
	nb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The nodes’ betweenness if btype is ‘node’ or ‘both’

	eb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The edges’ betweenness if btype is ‘edge’ or ‘both’

See also

betweenness()

	
get_degrees(mode='total', nodes=None, weights=None, edge_type='all')[source]

	Degree sequence of all the nodes.

Changed in version 2.0: Changed deg_type to mode, node_list to nodes, use_weights
to weights, and edge_type to edge_type.

	Parameters

	
	mode (string, optional (default: “total”)) – Degree type (among ‘in’, ‘out’ or ‘total’).

	nodes (list, optional (default: None)) – List of the nodes which degree should be returned

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

	edge_type (int or str, optional (default: all)) – Restrict to a given synaptic type (“excitatory”, 1, or
“inhibitory”, -1), using either the “type” edge attribute for
non-Network or the
inhibitory nodes.

	Returns

	
	degrees (numpy.array)

	.. warning :: – When using MPI with “nngt” (distributed) backend, returns only the
degrees associated to local edges. “Complete” degrees are obtained
by taking the sum of the results on all MPI processes.

	
get_delays(edges=None)[source]

	Returns the delays of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of delays

	
get_density()[source]

	Density of the graph: [image: \frac{E}{N^2}], where E is the number
of edges and N the number of nodes.

	
get_edge_attributes(edges=None, name=None)[source]

	Attributes of the graph’s edges.

Changed in version 1.0: Returns the full dict of edges attributes if called without
arguments.

New in version 0.8.

	Parameters

	
	edge (tuple or list of tuples, optional (default: None)) – Edge whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all graph’s attributes (synaptic weights, delays…)

	by default. If edge is specified, returns only the values for these

	edges. If name is specified, returns value of the attribute for each

	edge.

Note

The attributes values are ordered as the edges in
edges_array() if edges is None.

See also

get_node_attributes(),
new_edge_attribute(),
set_edge_attribute(),
new_node_attribute(),
set_node_attribute()

	
get_edge_types(edges=None)[source]

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_edges(attribute=None, value=None, source_node=None, target_node=None)[source]

	Return the edges in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned edges should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only edges with attribute
being equal to value will be returned.

	source_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those stemming from source_node.

	target_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those arriving at target_node.

See also

get_nodes(), edge_attributes

	
get_node_attributes(nodes=None, name=None)[source]

	Attributes of the graph’s edges.

Changed in version 1.0.1: Corrected default behavior and made it the same as
get_edge_attributes().

New in version 0.9.

	Parameters

	
	nodes (list of ints, optional (default: None)) – Nodes whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all nodes attributes by default. If nodes is

	specified, returns a dict containing only the attributes of these

	nodes. If name is specified, returns a list containing the values of

	the specific attribute for the required nodes (or all nodes if

	unspecified).

See also

get_edge_attributes(),
new_node_attribute(),
set_node_attribute(),
new_edge_attributes(),
set_edge_attribute()

	
get_nodes(attribute=None, value=None)[source]

	Return the nodes in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned nodes should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only nodes with attribute
being equal to value will be returned.

See also

get_edges(), node_attributes

	
get_structure_graph()[source]

	Return a coarse-grained version of the graph containing one node
per nngt.Group.
Connections between groups are associated to the sum of all connection
weights.
If no structure is present, returns an empty Graph.

	
get_weights(edges=None)[source]

	Returns the weights of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of weights

	
graph

	Returns the underlying library object.

Warning

Do not add or remove edges directly through this object.

See also

Underlying graph objects and libraries, Consistent tools for graph analysis

	
graph_id

	Unique int [https://docs.python.org/3/library/functions.html#int] identifying the instance.

	
is_connected(mode='strong')[source]

	Return whether the graph is connected.

	Parameters

	mode (str, optional (default: “strong”)) – Whether to test connectedness with directed (“strong”) or
undirected (“weak”) connections.

References

	ig-connected

	igraph - is_connected [https://igraph.org/python/doc/igraph.GraphBase-class.html#is_connected]

	
is_directed()[source]

	Whether the graph is directed or not

	
is_network()[source]

	Whether the graph is a subclass of Network (i.e. if it
has a NeuralPop attribute).

	
is_spatial()[source]

	Whether the graph is embedded in space (i.e. is a subclass of
SpatialGraph).

	
is_weighted()[source]

	Whether the edges have weights

	
static make_network(graph, neural_pop, copy=False, **kwargs)[source]

	Turn a Graph object into a Network, or a
SpatialGraph into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert

	neural_pop (NeuralPop) – Population to associate to the new Network

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a Network.

	
static make_spatial(graph, shape=None, positions=None, copy=False)[source]

	Turn a Graph object into a SpatialGraph,
or a Network into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a SpatialGraph.
The shape argument can be skipped if positions are given; in that
case, the neurons will be embedded in a rectangle that contains them
all.

	
name

	Name of the graph.

	
neighbours(node, mode='all')[source]

	Return the neighbours of node.

	Parameters

	
	node (int) – Index of the node of interest.

	mode (string, optional (default: “all”)) – Type of neighbours that will be returned: “all” returns all the
neighbours regardless of directionality, “in” returns the
in-neighbours (also called predecessors) and “out” retruns the
out-neighbours (or successors).

	Returns

	neighbours (set) – The neighbours of node.

	
new_edge(source, target, attributes=None, ignore=False, self_loop=False)

	Adding a connection to the graph, with optional properties.

Changed in version 2.0: Added self_loop argument to enable adding self-loops.

	Parameters

	
	source (int/node) – Source node.

	target (int/node) – Target node.

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})) – Dictionary containing optional edge properties. If the graph is
weighted, defaults to {"weight": 1.}, the unit weight for the
connection (synaptic strength in NEST).

	ignore (bool, optional (default: False)) – If set to True, ignore attempts to add an existing edge and accept
self-loops; otherwise an error is raised.

	self_loop (bool, optional (default: False)) – Whether to allow self-loops or not.

	Returns

	The new connection or None if nothing was added.

	
new_edge_attribute(name, value_type, values=None, val=None)[source]

	Create a new attribute for the edges.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	
new_edges(edge_list, attributes=None, check_duplicates=False, check_self_loops=True, check_existing=True, ignore_invalid=False)

	Add a list of edges to the graph.

Changed in version 2.0: Can perform all possible checks before adding new edges via the
check_duplicates check_self_loops, and check_existing
arguments.

	Parameters

	
	edge_list (list of 2-tuples or np.array of shape (edge_nb, 2)) – List of the edges that should be added as tuples (source, target)

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})) – Dictionary containing optional edge properties. If the graph is
weighted, defaults to {"weight": ones}, where ones is an
array the same length as the edge_list containing a unit weight
for each connection (synaptic strength in NEST).

	check_duplicates (bool, optional (default: False)) – Check for duplicate edges within edge_list.

	check_self_loops (bool, optional (default: True)) – Check for self-loops.

	check_existing (bool, optional (default: True)) – Check whether some of the edges in edge_list already exist in the
graph or exist multiple times in edge_list (also performs
check_duplicates).

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
whenever one of the three checks fails.

	.. warning:: – Setting check_existing to False will lead to undefined behavior
if existing edges are provided! Only use it (for speedup) if you
are sure that you are indeed only adding new edges.

	Returns

	Returns new edges only.

	
new_node(n=1, neuron_type=1, attributes=None, value_types=None, positions=None, groups=None)

	Adding a node to the graph, with optional properties.

	Parameters

	
	n (int, optional (default: 1)) – Number of nodes to add.

	neuron_type (int, optional (default: 1)) – Type of neuron (1 for excitatory, -1 for inhibitory)

	attributes (dict, optional (default: None)) – Dictionary containing the attributes of the nodes.

	value_types (dict, optional (default: None)) – Dict of the attributes types, necessary only if the attributes
do not exist yet.

	positions (array of shape (n, 2), optional (default: None)) – Positions of the neurons. Valid only for
SpatialGraph or SpatialNetwork.

	groups (str, int, or list, optional (default: None)) – NeuralGroup to which the neurons belong. Valid
only for Network or SpatialNetwork.

	Returns

	The node or a list of the nodes created.

	
new_node_attribute(name, value_type, values=None, val=None)[source]

	Create a new attribute for the nodes.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the node attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all nodes.

See also

new_edge_attribute(),
set_node_attribute(),
get_node_attributes(),
set_edge_attribute(),
get_edge_attributes()

	
node_attributes

	Access node attributes.

See also

edge_attributes,
get_node_attributes,
new_node_attribute,
set_node_attribute.

	
node_nb()

	Number of nodes in the graph

	
classmethod num_graphs()[source]

	Returns the number of alive instances.

	
set_delays(delay=None, elist=None, distribution=None, parameters=None, noise_scale=None)[source]

	Set the delay for spike propagation between neurons.

	Parameters

	
	delay (float or class:numpy.array, optional (default: None)) – Value or list of delays (for user defined delays).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined delays).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the delay distribution.

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the delays.

	
set_edge_attribute(attribute, values=None, val=None, value_type=None, edges=None)[source]

	Set attributes to the connections between neurons.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	edges (list of edges or array of shape (E, 2), optional (default: all)) – Edges whose attributes should be set. Others will remain unchanged.

See also

set_node_attribute(),
get_edge_attributes(),
new_edge_attribute(),
new_node_attribute(),
get_node_attributes()

	
set_name(name='')[source]

	set graph name

	
set_node_attribute(attribute, values=None, val=None, value_type=None, nodes=None)[source]

	Set attributes to the connections between neurons.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	nodes (list of nodes, optional (default: all)) – Nodes whose attributes should be set. Others will remain unchanged.

See also

set_edge_attribute(),
new_node_attribute(),
get_node_attributes(),
new_edge_attribute(),
get_edge_attributes(),

	
set_types(edge_type, nodes=None, fraction=None)[source]

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
set_weights(weight=None, elist=None, distribution=None, parameters=None, noise_scale=None)[source]

	Set the synaptic weights.

	Parameters

	
	weight (float or class:numpy.array, optional (default: None)) – Value or list of the weights (for user defined weights).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined weights).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the weight distribution.
Properties are as follow for the distributions

	‘constant’: ‘value’

	‘uniform’: ‘lower’, ‘upper’

	‘gaussian’: ‘avg’, ‘std’

	‘lognormal’: ‘position’, ‘scale’

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the weights.

Note

If distribution and parameters are provided and the weights are set
for the whole graph (elist is None), then the distribution properties
will be kept as the new default for subsequent edges. That is, if new
edges are created without specifying their weights, then these new
weights will automatically be drawn from this previous distribution.

	
structure

	Object structuring the graph into specific groups.

Note

Points to population if the graph is a
Network.

	
to_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')[source]

	Save graph to file; options detailed below.

See also

nngt.lib.save_to_file() function for options.

	
type

	Type of the graph.

	
class nngt.SpatialGraph(nodes=0, name='SpatialGraph', weighted=True, directed=True, from_graph=None, shape=None, positions=None, **kwargs)[source]

	The detailed class that inherits from Graph and implements
additional properties to describe spatial graphs (i.e. graph where the
structure is embedded in space.

Initialize SpatialClass instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of
side 1 cm)

	positions (numpy.array (N, 2), optional (default: None)) – Positions of the neurons; if not specified and nodes is not 0,
then neurons will be reparted at random inside the
Shape object of the instance.

	**kwargs (keyword arguments for Graph or) – Shape if no shape was given.

	Returns

	self (SpatialGraph)

	
get_positions(nodes=None)[source]

	Returns a copy of the nodes’ positions as a (N, 2) array.

	Parameters

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be returned.

	
set_positions(positions, nodes=None)[source]

	Set the nodes’ positions as a (N, 2) array.

	Parameters

	
	positions (array-like) – List of positions, of shape (N, 2).

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be set.

	
shape

	The environment’s spatial structure.

	
class nngt.Network(name='Network', weighted=True, directed=True, from_graph=None, population=None, inh_weight_factor=1.0, **kwargs)[source]

	The detailed class that inherits from Graph and implements
additional properties to describe various biological functions
and interact with the NEST simulator.

Initializes Network instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	from_graph (GraphObject, optional (default: None)) – An optional GraphObject to serve as base.

	population (nngt.NeuralPop, (default: None)) – An object containing the neural groups and their properties:
model(s) to use in NEST to simulate the neurons as well as their
parameters.

	inh_weight_factor (float, optional (default: 1.)) – Factor to apply to inhibitory synapses, to compensate for example
the strength difference due to timescales between excitatory and
inhibitory synapses.

	Returns

	self (Network)

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, **kwargs)[source]

	Generate a network containing a population of two neural groups:
inhibitory and excitatory neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	i_ratio (double, optional (default: 0.2)) – Ratio of inhibitory neurons: [image: \frac{N_i}{N_e+N_i}].

	en_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the excitatory neuron.

	en_param (dict, optional (default: {})) – Dictionary of parameters for the the excitatory neuron.

	in_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the inhibitory neuron.

	in_param (dict, optional (default: {})) – Dictionary of parameters for the the inhibitory neuron.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	Returns

	net (Network or subclass) – Network of disconnected excitatory and inhibitory neurons.

See also

exc_and_inhib()

	
classmethod from_gids(gids, get_connections=True, get_params=False, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)[source]

	Generate a network from gids.

Warning

Unless get_connections and get_params is True, or if your
population is homogeneous and you provide the required information, the
information contained by the network and its population attribute
will be erroneous!
To prevent conflicts the to_nest() function is not
available. If you know what you are doing, you should be able to find a
workaround…

	Parameters

	
	gids (array-like) – Ids of the neurons in NEST or simply user specified ids.

	get_params (bool, optional (default: True)) – Whether the parameters should be obtained from NEST (can be very
slow).

	neuron_model (string, optional (default: None)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
get_edge_types()[source]

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_neuron_type(neuron_ids)[source]

	Return the type of the neurons (+1 for excitatory, -1 for inhibitory).

	Parameters

	neuron_ids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
id_from_nest_gid(gids)[source]

	Return the ids of the nodes in the nngt.Network instance from
the corresponding NEST gids.

	Parameters

	gids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
nest_gids

	

	
neuron_properties(idx_neuron)[source]

	Properties of a neuron in the graph.

	Parameters

	idx_neuron (int) – Index of a neuron in the graph.

	Returns

	dict of the neuron’s properties.

	
classmethod num_networks()[source]

	Returns the number of alive instances.

	
population

	NeuralPop that divides the neurons into groups with
specific properties.

	
set_types(edge_type, nodes=None, fraction=None)[source]

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
to_nest(send_only=None, weights=True)[source]

	Send the network to NEST.

See also

make_nest_network() for parameters

	
classmethod uniform(size, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)[source]

	Generate a network containing only one type of neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	neuron_model (string, optional (default: ‘aief_cond_alpha’)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
class nngt.SpatialNetwork(population, name='SpatialNetwork', weighted=True, directed=True, shape=None, from_graph=None, positions=None, **kwargs)[source]

	Class that inherits from Network and
SpatialGraph to provide a detailed description of a real
neural network in space, i.e. with positions and biological properties to
interact with NEST.

Initialize SpatialNetwork instance

	Parameters

	
	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of side
1 cm)

	positions (numpy.array, optional (default: None)) – Positions of the neurons; if not specified and nodes != 0, then
neurons will be reparted at random inside the
Shape object of the instance.

	population (class:~nngt.NeuralPop, optional (default: None)) – Population from which the network will be built.

	Returns

	self (SpatialNetwork)

	
set_types(syn_type, nodes=None, fraction=None)[source]

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

Main functions

	nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict containing all the relevant informations.

	nngt.get_config([key, detailed])

	Get the NNGT configuration as a dictionary.

	nngt.load_from_file(filename[, fmt, …])

	Load a Graph from a file.

	nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0) if MPI is used.

	nngt.save_to_file(graph, filename[, fmt, …])

	Save a graph to file.

	nngt.seed([msd, seeds])

	Seed the random generator used by NNGT (i.e.

	nngt.set_config(config[, value, silent])

	Set NNGT’s configuration.

	nngt.use_backend(backend[, reloading, silent])

	Allows the user to switch to a specific graph library as backend.

Details

	
nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict
containing all the relevant informations.

	Parameters

	di_instructions (dict) – Dictionary containing the instructions to generate the graph. It must
have at least "graph_type" in its keys, with a value among
"distance_rule", "erdos_renyi", "fixed_degree", "newman_watts",
"price_scale_free", "random_scale_free". Depending on the type,
di_instructions should also contain at least all non-optional
arguments of the generator function.

See also

generation

	
nngt.get_config(key=None, detailed=False)

	Get the NNGT configuration as a dictionary.

Note

This function has no MPI barrier on it.

	
nngt.load_from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', name='LoadedGraph', directed=True, cleanup=False)

	Load a Graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Warning

Support for GraphML and DOT formats are currently limited and require
one of the non-default backends (DOT requires graph-tool).

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: “neighbour”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool`<http://graph-tool.skewed.de/>_ as library,
detected if `filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a notifier
is present in the file, names will be deduced from it; otherwise the
attributes will be numbered.
For “edge_list”, attributes may also be present as additional columns
after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper
type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which must be followed by the relevant notifiers among @shape,
@structure, and @graph.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	
nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0)
if MPI is used.

	Returns

	
	True if rank is 0, if mpi4py is not present or if MPI is not used,

	otherwise False.

	
nngt.save_to_file(graph, filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')

	Save a graph to file.

@todo: implement dot, xml/graphml, and gt formats

	Parameters

	
	graph (Graph or subclass) – Graph to save.

	filename (str) – The path to the file.

	fmt (str, optional (default: “auto”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: None)) – List of names for the edge attributes present in the graph that will be
saved to disk; by default (None), all attributes will be saved.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, with
info_name in (“attributes”, “attr_types”, “directed”, “name”,
“size”).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which are followed by the relevant notifiers among @shape,
@structure, and @graph to separate the sections.

Note

Positions are saved as bytes by numpy.nparray.tostring()

	
nngt.seed(msd=None, seeds=None)

	Seed the random generator used by NNGT
(i.e. the numpy RandomState: for details, see
numpy.random.RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]).

	Parameters

	
	msd (int, optional) – Master seed for numpy RandomState.
Must be convertible to 32-bit unsigned integers.

	seeds (list of ints, optional) – Seeds for RandomState (when using MPI).
Must be convertible to 32-bit unsigned integers, one entry per MPI
process.

	
nngt.set_config(config, value=None, silent=False)

	Set NNGT’s configuration.

	Parameters

	
	config (dict or str) – Either a full configuration dictionary or one key to be set together
with its associated value.

	value (object, optional (default: None)) – Value associated to config if config is a key.

Examples

>>> nngt.set_config({'multithreading': True, 'omp': 4})
>>> nngt.set_config('multithreading', False)

Notes

See the config file nngt/nngt.conf.default or ~/.nngt/nngt.conf for
details about your configuration.

This function has an MPI barrier on it, so it must always be called on all
processes.

See also

get_config()

	
nngt.use_backend(backend, reloading=True, silent=False)

	Allows the user to switch to a specific graph library as backend.

Warning

If Graph objects have already been created, they will no
longer be compatible with NNGT methods.

	Parameters

	
	backend (string) – Name of a graph library among ‘graph_tool’, ‘igraph’, ‘networkx’, or
‘nngt’.

	reloading (bool, optional (default: True)) – Whether the graph objects should be reloaded through reload
(this should always be set to True except when NNGT is first initiated!)

	silent (bool, optional (default: False)) – Whether the changes made to the configuration should be logged at the
DEBUG (True) or INFO (False) level.

Side classes

	nngt.Group([nodes, properties, name])

	Class defining groups of nodes.

	nngt.GroupProperty(size[, constraints, …])

	Class defining the properties needed to create groups of neurons from an existing Graph or one of its subclasses.

	nngt.MetaGroup([nodes, name])

	Class defining a meta-group of nodes.

	nngt.MetaNeuralGroup([nodes, name, properties])

	Class defining a meta-group of neurons.

	nngt.NeuralGroup([nodes, neuron_type, …])

	Class defining groups of neurons.

	nngt.NeuralPop([size, parent, meta_groups, …])

	The basic class that contains groups of neurons and their properties.

	nngt.Structure([size, parent, meta_groups])

	The basic class that contains groups of nodes and their properties.

Details

	
class nngt.Group(nodes=None, properties=None, name=None, **kwargs)

	Class defining groups of nodes.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

	properties – dict, optional (default: {})
properties associated to the nodes

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not.

Note

A Group contains a set of nodes that are unique;
the size of the group is the number of unique nodes contained in the group.
Passing non-unique nodes will automatically convert them to a unique set.

Warning

Equality between Group`s only compares
the size and ``properties` attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
nodes in an existing graph.

	properties (dict, optional (default: {})) – Dictionary containing the properties associated to the nodes.

	Returns

	A new Group instance.

	
add_nodes(nodes)

	Add nodes to the group.

	Parameters

	nodes (list of ids)

	
copy()

	Return a deep copy of the group.

	
ids

	

	
is_metagroup

	

	
is_valid

	i.e. if it has
either a size or some ids associated to it.

	Type

	Whether the group can be used in a structure

	
name

	

	
parent

	Return the parent Structure of the group

	
properties

	

	
size

	

	
class nngt.GroupProperty(size, constraints={}, neuron_model=None, neuron_param={}, syn_model=None, syn_param={})

	Class defining the properties needed to create groups of neurons from an
existing Graph or one of its subclasses.

	Variables

	
	size – int [https://docs.python.org/3/library/functions.html#int]
Size of the group.

	constraints – dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})
Constraints to respect when building the
NeuralGroup .

	neuron_model – str, optional (default: None)
name of the model to use when simulating the activity of this group.

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

Create a new instance of GroupProperties.

Notes

	The constraints can be chosen among:

	
	“avg_deg”, “min_deg”, “max_deg” (int [https://docs.python.org/3/library/functions.html#int]) to constrain the
total degree of the nodes

	“avg/min/max_in_deg”, “avg/min/max_out_deg”, to work with the
in/out-degrees

	“avg/min/max_betw” (double) to constrain the betweenness
centrality

	“in_shape” (nngt.geometry.Shape) to chose neurons inside
a given spatial region

Examples

>>> di_constrain = { "avg_deg": 10, "min_betw": 0.001 }
>>> group_prop = GroupProperties(200, constraints=di_constrain)

	
class nngt.MetaGroup(nodes=None, name=None, **kwargs)

	Class defining a meta-group of nodes.

Its main variables are:

	Variables

	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the nodes in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaGroup object.

	
class nngt.MetaNeuralGroup(nodes=None, name=None, properties=None, **kwargs)

	Class defining a meta-group of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is
None for meta-groups)

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the neurons in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaNeuralGroup object.

	
excitatory

	Return the ids of all excitatory nodes inside the meta-group.

	
inhibitory

	Return the ids of all inhibitory nodes inside the meta-group.

	
properties

	

	
class nngt.NeuralGroup(nodes=None, neuron_type=1, neuron_model=None, neuron_param=None, name=None, **kwargs)

	Class defining groups of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	neuron_type – int [https://docs.python.org/3/library/functions.html#int]
the default is 1 for excitatory neurons; -1 is for inhibitory
neurons; meta-groups must have neuron_type set to None

	neuron_model – str, optional (default: None)
the name of the model to use when simulating the activity of this group

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Warning

Equality between NeuralGroup`s only compares
the size and neuronal type, ``model` and param attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
neurons in an existing graph.

	neuron_type (int, optional (default: 1)) – Type of the neurons (1 for excitatory, -1 for inhibitory) or None
if not relevant (only allowed for metag roups).

	neuron_model (str, optional (default: None)) – NEST model for the neuron.

	neuron_param (dict, optional (default: model defaults)) – Dictionary containing the parameters associated to the NEST model.

	Returns

	A new NeuralGroup instance.

	
copy()

	Return a deep copy of the group.

	
has_model

	

	
ids

	

	
nest_gids

	

	
neuron_model

	

	
neuron_param

	

	
neuron_type

	

	
properties

	

	
class nngt.NeuralPop(size=None, parent=None, meta_groups=None, with_models=True, **kwargs)

	The basic class that contains groups of neurons and their properties.

	Variables

	
	has_models – bool [https://docs.python.org/3/library/functions.html#bool],
True if every group has a model attribute.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of neurons in the population.

	syn_spec – dict [https://docs.python.org/3/library/stdtypes.html#dict],
Dictionary containing informations about the synapses between the
different groups in the population.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether this population can be used to create a network in NEST.

Initialize NeuralPop instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of neurons that the population will contain.

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (dict of str/NeuralGroup items) – Optional set of groups. Contrary to the primary groups which
define the population and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	with_models (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the population’s groups contain models to use in NEST

	*args (items for OrderedDict parent)

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	pop (NeuralPop object.)

	
add_to_group(group_name, ids)

	Add neurons to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Neuron ids.

	
copy()

	Return a deep copy of the population.

	
create_group(neurons, name, neuron_type=1, neuron_model=None, neuron_param=None, replace=False)

	Create a new group in the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(neurons, name, neuron_param=None, replace=False)

	Create a new meta group and add it to the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, parent=None, meta_groups=None)

	Make a NeuralPop with a given ratio of inhibitory and excitatory
neurons.

Changed in version 0.8: Added syn_spec parameter.

Changed in version 1.2: Added meta_groups parameter

	Parameters

	
	size (int) – Number of neurons contained by the population.

	iratio (float, optional (default: 0.2)) – Fraction of the neurons that will be inhibitory.

	en_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe excitatory
neurons.

	en_param (dict, optional (default: default NEST parameters)) – Parameters of the excitatory neuron model.

	in_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe inhibitory
neurons.

	in_param (dict, optional (default: default NEST parameters)) – Parameters of the inhibitory neuron model.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (list dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary ‘excitatory’
and ‘inhibitory’ groups, meta groups are therefore no necessarily
disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

See also

nest.Connect(), as()

	
excitatory

	Return the ids of all excitatory nodes inside the population.

New in version 1.3.

	
classmethod from_groups(groups, names=None, syn_spec=None, parent=None, meta_groups=None, with_models=True)

	Make a NeuralPop object from a (list of) NeuralGroup
object(s).

	Parameters

	
	groups (list of NeuralGroup objects) – Groups that will be used to form the population. Note that a given
neuron can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a population named pop
will be retreived by either pop[0] or pop[‘0’].

	parent (Graph, optional (default: None)) – Parent if the population is created from an exiting graph.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value.
If a ‘default’ entry is provided, all unspecified connections will
be set to its value.

	meta_groups (list or dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	with_model (bool, optional (default: True)) – Whether the groups require models (set to False to use populations
for graph theoretical purposes, without NEST interaction)

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we created groups `g1`, `g2`, and `g3`
prop = {
 ('g1', 'g2'): {'model': 'tsodyks2_synapse', 'tau_fac': 50.},
 ('g1', g3'): {'weight': 100.},
 ...
}
pop = NeuronalPop.from_groups(
 [g1, g2, g3], names=['g1', 'g2', 'g3'], syn_spec=prop)

Note

If the population is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon population creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
classmethod from_network(graph, *args)

	Make a NeuralPop object from a network. The groups of neurons are
determined using instructions from an arbitrary number of
GroupProperties.

	
get_param(groups=None, neurons=None, element='neuron')

	Return the element (neuron or synapse) parameters for neurons or
groups of neurons in the population.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	neurons (int or array-like, optional (default: None)) – IDs of the neurons for which parameters should be returned.

	element (list of str, optional (default: "neuron")) – Element for which the parameters should be returned (either
"neuron" or "synapse").

	Returns

	param (list) – List of all dictionaries with the elements’ parameters.

	
has_models

	

	
inhibitory

	Return the ids of all inhibitory nodes inside the population.

New in version 1.3.

	
nest_gids

	Return the NEST gids of the nodes inside the population.

New in version 1.3.

	
set_model(model, group=None)

	Set the groups’ models.

	Parameters

	
	model (dict) – Dictionary containing the model type as key (“neuron” or “synapse”)
and the model name as value (e.g. {“neuron”: “iaf_neuron”}).

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups which models
should be updated.

Note

By default, synapses are registered as “static_synapse”s in NEST;
because of this, only the neuron_model attribute is checked by
the has_models function: it will answer True if all groups
have a ‘non-None’ neuron_model attribute.

Warning

No check is performed on the validity of the models, which means
that errors will only be detected when building the graph in NEST.

	
set_neuron_param(params, neurons=None, group=None)

	Set the parameters of specific neurons or of a whole group.

New in version 1.0.

	Parameters

	
	params (dict) – Dictionary containing parameters for the neurons. Entries can be
either a single number (same for all neurons) or a list (one entry
per neuron).

	neurons (list of ints, optional (default: None)) – Ids of the neurons whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying neurons from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both neurons and group are None, all neurons will be modified.

Warning

No check is performed on the validity of the parameters, which means
that errors will only be detected when building the graph in NEST.

	
syn_spec

	The properties of the synaptic connections between groups.
Returns a dict [https://docs.python.org/3/library/stdtypes.html#dict] containing tuples as keys and dicts of parameters
as values.

The keys are tuples containing the names of the groups in the
population, with the projecting group first (presynaptic neurons) and
the receiving group last (post-synaptic neurons).

Example

For a population of excitatory (“exc”) and inhibitory (“inh”) neurons.

syn_spec = {
 ("exc", "exc"): {'model': 'stdp_synapse', 'weight': 2.5},
 ("exc", "inh"): {'model': 'static_synapse'},
 ("exc", "inh"): {'model': 'stdp_synapse', 'delay': 5.},
 ("inh", "inh"): {
 'model': 'stdp_synapse', 'weight': 5.,
 'delay': ('normal', 5., 2.)}
 }
}

New in version 0.8.

	
classmethod uniform(size, neuron_type=1, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, parent=None, meta_groups=None)

	Make a NeuralPop of identical neurons belonging to a single “default”
group.

Changed in version 1.2: Added neuron_type and meta_groups parameters

	Parameters

	
	size (int) – Number of neurons in the population.

	neuron_type (int, optional (default: 1)) – Type of the neurons in the population: 1 for excitatory or -1 for
inhibitory.

	neuron_model (str, optional (default: default neuron model)) – Neuronal model for the simulator.

	neuron_param (dict, optional (default: default neuron parameters)) – Parameters associated to neuron_model.

	syn_model (str, optional (default: default static synapse)) – Synapse model for the simulator.

	syn_param (dict, optional (default: default synaptic parameters)) – Parameters associated to syn_model.

	parent (Graph object, optional (default: None)) – Parent graph described by the population.

	meta_groups (list or dict of str/NeuralGroup items) – Set of groups which can overlap: a neuron can belong to
several different meta groups, i.e. they do no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	
class nngt.Structure(size=None, parent=None, meta_groups=None, **kwargs)

	The basic class that contains groups of nodes and their properties.

	Variables

	
	ids – lst,
Returns the ids of nodes in the structure.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether the structure is consistent with its associated network.

	parent – Network,
Parent network.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of nodes in the structure.

Initialize Structure instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of nodes that the structure will contain.

	parent (Network, optional (default: None)) – Network associated to this structure.

	meta_groups (dict of str/Group items) – Optional set of groups. Contrary to the primary groups which
define the structure and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	struct (Structure object.)

	
add_meta_group(group, name=None, replace=False)

	Add an existing meta group to the structure.

	Parameters

	
	group (Group) – Meta group.

	name (str, optional (default: group name)) – Name of the meta group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

Note

The name of the group is automatically updated to match the name
argument.

	
add_to_group(group_name, ids)

	Add nodes to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Node ids.

	
copy()

	Return a deep copy of the structure.

	
create_group(nodes, name, properties=None, replace=False)

	Create a new group in the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(nodes, name, properties=None, replace=False)

	Create a new meta group and add it to the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod from_groups(groups, names=None, parent=None, meta_groups=None)

	Make a Structure object from a (list of)
Group object(s).

	Parameters

	
	groups (list of Group objects) – Groups that will be used to form the structure. Note that a given
node can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a structure named struct
will be retreived by either struct[0] or struct[‘0’].

	parent (Graph, optional (default: None)) – Parent if the structure is created from an exiting graph.

	meta_groups (list or dict of str/Group items) – Additional set of groups which can overlap: a node can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we already created groups `g1`, `g2`, and `g3`
struct = Structure.from_groups([g1, g2, g3],
 names=['g1', 'g2', 'g3'])

Note

If the structure is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon structure creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
get_group(nodes, numbers=False)

	Return the group of the nodes.

	Parameters

	
	nodes (int or array-like) – IDs of the nodes for which the group should be returned.

	numbers (bool, optional (default: False)) – Whether the group identifier should be returned as a number; if
False, the group names are returned.

	
get_properties(key=None, groups=None, nodes=None)

	Return the properties of nodes or groups of nodes in the structure.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	nodes (int or array-like, optional (default: None)) – IDs of the nodes for which parameters should be returned.

	Returns

	props (list) – List of all dictionaries with properties.

	
ids

	Return all the ids of the nodes inside the structure.

New in version 1.2.

	
is_valid

	Whether the structure is consistent with the associated network.

	
meta_groups

	

	
parent

	Parent Network, if it exists, otherwise None.

	
set_properties(props, nodes=None, group=None)

	Set the parameters of specific nodes or of a whole group.

New in version 2.2.

	Parameters

	
	props (dict) – Dictionary containing parameters for the nodes. Entries can be
either a single number (same for all nodes) or a list (one entry
per nodes).

	nodes (list of ints, optional (default: None)) – Ids of the nodes whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying nodes from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both nodes and group are None, all nodes will be modified.

	
size

	Number of nodes in this structure.

Analysis module

Tools to analyze neuronal networks, using either their topological properties,
their activity, or more importantly, taking both into account.

Content

	nngt.analysis.adjacency_matrix(graph[, …])

	Adjacency matrix of the graph.

	nngt.analysis.all_shortest_paths(g, source, …)

	Yields all shortest paths from source to target.

	nngt.analysis.assortativity(g, degree[, weights])

	Returns the assortativity of the graph.

	nngt.analysis.average_path_length(g[, …])

	Returns the average shortest path length between sources and targets.

	nngt.analysis.bayesian_blocks(t[, x, sigma, …])

	Bayesian Blocks Implementation

	nngt.analysis.betweenness(g[, btype, weights])

	Returns the normalized betweenness centrality of the nodes and edges.

	nngt.analysis.betweenness_distrib(graph[, …])

	Betweenness distribution of a graph.

	nngt.analysis.binning(x[, bins, log])

	Binning function providing automatic binning using Bayesian blocks in addition to standard linear and logarithmic uniform bins.

	nngt.analysis.closeness(g[, weights, nodes, …])

	Returns the closeness centrality of some nodes.

	nngt.analysis.connected_components(g[, ctype])

	Returns the connected component to which each node belongs.

	nngt.analysis.degree_distrib(graph[, …])

	Degree distribution of a graph.

	nngt.analysis.diameter(g[, directed, …])

	Returns the diameter of the graph.

	nngt.analysis.get_b2([network, …])

	Return the B2 coefficient for the neurons.

	nngt.analysis.get_firing_rate([network, …])

	Return the average firing rate for the neurons.

	nngt.analysis.get_spikes([recorder, …])

	Return a 2D sparse matrix, where:

	nngt.analysis.global_clustering(g[, …])

	Returns the global clustering coefficient.

	nngt.analysis.global_clustering_binary_undirected(g)

	Returns the undirected global clustering coefficient.

	nngt.analysis.local_closure(g[, directed, …])

	Compute the local closure for each node, as defined in [Yin2019] as the fraction of 2-walks that are closed.

	nngt.analysis.local_clustering(g[, nodes, …])

	Local (weighted directed) clustering coefficient of the nodes, ignoring self-loops.

	nngt.analysis.local_clustering_binary_undirected(g)

	Returns the undirected local clustering coefficient of some nodes.

	nngt.analysis.node_attributes(network, …)

	Return node attributes for a set of nodes.

	nngt.analysis.num_iedges(graph)

	Returns the number of inhibitory connections.

	nngt.analysis.reciprocity(g)

	Calculate the edge reciprocity of the graph.

	nngt.analysis.shortest_distance(g[, …])

	Returns the length of the shortest paths between sources`and `targets.

	nngt.analysis.shortest_path(g, source, target)

	Returns a shortest path between source`and `target.

	nngt.analysis.small_world_propensity(g[, …])

	Returns the small-world propensity of the graph as first defined in [Muldoon2016].

	nngt.analysis.spectral_radius(graph[, …])

	Spectral radius of the graph, defined as the eigenvalue of greatest module.

	nngt.analysis.subgraph_centrality(graph[, …])

	Returns the subgraph centrality for each node in the graph.

	nngt.analysis.total_firing_rate([network, …])

	Computes the total firing rate of the network from the spike times.

	nngt.analysis.transitivity(g[, directed, …])

	Same as global_clustering().

	nngt.analysis.triangle_count(g[, nodes, …])

	Returns the number or the strength (also called intensity) of triangles for each node.

	nngt.analysis.triplet_count(g[, nodes, …])

	Returns the number or the strength (also called intensity) of triplets for each node.

Details

	
nngt.analysis.adjacency_matrix(graph, types=False, weights=False)

	Adjacency matrix of the graph.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	types (bool, optional (default: False)) – Whether the excitatory/inhibitory type of the connnections should be
considered (only if the weighing factor is the synaptic strength).

	weights (bool or string, optional (default: False)) – Whether weights should be taken into account; if True, then connections
are weighed by their synaptic strength, if False, then a binary matrix
is returned, if weights is a string, then the ponderation is the
correponding value of the edge attribute (e.g. “distance” will return
an adjacency matrix where each connection is multiplied by its length).

	Returns

	a csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix].

References

	gt-adjacency

	graph-tool - spectral.adjacency [https://graph-tool.skewed.de/static/doc/spectral.html#graph_tool.spectral.adjacency]

	nx-adjacency

	networkx - convert_matrix.to_scipy_sparse_matrix [https://networkx.github.io/documentation/stable/reference/generated/networkx.convert_matrix.to_scipy_sparse_matrix.html]

	
nngt.analysis.all_shortest_paths(g, source, target, directed=None, weights=None, combine_weights='mean')

	Yields all shortest paths from source to target.
The algorithms returns an empty generator if there is no path between the
nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	source (int) – Node from which the paths starts.

	target (int, optional (default: all nodes)) – Node where the paths ends.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	all_paths (generator) – Generator yielding paths as lists of ints.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.all_shortest_paths [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.all_shortest_paths.html]

	
nngt.analysis.assortativity(g, degree, weights=None)

	Returns the assortativity of the graph.
This tells whether nodes are preferentially connected together depending
on their degree.

	Parameters

	
	g (Graph) – Graph to analyze.

	degree (str) – The type of degree that should be considered.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

References

	nx-assortativity

	networkx - algorithms.assortativity.degree_assortativity_coefficient [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.assortativity.degree_assortativity_coefficient.html]

	
nngt.analysis.average_path_length(g, sources=None, targets=None, directed=None, weights=None, combine_weights='mean', unconnected=False)

	Returns the average shortest path length between sources and targets.
The algorithms raises an error if all nodes are not connected unless
unconnected is set to True.

The average path length is defined as

[image: L = \frac{1}{N_p} \sum_{u,v} d(u, v),]

where [image: N_p] is the number of paths between sources and targets,
and [image: d(u, v)] is the shortest path distance from u to v.

If sources and targets are both None, then the total number of paths is
[image: N_p = N(N - 1)], with [image: N] the number of nodes in the graph.

	Parameters

	
	g (Graph) – Graph to analyze.

	sources (list of nodes, optional (default: all)) – Nodes from which the paths must be computed.

	targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	unconnected (bool, optional (default: False)) – If set to true, ignores unconnected nodes and returns the average path
length of the existing paths.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.average_shortest_path_length [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.average_shortest_path_length.html]

	
nngt.analysis.bayesian_blocks(t, x=None, sigma=None, fitness='events', **kwargs)

	Bayesian Blocks Implementation

This is a flexible implementation of the Bayesian Blocks algorithm
described in Scargle 2012 1

New in version 0.7.

	Parameters

	
	t (array_like) – data times (one dimensional, length N)

	x (array_like (optional)) – data values

	sigma (array_like or float (optional)) – data errors

	fitness (str or object) – the fitness function to use.
If a string, the following options are supported:

	
	‘events’binned or unbinned event data

	extra arguments are p0, which gives the false alarm probability
to compute the prior, or gamma which gives the slope of the
prior on the number of bins.

	
	‘regular_events’non-overlapping events measured at multiples

	of a fundamental tick rate, dt, which must be specified as an
additional argument. The prior can be specified through gamma,
which gives the slope of the prior on the number of bins.

	
	‘measures’fitness for a measured sequence with Gaussian errors

	The prior can be specified using gamma, which gives the slope
of the prior on the number of bins. If gamma is not specified,
then a simulation-derived prior will be used.

Alternatively, the fitness can be a user-specified object of
type derived from the FitnessFunc class.

	Returns

	edges (ndarray) – array containing the (N+1) bin edges

Examples

Event data:

>>> t = np.random.normal(size=100)
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Event data with repeats:

>>> t = np.random.normal(size=100)
>>> t[80:] = t[:20]
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Regular event data:

>>> dt = 0.01
>>> t = dt * np.arange(1000)
>>> x = np.zeros(len(t))
>>> x[np.random.randint(0, len(t), len(t) / 10)] = 1
>>> bins = bayesian_blocks(t, fitness='regular_events', dt=dt, gamma=0.9)

Measured point data with errors:

>>> t = 100 * np.random.random(100)
>>> x = np.exp(-0.5 * (t - 50) ** 2)
>>> sigma = 0.1
>>> x_obs = np.random.normal(x, sigma)
>>> bins = bayesian_blocks(t, fitness='measures')

References

	1

	Scargle, J et al. (2012)
http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

See also

	astroML.plotting.hist()

	histogram plotting function which can make use of bayesian blocks.

	
nngt.analysis.betweenness(g, btype='both', weights=None)

	Returns the normalized betweenness centrality of the nodes and edges.

	Parameters

	
	g (Graph) – Graph to analyze.

	btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’, ‘edge’, or
‘both’). By default, both betweenness centralities are computed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	Returns

	
	nb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The nodes’ betweenness if btype is ‘node’ or ‘both’

	eb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The edges’ betweenness if btype is ‘edge’ or ‘both’

References

	nx-ebetw

	networkx - algorithms.centrality.edge_betweenness_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.edge_betweenness_centrality.html]

	nx-nbetw

	networkx - networkx.algorithms.centrality.betweenness_centrality [https://networkx.github.io/documentation/stable/reference/networkx/generated/networkx.networkx.algorithms.centrality.betweenness_centrality.html]

	
nngt.analysis.betweenness_distrib(graph, weights=None, nodes=None, num_nbins='bayes', num_ebins='bayes', log=False)

	Betweenness distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes (only impacts the node
attribute).

	log (bool, optional (default: False)) – use log-spaced bins.

	num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], or ‘bayes’
will provide automatic bin optimization. Otherwise, an int for the
number of bins can be provided, or the direct bins list.

	Returns

	
	ncounts (numpy.array) – number of nodes in each bin

	nbetw (numpy.array) – bins for node betweenness

	ecounts (numpy.array) – number of edges in each bin

	ebetw (numpy.array) – bins for edge betweenness

	
nngt.analysis.binning(x, bins='bayes', log=False)

	Binning function providing automatic binning using Bayesian blocks in
addition to standard linear and logarithmic uniform bins.

New in version 0.7.

	Parameters

	
	x (array-like) – Array of data to be histogrammed

	bins (int, list or ‘auto’, optional (default: ‘bayes’)) – If bins is ‘bayes’, in use bayesian blocks for dynamic bin widths; if
it is an int, the interval will be separated into

	log (bool, optional (default: False)) – Whether the bins should be evenly spaced on a logarithmic scale.

	
nngt.analysis.closeness(g, weights=None, nodes=None, mode='out', harmonic=False, default=nan)

	Returns the closeness centrality of some nodes.

Closeness centrality of a node u is defined, for the harmonic version,
as the sum of the reciprocal of the shortest path distance [image: d_{uv}]
from u to the N - 1 other nodes in the graph (if mode is “out”,
reciprocally [image: d_{vu}], the distance to u from another node v,
if mode is “in”):

[image: C(u) = \frac{1}{N - 1} \sum_{v \neq u} \frac{1}{d_{uv}},]

or, using the arithmetic definition, as the reciprocal of the
average shortest path distance to/from u over to all other nodes:

[image: C(u) = \frac{n - 1}{\sum_{v \neq u} d_{uv}},]

where d_{uv} is the shortest-path distance from u to v,
and n is the number of nodes in the component.

By definition, the distance is infinite when nodes are not connected by
a path in the harmonic case (such that [image: \frac{1}{d(v, u)} = 0]),
while the distance itself is taken as zero for unconnected nodes in the
first equation.

	Parameters

	
	g (Graph) – Graph to analyze.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list, optional (default: all nodes)) – The list of nodes for which the clutering will be returned

	mode (str, optional (default: “out”)) – For directed graphs, whether the distances are computed from (“out”) or
to (“in”) each of the nodes.

	harmonic (bool, optional (default: False)) – Whether the arithmetic (default) or the harmonic (recommended) version
of the closeness should be used.

	Returns

	
	c (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of closeness centralities, on per node.

	.. warning :: – For compatibility reasons (harmonic closeness is not implemented for
igraph), the arithmetic version is used by default; however, it is
recommended to use the harmonic version instead whenever possible.

References

	nx-harmonic

	networkx - algorithms.centrality.harmonic_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.harmonic_centrality.html]

	nx-closeness

	networkx - algorithms.centrality.closeness_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html]

	
nngt.analysis.connected_components(g, ctype=None)

	Returns the connected component to which each node belongs.

	Parameters

	
	g (Graph) – Graph to analyze.

	ctype (str, optional (default ‘scc’)) – Type of component that will be searched: either strongly connected
(‘scc’, by default) or weakly connected (‘wcc’).

	Returns

	cc, hist (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The component associated to each node (cc) and the number of nodes in
each of the component (hist).

References

	nx-ucc

	networkx - algorithms.components.connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.connected_components.html]

	nx-scc

	networkx - algorithms.components.strongly_connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.strongly_connected_components.html]

	nx-wcc

	networkx - algorithms.components.weakly_connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.weakly_connected_components.html]

	
nngt.analysis.degree_distrib(graph, deg_type='total', nodes=None, weights=None, log=False, num_bins='bayes')

	Degree distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	deg_type (string, optional (default: “total”)) – type of degree to consider (“in”, “out”, or “total”).

	nodes (list of ints, optional (default: None)) – Restrict the distribution to a set of nodes (default: all nodes).

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	log (bool, optional (default: False)) – use log-spaced bins.

	num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], or ‘bayes’
will provide automatic bin optimization. Otherwise, an int for the
number of bins can be provided, or the direct bins list.

See also

numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], binning()

	Returns

	
	counts (numpy.array) – number of nodes in each bin

	deg (numpy.array) – bins

	
nngt.analysis.diameter(g, directed=None, weights=None, combine_weights='mean', is_connected=False)

	Returns the diameter of the graph.

Changed in version 2.3: Added combine_weights argument.

Changed in version 2.0: Added directed and is_connected arguments.

It returns infinity if the graph is not connected (strongly connected for
directed graphs) unless is_connected is True, in which case it returns
the longest existing shortest distance.

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: g.is_directed())) – Whether to compute the directed diameter if the graph is directed.
If False, then the graph is treated as undirected. The option switches
to False automatically if g is undirected.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	is_connected (bool, optional (default: False)) – If False, check whether the graph is connected or not and return
infinite diameter if graph is unconnected. If True, the graph is
assumed to be connected.

See also

nngt.analysis.shortest_distance()

References

	nx-diameter

	networkx - algorithms.distance_measures.diameter [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.distance_measures.diameter.html]

	nx-dijkstra

	networkx - algorithms.shortest_paths.weighted.all_pairs_dijkstra [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra.html]

	
nngt.analysis.get_b2(network=None, spike_detector=None, data=None, nodes=None)

	Return the B2 coefficient for the neurons.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (array-like of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	nodes (array-like, optional (default: all neurons)) – NNGT ids of the nodes for which the B2 should be computed.

	Returns

	b2 (array-like) – B2 coefficient for each neuron in nodes.

	
nngt.analysis.get_firing_rate(network=None, spike_detector=None, data=None, nodes=None)

	Return the average firing rate for the neurons.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the B2 should be computed.

	Returns

	fr (array-like) – Firing rate for each neuron in nodes.

	
nngt.analysis.get_spikes(recorder=None, spike_times=None, senders=None, astype='ssp')

	Return a 2D sparse matrix, where:

	each row i contains the spikes of neuron i (in NEST),

	each column j contains the times of the jth spike for all neurons.

Changed in version 1.0: Neurons are now located in the row corresponding to their NEST GID.

	Parameters

	
	recorder (tuple, optional (default: None)) – Tuple of NEST gids, where the first one should point to the
spike_detector which recorded the spikes.

	spike_times (array-like, optional (default: None)) – If recorder is not provided, the spikes’ data can be passed directly
through their spike_times and the associated senders.

	senders (array-like, optional (default: None)) – senders[i] corresponds to the neuron which fired at spike_times[i].

	astype (str, optional (default: “ssp”)) – Format of the returned data. Default is sparse lil_matrix (“ssp”)
with one row per neuron, otherwise “np” returns a (T, 2) array, with
T the number of spikes (the first row being the NEST gid, the second
the spike time).

Example

>>> get_spikes()

>>> get_spikes(recorder)

>>> times = [1.5, 2.68, 125.6]
>>> neuron_ids = [12, 0, 65]
>>> get_spikes(spike_times=times, senders=neuron_ids)

Note

If no arguments are passed to the function, the first spike_recorder
available in NEST will be used.
Neuron positions correspond to their GIDs in NEST.

	Returns

	
	CSR matrix containing the spikes sorted by neuron GIDs (rows) and time

	(columns).

	
nngt.analysis.global_clustering(g, directed=True, weights=None, method='continuous', mode='total', combine_weights='mean')

	Returns the global clustering coefficient.

This corresponds to the ratio of triangles to the number of triplets.
For directed and weighted cases, see definitions of generalized triangles
and triplets in the associated functions below.

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘barrat’
[Barrat2004], ‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’
[Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

References

	gt-global-clustering

	graph-tool - clustering.global_clustering [https://graph-tool.skewed.de/static/doc/clustering.html#graph_tool.clustering.global_clustering]

	ig-global-clustering

	igraph - transitivity_undirected [https://igraph.org/python/doc/igraph.GraphBase-class.html#transitivity_undirected]

	nx-global-clustering

	networkx - algorithms.cluster.transitivity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html]

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arxiv:cond-mat/0408629.

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76 (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

See also

triplet_count()
triangle_count()

	
nngt.analysis.global_clustering_binary_undirected(g)

	Returns the undirected global clustering coefficient.

This corresponds to the ratio of undirected triangles to the number of
undirected triads.

	Parameters

	g (Graph) – Graph to analyze.

References

	nx-global-clustering

	networkx - algorithms.cluster.transitivity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html]

	
nngt.analysis.local_closure(g, directed=True, weights=None, method=None, mode='cycle-out', combine_weights='mean')

	Compute the local closure for each node, as defined in [Yin2019] as the
fraction of 2-walks that are closed.

For undirected binary or weighted adjacency matrices
[image: W = \{ w_{ij} \}], the normal (or Zhang-like) definition is given
by:

[image: H_i^0 = \frac{\sum_{j\neq k} w_{ij} w_{jk} w_{ki}} {\sum_{j\neq k\neq i} w_{ij}w_{jk}} = \frac{W^3_{ii}}{\sum_{j \neq i} W^2_{ij}}]

While a continuous version of the local closure is also proposed as:

[image: H_i = \frac{\sum_{j\neq k} \sqrt[3]{w_{ij} w_{jk} w_{ki}}^2} {\sum_{j\neq k\neq i} \sqrt{w_{ij}w_{jk}}} = \frac{\left(W^{\left[\frac{2}{3} \right]} \right)_{ii}^3} {\sum_{j \neq i} \left(W^{\left[\frac{1}{2} \right]} \right)^2_{ij}}]

with [image: W^{[\alpha]} = \{ w^\alpha_{ij} \}].

Directed versions of the local closure where defined as follow for a node
[image: i] connected to nodes [image: j] and [image: k]:

	“cycle-out” is given by the pattern [(i, j), (j, k), (k, i)],

	“cycle-in” is given by the pattern [(k, j), (j, i), (i, k)],

	“fan-in” is given by the pattern [(k, j), (j, i), (k, i)],

	“fan-out” is given by the pattern [(i, j), (j, k), (i, k)].

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘normal’/’zhang’
or ‘continuous’.

	mode (str, optional (default: “circle-out”)) – Type of clustering to use for directed graphs, among “circle-out”,
“circle-in”, “fan-in”, or “fan-out”.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

References

	Yin2019(1,2)

	Yin, Benson, and Leskovec. The Local Closure Coefficient: A
New Perspective On Network Clustering. Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining 2019, 303-311.
DOI: 10.1145/3289600.3290991 [https://dx.doi.org/10.1145/3289600.3290991], PDF [https://www.cs.cornell.edu/~arb/papers/closure-coefficients-WSDM-2019.pdf].

	
nngt.analysis.local_clustering(g, nodes=None, directed=True, weights=None, method='continuous', mode='total', combine_weights='mean')

	Local (weighted directed) clustering coefficient of the nodes, ignoring
self-loops.

If no weights are requested and the graph is undirected, returns the
undirected binary clustering.

For all weighted cases, the weights are assumed to be positive and they are
normalized to dimensionless values between 0 and 1 through a division by
the highest weight.

The default method for weighted networks is based on a modification of
the proposal in [Zhang2005] with:

[image: C_i = \frac{\sum_{jk} \sqrt[3]{w_{ij} w_{ik} w_{jk}}} {\sum_{j\neq k} \sqrt{w_{ij} w_{ik}}} = \frac{\left(W^{\left[\frac{2}{3}\right]}\right)^3_{ii}} {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - s_i}]

for undirected networks, with
[image: W = \{ w_{ij}\} = \tilde{W} / \max(\tilde{W})] the normalized
weight matrix, [image: s_i] the normalized strength of node [image: i], and
[image: s^{[\frac{1}{2}]}_i = \sum_k \sqrt{w_{ik}}] the strength associated
to the matrix [image: W^{[\frac{1}{2}]} = \{\sqrt{w_{ij}}\}].

For directed networks, we used the total clustering defined in
[Fagiolo2007] by default, hence the second equation becomes:

[image: C_i = \frac{\frac{1}{2}\left(W^{\left[\frac{2}{3}\right]} + W^{\left[\frac{2}{3}\right],T}\right)^3_{ii}} {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - 2s^{\leftrightarrow}_i - s_i}]

with [image: s^{\leftrightarrow} = \sum_k \sqrt{w_{ik}w_{ki}}] the
reciprocal strength (associated to reciprocal connections).

For the other modes, see the generalized definitions in [Fagiolo2007].

Contrary to ‘barrat’ and ‘onnela’ [Saramaki2007], this method displays
all following properties:

	fully continuous (no jump in clustering when weights go to zero),

	equivalent to binary clustering when all weights are 1,

	equivalence between no-edge and zero-weight edge cases,

	normalized (always between zero and 1).

Using either ‘continuous’ or ‘zhang’ is recommended for weighted graphs.

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘barrat’
[Barrat2004]/[Clemente2018], ‘continuous’, ‘onnela’ [Onnela2005]/
[Fagiolo2007], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“sum”: equivalent to mean due to weight normalization.

	Returns

	lc (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of clustering coefficients, on per node.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Clemente2018

	Clemente, Grassi. Directed Clustering in Weighted
Networks: A New Perspective. Chaos, Solitons & Fractals 2018, 107,
26–38. DOI: 10.1016/j.chaos.2017.12.007 [https://dx.doi.org/10.1016/j.chaos.2017.12.007], arXiv: 1706.07322 [https://arxiv.org/abs/1706.07322].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arXiv: cond-mat/0408629 [https://arxiv.org/abs/cond-mat/0408629].

	Saramaki2007

	Saramäki, Kivelä, Onnela, Kaski, Kertész. Generalizations
of the Clustering Coefficient to Weighted Complex Networks.
Phys. Rev. E 2007, 75 (2), 027105. DOI: 10.1103/PhysRevE.75.027105 [https://dx.doi.org/10.1103/PhysRevE.75.027105],
arXiv: cond-mat/0608670 [https://arxiv.org/abs/cond-mat/0608670].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

See also

undirected_binary_clustering(), global_clustering()

	
nngt.analysis.local_clustering_binary_undirected(g, nodes=None)

	Returns the undirected local clustering coefficient of some nodes.

If g is directed, then it is converted to a simple undirected graph
(no parallel edges).

	Parameters

	
	g (Graph) – Graph to analyze.

	nodes (list, optional (default: all nodes)) – The list of nodes for which the clustering will be returned

	Returns

	lc (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of clustering coefficients, on per node.

References

	nx-local-clustering

	networkx - algorithms.cluster.clustering [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.clustering.html]

	
nngt.analysis.node_attributes(network, attributes, nodes=None, data=None)

	Return node attributes for a set of nodes.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “closeness”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	data (numpy.array of shape (N, 2), optional (default: None)) – Potential data on the spike events; if not None, it must contain the
sender ids on the first column and the spike times on the second.

	Returns

	values (array-like or dict) – Returns the attributes, either as an array if only one attribute is
required (attributes is a str [https://docs.python.org/3/library/stdtypes.html#str]) or as a dict [https://docs.python.org/3/library/stdtypes.html#dict] of arrays.

	
nngt.analysis.num_iedges(graph)

	Returns the number of inhibitory connections.

For Network objects, this corresponds to the number of edges
stemming from inhibitory nodes (given by
nngt.NeuralPop.inhibitory()).
Otherwise, counts the edges where the type attribute is -1.

	
nngt.analysis.reciprocity(g)

	Calculate the edge reciprocity of the graph.

The reciprocity is defined as the number of edges that have a reciprocal
edge (an edge between the same nodes but in the opposite direction)
divided by the total number of edges.
This is also the probability for any given edge, that its reciprocal edge
exists.
By definition, the reciprocity of undirected graphs is 1.

@todo: check whether we can get this for single nodes for all libraries.

	Parameters

	g (Graph) – Graph to analyze.

References

	nx-reciprocity

	networkx - algorithms.reciprocity.overall_reciprocity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.reciprocity.overall_reciprocity.html]

	
nngt.analysis.shortest_distance(g, sources=None, targets=None, directed=None, weights=None, combine_weights='mean')

	Returns the length of the shortest paths between sources`and `targets.
The algorithms return infinity if there are no paths between nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	sources (list of nodes, optional (default: all)) – Nodes from which the paths must be computed.

	targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	distance (float, or 1d/2d numpy array of floats) – Distance (if single source and single target) or distance array.
For multiple sources and targets, the shape of the matrix is (S, T),
with S the number of sources and T the number of targets; for a single
source or target, return a 1d-array of length T or S.

References

	nx-sp

	networkx - algorithms.shortest_paths.weighted.multi_source_dijkstra [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra.html]

	
nngt.analysis.shortest_path(g, source, target, directed=None, weights=None, combine_weights='mean')

	Returns a shortest path between source`and `target.
The algorithms returns an empty list if there is no path between the nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	source (int) – Node from which the path starts.

	target (int) – Node where the path ends.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	path (list of ints) – Order of the nodes making up the path from source to target.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.shortest_path [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html]

	
nngt.analysis.small_world_propensity(g, directed=None, use_global_clustering=False, use_diameter=False, weights=None, combine_weights='mean', clustering='continuous', lattice=None, random=None, return_deviations=False)

	Returns the small-world propensity of the graph as first defined in
[Muldoon2016].

[image: \phi = 1 - \sqrt{\frac{\Pi_{[0, 1]}(\Delta_C^2) + \Pi_{[0, 1]}(\Delta_L^2)}{2}}]

with [image: \Delta_C] the clustering deviation, i.e. the relative global or
average clustering of g compared to two reference graphs

[image: \Delta_C = \frac{C_{latt} - C_g}{C_{latt} - C_{rand}}]

and [image: Delta_L] the deviation of the average path length or diameter,
i.e. the relative average path length of g compared to that of the
reference graphs

[image: \Delta_L = \frac{L_g - L_{rand}}{L_{latt} - L_{rand}}.]

In both cases, latt and rand refer to the equivalent lattice and
Erdos-Renyi (ER) graphs obtained by rewiring g to obtain respectively the
highest and lowest combination of clustering and average path length.

Both deviations are clipped to the [0, 1] range in case some graphs have a
higher clustering than the lattice or a lower average path length than the
ER graph.

	Parameters

	
	g (Graph object) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.
If False, then the graph is treated as undirected. The option switches
to False automatically if g is undirected.

	use_global_clustering (bool, optional (default: True)) – If False, then the average local clustering is used instead of the
global clustering.

	use_diameter (bool, optional (default: False)) – Use the diameter instead of the average path length to have more global
information. Ccan also be much faster in some cases, especially using
graph-tool as the backend.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	clustering (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering coefficients, either
‘barrat’ [Barrat2004], ‘continuous’ (recommended), or ‘onnela’
[Onnela2005].

	lattice (nngt.Graph, optional (default: generated from g)) – Lattice to use as reference (since its generation is deterministic,
enables to avoid multiple generations when running the algorithm
several times with the same graph)

	random (nngt.Graph, optional (default: generated from g)) – Random graph to use as reference. Can be useful for reproducibility or
for very sparse graphs where ER algorithm would statistically lead to
a disconnected graph.

	return_deviations (bool, optional (default: False)) – If True, the deviations are also returned, in addition to the
small-world propensity.

Note

If weights are provided, the distance calculation uses the inverse of
the weights.
This implementation differs slightly from the original implementation [https://github.com/KordingLab/nctpy] as it can also use the global
instead of the average clustering coefficient, the diameter instead of
the avreage path length, and it is generalized to directed networks.

References

	Muldoon2016(1,2)

	Muldoon, Bridgeford, Bassett. Small-World Propensity and
Weighted Brain Networks. Sci Rep 2016, 6 (1), 22057.
DOI: 10.1038/srep22057 [https://dx.doi.org/10.1038/srep22057], arXiv: 1505.02194 [https://arxiv.org/abs/1505.02194].

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arxiv:cond-mat/0408629.

	Returns

	
	phi (float in [0, 1]) – The small-world propensity.

	delta_l (float) – The average path-length deviation (if return_deviations is True).

	delta_c (float) – The clustering deviation (if return_deviations is True).

See also

nngt.analysis.average_path_length(), nngt.analysis.diameter(), nngt.analysis.global_clustering(), nngt.analysis.local_clustering(), nngt.generation.lattice_rewire(), nngt.generation.random_rewire()

	
nngt.analysis.spectral_radius(graph, typed=True, weights=True)

	Spectral radius of the graph, defined as the eigenvalue of greatest module.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	typed (bool, optional (default: True)) – Whether the excitatory/inhibitory type of the connnections should be
considered.

	weights (bool, optional (default: True)) – Whether weights should be taken into account, defaults to the “weight”
edge attribute if present.

	Returns

	the spectral radius as a float.

	
nngt.analysis.subgraph_centrality(graph, weights=True, nodes=None, normalize='max_centrality')

	Returns the subgraph centrality for each node in the graph.

Defined according to [Estrada2005] as:

[image: sc(i) = e^{W}_{ii}]

where [image: W] is the (potentially weighted and normalized) adjacency
matrix.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	weights (bool or string, optional (default: True)) – Whether weights should be taken into account; if True, then connections
are weighed by their synaptic strength, if False, then a binary matrix
is returned, if weights is a string, then the ponderation is the
correponding value of the edge attribute (e.g. “distance” will return
an adjacency matrix where each connection is multiplied by its length).

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the subgraph centrality should be returned (all
centralities are computed anyway in the algorithm).

	normalize (str or False, optional (default: “max_centrality”)) – Whether the centrality should be normalized. Accepted normalizations
are “max_eigenvalue” (the matrix is divided by its largest eigenvalue),
“max_centrality” (the largest centrality is one), and False to get
the non-normalized centralities.

	Returns

	centralities (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The subgraph centrality of each node.

References

	Estrada2005

	Ernesto Estrada and Juan A. Rodríguez-Velázquez,
Subgraph centrality in complex networks, PHYSICAL REVIEW E 71, 056103
(2005), DOI: 10.1103/PhysRevE.71.056103 [https://dx.doi.org/10.1103/PhysRevE.71.056103], arXiv: cond-mat/0504730 [https://arxiv.org/abs/cond-mat/0504730].

	
nngt.analysis.total_firing_rate(network=None, spike_detector=None, nodes=None, data=None, kernel_center=0.0, kernel_std=30.0, resolution=None, cut_gaussian=5.0)

	Computes the total firing rate of the network from the spike times.
Firing rate is obtained as the convolution of the spikes with a Gaussian
kernel characterized by a standard deviation and a temporal shift.

New in version 0.7.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

	kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel (standard deviation) in ms.

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed.

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed. By default, we consider
the 5-sigma range. Decreasing this value will increase speed at the
cost of lower fidelity; increasing it with increase the fidelity at the
cost of speed.

	Returns

	
	fr (array-like) – The firing rate in Hz.

	times (array-like) – The times associated to the firing rate values.

	
nngt.analysis.transitivity(g, directed=True, weights=None)

	Same as global_clustering().

	
nngt.analysis.triangle_count(g, nodes=None, directed=True, weights=None, method='normal', mode='total', combine_weights='mean')

	Returns the number or the strength (also called intensity) of triangles
for each node.

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘normal’)) – Method used to compute the weighted triangles, either ‘normal’, where
the weights are directly used, or the definitions associated to the
weighted clustering: ‘barrat’ [Barrat2004], ‘continuous’, ‘onnela’
[Onnela2005], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	tr (array) – Number or weight of triangles to which each node belongs.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arXiv: cond-mat/0408629 [https://arxiv.org/abs/cond-mat/0408629].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

	
nngt.analysis.triplet_count(g, nodes=None, directed=True, weights=None, method='normal', mode='total', combine_weights='mean')

	Returns the number or the strength (also called intensity) of triplets for
each node.

For binary networks, the triplets of node [image: i] are defined as:

[image: T_i = \sum_{j,k} a_{ij}a_{ik}]

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted triplets, either ‘normal’, where
the edge weights are directly used, or the definitions used for
weighted clustering coefficients, ‘barrat’ [Barrat2004],
‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	tr (array) – Number or weight of triplets to which each node belongs.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

Core module

Core classes and functions. Most of them are not visible in the module as they
are directly loaded at nngt level.

Content

	
nngt.core.GraphObject

	alias of nngt.core.nx_graph._NxGraph

Generation module

Functions that generates the underlying connectivity of graphs, as well
as the connection properties (weight/strength and delay).

Content

Generation functions

	nngt.generation.all_to_all([nodes, …])

	Generate a graph where all nodes are connected.

	nngt.generation.circular(coord_nb[, …])

	Generate a circular graph.

	nngt.generation.distance_rule(scale[, rule, …])

	Create a graph using a 2D distance rule to create the connection between neurons.

	nngt.generation.erdos_renyi([density, …])

	Generate a random graph as defined by Erdos and Renyi but with a reciprocity that can be chosen.

	nngt.generation.fixed_degree(degree[, …])

	Generate a random graph with constant in- or out-degree.

	nngt.generation.from_degree_list(degrees[, …])

	Generate a random graph from a given list of degrees.

	nngt.generation.gaussian_degree(avg, std[, …])

	Generate a random graph with constant in- or out-degree.

	nngt.generation.newman_watts(coord_nb[, …])

	Generate a (potentially small-world) graph using the Newman-Watts algorithm.

	nngt.generation.price_scale_free(m[, c, …])

	Generate a Price graph model (Barabasi-Albert if undirected).

	nngt.generation.random_scale_free(in_exp, …)

	Generate a free-scale graph of given reciprocity and otherwise devoid of correlations.

	nngt.generation.watts_strogatz(coord_nb[, …])

	Generate a (potentially small-world) graph using the Watts-Strogatz algorithm.

Connectors

	nngt.generation.connect_nodes(network, …)

	Function to connect nodes with a given graph model.

	nngt.generation.connect_groups(network, …)

	Function to connect groups with a given graph model.

	nngt.generation.connect_neural_types(…[, …])

	Function to connect excitatory and inhibitory population with a given graph model.

Rewiring functions

	nngt.generation.random_rewire(g[, …])

	Generate a new rewired graph from g.

	nngt.generation.lattice_rewire(g[, …])

	Build a (generally irregular) lattice by rewiring the edges of a graph.

Details

	
nngt.generation.all_to_all(nodes=0, weighted=True, directed=True, multigraph=False, name='AllToAll', shape=None, positions=None, population=None, **kwargs)

	Generate a graph where all nodes are connected.

New in version 1.0.

	Parameters

	
	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirectional (only for directed graphs
– undirected graphs have a reciprocity of 1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

Note

nodes is required unless population is provided.

	Returns

	graph_all (Graph, or subclass) – A new generated graph.

	
nngt.generation.circular(coord_nb, reciprocity=1.0, reciprocity_choice='random', nodes=0, weighted=True, directed=True, multigraph=False, name='Circular', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a circular graph.

The nodes are placed on a circle and connected to their coord_nb closest
neighbours.
If the graph is directed, the number of connections depends on the value
of reciprocity: if reciprocity == 0., then only half of all possible
connections will be created, so that no bidirectional edges exist; on the
other hand, for reciprocity == 1., all possible edges are created; for
intermediate values of reciprocity, the number of edges increases
linearly as 0.5*(1 + reciprocity / (2 - reciprocity))*nodes*coord_nb.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	reciprocity (double, optional (default: 1.)) – Proportion of reciprocal edges in the graph.

	reciprocity_choice (str, optional (default: “random”)) – How reciprocal edges should be chosen, which can be either “random” or
“closest”. If the latter option is used, then connections
between first neighbours are rendered reciprocal first, then between
second neighbours, etc.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	density (double, optional (default: 0.1)) – Structural density given by edges / (nodes`*`nodes).

	edges (int (optional)) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_circ (Graph or subclass)

	
nngt.generation.connect_groups(network, source_groups, target_groups, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect groups with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	source_groups (str, NeuralGroup, or iterable) – Names of the source groups (which contain the pre-synaptic neurons) or
directly the group objects themselves.

	target_groups (str, NeuralGroup, or iterable) – Names of the target groups (which contain the post-synaptic neurons) or
directly the group objects themselves.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
groups which have their property sets are the source_groups.

	
nngt.generation.connect_neural_groups(*args, **kwargs)

	Deprecatd alias of connect_groups().

	
nngt.generation.connect_neural_types(network, source_type, target_type, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect excitatory and inhibitory population with a given graph
model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	source_type (int or list) – The type of source neurons (1 for excitatory, -1 for
inhibitory neurons).

	target_type (int or list) – The type of target neurons.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
nodes which have their property sets are the source_type.

	
nngt.generation.connect_nodes(network, sources, targets, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect nodes with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	sources (list) – Ids of the source nodes.

	targets (list) – Ids of the target nodes.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	**kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
nodes which have their property sets are the sources.

	
nngt.generation.distance_rule(scale, rule='exp', shape=None, neuron_density=1000.0, max_proba=-1.0, nodes=0, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, name='DR', positions=None, population=None, from_graph=None, **kwargs)

	Create a graph using a 2D distance rule to create the connection between
neurons. Available rules are linear and exponential.

	Parameters

	
	scale (float) – Characteristic scale for the distance rule. E.g for linear distance-
rule, [image: P(i,j) \propto (1-d_{ij}/scale))], whereas for the
exponential distance-rule, [image: P(i,j) \propto e^{-d_{ij}/scale}].

	rule (string, optional (default: ‘exp’)) – Rule that will be apply to draw the connections between neurons.
Choose among “exp” (exponential), “gaussian” (Gaussian), or
“lin” (linear).

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment. If not specified, a square will be
created with the appropriate dimensions for the number of neurons and
the neuron spatial density.

	neuron_density (float, optional (default: 1000.)) – Density of neurons in space ([image: neurons \cdot mm^{-2}]).

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	p (float, optional) – Normalization factor for the distance rule; it is equal to the
probability of connection when testing a node at zero distance.

	density (double, optional) – Structural density given by edges / (nodes * nodes).

	edges (int, optional) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	unit (string (default: ‘um’)) – Unit for the length scale among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “DR”)) – Name of the created graph.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D (N, 2) or 3D (N, 3) shaped array containing the positions of the
neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	
nngt.generation.erdos_renyi(density=None, nodes=0, edges=None, avg_deg=None, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='ER', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph as defined by Erdos and Renyi but with a
reciprocity that can be chosen.

	Parameters

	
	density (double, optional (default: -1.)) – Structural density given by edges / nodes[image: ^2]. It is also the
probability for each possible edge in the graph to exist.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	edges (int (optional)) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirectional (only for
directed graphs – undirected graphs have a reciprocity of 1 by
definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_er (Graph, or subclass) – A new generated graph or the modified from_graph.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the
object will be deleted before the new connectivity is implemented.

	
nngt.generation.fixed_degree(degree, degree_type='in', nodes=0, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='FD', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph with constant in- or out-degree.

	Parameters

	
	degree (int) – The value of the constant degree.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in', 'out' or 'total'.

	@todo

	‘total’ not implemented yet.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet. Fraction of edges that are bidirectional
(only for directed graphs – undirected graphs have a reciprocity of
1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the
object will be deleted before the new connectivity is implemented.

	Returns

	graph_fd (Graph, or subclass) – A new generated graph or the modified from_graph.

	
nngt.generation.from_degree_list(degrees, degree_type='in', weighted=True, directed=True, multigraph=False, name='DL', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph from a given list of degrees.

	Parameters

	
	degrees (list) – The list of degrees for each node in the graph.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in', 'out' or 'total'.
@todo ‘total’ not implemented yet.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_dl (Graph, or subclass) – A new generated graph or the modified from_graph.

	
nngt.generation.gaussian_degree(avg, std, degree_type='in', nodes=0, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='GD', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph with constant in- or out-degree.

	Parameters

	
	avg (float) – The value of the average degree.

	std (float) – The standard deviation of the Gaussian distribution.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among ‘in’, ‘out’ or ‘total’ (or the
full version: ‘in-degree’…)
@todo: Implement ‘total’ degree

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet. Fraction of edges that are bidirectional
(only for directed graphs – undirected graphs have a reciprocity of
1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_gd (Graph, or subclass) – A new generated graph or the modified from_graph.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the object
will be deleted before the new connectivity is implemented.

	
nngt.generation.lattice_rewire(g, target_reciprocity=1.0, node_attr_constraints=None, edge_attr_constraints=None, weight=None, weight_constraint='distance', distance_sort='inverse')

	Build a (generally irregular) lattice by rewiring the edges of a graph.

New in version 2.0.

The lattice is based on a circular graph, meaning that the nodes are placed
on a circle and connected based on the topological distance between them,
the distance being defined through the positive modulo:

[image: d_{ij} = (i - j) \% N]

with [image: N] the number of nodes in the graph.

	Parameters

	
	g (Graph) – Graph based on which the lattice will be generated.

	target_reciprocity (float, optional (default: 1.)) – Value of reciprocity that should be aimed at. Depending on the number
of edges, it may not be possible to reach this value exactly.

	node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained: either “preserve”,
where all nodes keep their attributes, or “together”, where attributes
are randomized by groups (all attributes of a given node are sent to
the same new node). By default, attributes are completely and
separately randomized.

	edge_attr_constraints (str, optional (default: randomize all but weight)) – Whether attribute randomization is constrained.
If “distance” is used, then all number attributes (float or int) are
sorted and are first associated to the shortest or longest edges
depending on the value of distance_sort. Note that, for directed
graphs, if a reciprocal edge exists, it is immediately assigned the
next highest (respectively lowest) attribute after that of its directed
couterpart.
If “together” is used, edges attributes are randomized by groups (all
attributes of a given edge are sent to the same new edge) either
randomly if weight is None, or following the constrained weight
attribute. By default, attributes are completely and separately
randomized (except for weight if it has been provided).

	weight (str, optional (default: None)) – Whether a specific edge attribute should play the role of weight and
have special constraints.

	weight_constraint (str, optional (default: “distance”)) – Same as edge_attr_constraints` but only applies to weight and can
only be “distance” or None since “together” was related to weight.

	distance_sort (str, optional (default: “inverse”)) – How attributes are sorted with edge distance: either “inverse”, with
the shortest edges being assigned the largest weights, or with a
“linear” sort, where shortest edges are assigned the lowest weights.

	
nngt.generation.newman_watts(coord_nb, proba_shortcut=None, reciprocity_circular=1.0, reciprocity_choice_circular='random', nodes=0, edges=None, weighted=True, directed=True, multigraph=False, name='NW', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a (potentially small-world) graph using the Newman-Watts
algorithm.

For directed networks, the reciprocity of the initial circular network can
be chosen.

Changed in version 2.0: Added the reciprocity_circular and reciprocity_choice_circular
options.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for each existing
edge on the initial lattice.
If edges is provided, then will be computed automatically as
edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)

	reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the initial circular graph.

	reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges should be chosen in the initial circular graph.
This can be either “random” or “closest”. If the latter option
is used, then connections between first neighbours are rendered
reciprocal first, then between second neighbours, etc.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	edges (int (optional)) – The number of edges between the nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_nw (Graph or subclass)

Note

nodes is required unless from_graph or population is provided.

	
nngt.generation.price_scale_free(m, c=None, gamma=1, nodes=0, reciprocity=0, weighted=True, directed=True, multigraph=False, name='PriceSF', shape=None, positions=None, population=None, **kwargs)

	Generate a Price graph model (Barabasi-Albert if undirected).

	Parameters

	
	m (int) – The number of edges each new node will make.

	c (double, optional (0 if undirected, else 1)) – Constant added to the probability of a vertex receiving an edge.

	gamma (double, optional (default: 1)) – Preferential attachment power.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (float, optional (default: 0)) – Reciprocity of the graph (between 0 and 1). For directed graphs, this
will be the probability of the target node connecting back to the
source node when a new edge is added.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	Returns

	graph_price (Graph or subclass.)

Note

nodes is required unless population is provided.

Notes

The (generalized) Price network is either a directed or undirected graph
(the latter is better known as the Barabási-Albert network).
It is generated via a growth process, adding a new node at each step and
connecting it to [image: m] previous nodes, chosen with probability:

[image: p \propto k^\gamma + c]

where [image: k] is the (in-)degree of the vertex.

We must therefore have [image: c \ge 0] for directed graphs and
[image: c > -1] for undirected graphs.

If the reciprocity [image: r] is non-zero, each targeted node reciprocates
the connection with probability [image: r].
Expected reciprocity of the final graph is [image: 2r / (1 + r)].

If [image: \gamma=1], and reciprocity is zero, the tail of resulting
in-degree distribution of the directed case is given by

[image: P_{k_{in}} \sim k_{in}^{-(2 + c/m)},]

or for the undirected case

[image: P_{k} \sim k^{-(3 + c/m)}.]

However, if [image: \gamma \ne 1], the in-degree distribution is not
scale-free.

	
nngt.generation.random_rewire(g, constraints=None, node_attr_constraints=None, edge_attr_constraints=None)

	Generate a new rewired graph from g.

New in version 2.0.

	Parameters

	
	g (Graph) – Base graph based on which a new rewired graph will be generated.

	constraints (str, optional (default: no constraints)) – Defines which properties of g will be maintained in the rewired
graph. By default, the graph is completely rewired into an Erdos-Renyi
model. Available constraints are “in-degree”, “out-degree”,
“total-degree”, “all-degrees”, and “clustering”.

	node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained: either “preserve”,
where all nodes keep their attributes, or “together”, where attributes
are randomized by groups (all attributes of a given node are sent to
the same new node). By default, attributes are completely and
separately randomized.

	edge_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained.
If constraints is “in-degree” (respectively “out-degree”) or
“degrees”, this can be “preserve_in” (respectively “preserve_out”),
in which case all attributes of a given edge are moved together to a
new incoming (respectively outgoing) edge of the same node.
Regardless of constraints, “together” can be used so that edges
attributes are randomized by groups (all attributes of a given edge are
sent to the same new edge). By default, attributes are completely and
separately randomized.

	
nngt.generation.random_scale_free(in_exp, out_exp, nodes=0, density=None, edges=None, avg_deg=None, reciprocity=0.0, weighted=True, directed=True, multigraph=False, name='RandomSF', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a free-scale graph of given reciprocity and otherwise
devoid of correlations.

	Parameters

	
	in_exp (float) – Absolute value of the in-degree exponent [image: \gamma_i], such that
[image: p(k_i) \propto k_i^{-\gamma_i}]

	out_exp (float) – Absolute value of the out-degree exponent [image: \gamma_o], such that
[image: p(k_o) \propto k_o^{-\gamma_o}]

	nodes (int, optional (default: 0)) – The number of nodes in the graph.

	density (double, optional) – Structural density given by edges / (nodes*nodes).

	edges (int optional) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes. can contain multiple edges between two

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network)

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_fs (Graph)

Note

As reciprocity increases, requested values of in_exp and out_exp
will be less and less respected as the distribution will converge to a
common exponent [image: \gamma = (\gamma_i + \gamma_o) / 2].
Parameter nodes is required unless from_graph or population is
provided.

	
nngt.generation.watts_strogatz(coord_nb, proba_shortcut=None, reciprocity_circular=1.0, reciprocity_choice_circular='random', shuffle='random', nodes=0, weighted=True, directed=True, multigraph=False, name='WS', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a (potentially small-world) graph using the Watts-Strogatz
algorithm.

For directed networks, the reciprocity of the initial circular network can
be chosen.

New in version 2.0.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for each existing
edge on the initial lattice.
If edges is provided, then will be computed automatically as
edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)

	reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the initial circular graph.

	reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges should be chosen in the initial circular graph.
This can be either “random” or “closest”. If the latter option
is used, then connections between first neighbours are rendered
reciprocal first, then between second neighbours, etc.

	shuffle (str, optional (default: ‘random’)) – Whether to shuffle only ‘targets’ (out-degree of all nodes remains
constant), ‘sources’ (in-degree remains constant), or randomly the
source or the target for each edge (‘random’) in the case of directed
graphs.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_nw (Graph or subclass)

Note

nodes is required unless from_graph or population is provided.

Geometry module

This module is a direct copy of the SENeC package
PyNCulture [https://github.com/SENeC-Initiative/PyNCulture].
Therefore, in the examples below, you will have to import nngt instead of
PyNCulture and replace pnc by nngt.geometry.

Overview

	nngt.geometry.Area(shell[, holes, unit, …])

	Specialized Shape that stores additional properties regarding the interactions with the neurons.

	nngt.geometry.Shape(shell[, holes, unit, …])

	Class containing the shape of the area where neurons will be distributed to form a network.

	nngt.geometry.culture_from_file(filename[, …])

	Generate a culture from an SVG, a DXF, or a WKT/WKB file.

	nngt.geometry.plot_shape(shape[, axis, m, …])

	Plot a shape (you should set the axis aspect to 1 to respect the proportions).

	nngt.geometry.pop_largest(shapes)

	Returns the largest shape, removing it from the list.

	nngt.geometry.shapes_from_file(filename[, …])

	Generate a set of Shape objects from an SVG, a DXF, or a WKT/WKB file.

Principle

Module dedicated to the description of the spatial boundaries of neuronal
cultures.
This allows for the generation of neuronal networks that are embedded in space.

The shapely [http://toblerity.org/shapely/index.html] library is used to
generate and deal with the spatial environment of the neurons.

Examples

Basic features

The module provides a backup Shape object, which can be used with only
the numpy and scipy libraries.
It allows for the generation of simple rectangle, disk and ellipse shapes.

import matplotlib.pyplot as plt

import PyNCulture as nc

fig, ax = plt.subplots()

''' Choose a shape (uncomment the desired line) '''
culture = nc.Shape.rectangle(15, 20, (5, 0))
culture = nc.Shape.disk(20, (5, 0))
culture = nc.Shape.ellipse((20, 5), (5, 0))

''' Generate the neurons inside '''
pos = culture.seed_neurons(neurons=1000, xmax=0., ymax=0.)

''' Plot '''
nc.plot_shape(culture, ax, show=False)
ax.scatter(pos[:, 0], pos[:, 1], s=2, zorder=2)

plt.show()

All these features are of course still available with the more advanced
Shape object which inherits from shapely.geometry.Polygon.

Complex shapes from files

import matplotlib.pyplot as plt

import PyNCulture as nc

''' Choose a file '''
culture_file = "culture_from_filled_polygons.svg"
culture_file = "culture_with_holes.svg"
culture_file = "culture.dxf"

shapes = nc.shapes_from_file(culture_file, min_x=-5000., max_x=5000.)

''' Plot the shapes '''
fig, ax = plt.subplots()
fig.suptitle("shapes")

for p in shapes:
 nc.plot_shape(p, ax, show=False)

plt.show()

''' Make a culture '''
fig2, ax2 = plt.subplots()
plt.title("culture")

culture = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)

nc.plot_shape(culture, ax2)

''' Add neurons '''
fig3, ax3 = plt.subplots()
plt.title("culture with neurons")

culture_bis = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)
pos = culture_bis.seed_neurons(neurons=1000, xmax=0)

nc.plot_shape(culture_bis, ax3, show=False)
ax3.scatter(pos[:, 0], pos[:, 1], s=2, zorder=3)

plt.show()

Content

	
class nngt.geometry.Area(shell, holes=None, unit='um', height=0.0, name='area', properties=None)

	Specialized Shape that stores additional properties regarding the
interactions with the neurons.

Each Area is characteristic of a given substrate and height. These two
properties are homogeneous over the whole area, meaning that the neurons
interact in the same manner with an Area reagardless of their position
inside.

The substrate is described through its modulation of the neuronal
properties compared to their default behavior.
Thus, a given area will modulate the speed, wall affinity, etc, of the
growth cones that are growing above it.

Initialize the Shape object and the underlying
shapely.geometry.Polygon.

	Parameters

	
	shell (array-like object of shape (N, 2)) – List of points defining the external border of the shape.

	holes (array-like, optional (default: None)) – List of array-like objects of shape (M, 2), defining empty regions
inside the shape.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	height (float, optional (default: 0.)) – Height of the area.

	name (str, optional (default: “area”)) – The name of the area.

	properties (dict, optional (default: default neuronal properties)) – Dictionary containing the list of the neuronal properties that
are modified by the substrate. Since this describes how the default
property is modulated, all values must be positive reals or NaN.

	
add_subshape(subshape, position, unit='um')

	

	
areas

	Returns the dictionary containing the Shape’s areas.

	
copy()

	Create a copy of the current Area.

	
classmethod from_shape(shape, height=0.0, name='area', properties=None, unit='um', min_x=None, max_x=None)

	Create an Area from a Shape object.

	Parameters

	shape (Shape) – Shape that should be converted to an Area.

	Returns

	Area object.

	
properties

	

	
class nngt.geometry.Shape(shell, holes=None, unit='um', parent=None, default_properties=None)

	Class containing the shape of the area where neurons will be distributed to
form a network.

	
area

	Area of the shape in the Shape’s
Shape.unit() squared ([image: \mu m^2],
[image: mm^2], [image: cm^2], [image: dm^2] or [image: m^2]).

	Type

	double

	
centroid

	Position of the center of mass of the current shape in unit.

	Type

	tuple of doubles

See also

Parent

Initialize the Shape object and the underlying
shapely.geometry.Polygon.

	Parameters

	
	exterior (array-like object of shape (N, 2)) – List of points defining the external border of the shape.

	interiors (array-like, optional (default: None)) – List of array-like objects of shape (M, 2), defining empty regions
inside the shape.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	parent (nngt.Graph or subclass) – The graph which is associated to this Shape.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
add_area(area, height=None, name=None, properties=None, override=False)

	Add a new area to the Shape.
If the new area has a part that is outside the main Shape,
it will be cut and only the intersection between the area and the
container will be kept.

	Parameters

	
	area (Area or Shape, or shapely.Polygon.) – Delimitation of the area. Only the intersection between the parent
Shape and this new area will be kept.

	name (str, optional, default (“areaX” where X is the number of areas)) – Name of the area, under which it can be retrieved using the
Shape.area() property of the Shape object.

	properties (dict, optional (default: None)) – Properties of the area. If area is a Area, then this is
not necessary.

	override (bool, optional (default: False)) – If True, the new area will be made over existing areas that will
be reduced in consequence.

	
add_hole(hole)

	Make a hole in the shape.

New in version 0.4.

	
areas

	Returns the dictionary containing the Shape’s areas.

	
contains_neurons(positions)

	Check whether the neurons are contained in the shape.

New in version 0.4.

	Parameters

	positions (point or 2D-array of shape (N, 2))

	Returns

	contained (bool or 1D boolean array of length N) – True if the neuron is contained, False otherwise.

	
copy()

	Create a copy of the current Shape.

	
default_areas

	Returns the dictionary containing only the default areas.

New in version 0.4.

	
static disk(radius, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a disk of given radius and center (centroid).

	Parameters

	
	radius (float) – Radius of the disk in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
static ellipse(radii, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a disk of given radius and center (centroid).

	Parameters

	
	radii (tuple of floats) – Couple (rx, ry) containing the radii of the two axes in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
static from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, default_properties=None)

	Create a shape from a DXF, an SVG, or a WTK/WKB file.

New in version 0.3.

	Parameters

	
	filename (str) – Path to the file that should be loaded.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit (default: ‘um’). If None, no rescaling
occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit. If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	interpolate_curve (int, optional (default: 50)) – Number of points that should be used to interpolate a curve.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
static from_polygon(polygon, min_x=None, max_x=None, unit='um', parent=None, default_properties=None)

	Create a shape from a shapely.geometry.Polygon.

	Parameters

	
	polygon (shapely.geometry.Polygon) – The initial polygon.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit If None, no rescaling occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
static from_wkt(wtk, min_x=None, max_x=None, unit='um', parent=None, default_properties=None)

	Create a shape from a WKT string.

New in version 0.2.

	Parameters

	
	wtk (str) – The WKT string.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit If None, no rescaling occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

See also

Shape.from_polygon()

	
non_default_areas

	Returns the dictionary containing all Shape’s areas except the
default ones.

New in version 0.4.

	
parent

	Return the parent of the Shape.

	
random_obstacles(n, form, params=None, heights=None, properties=None, etching=0, on_area=None)

	Place random obstacles inside the shape.

New in version 0.4.

	Parameters

	
	n (int or float) – Number of obstacles if n is an int [https://docs.python.org/3/library/functions.html#int], otherwise represents
the fraction of the shape’s bounding box that should be occupied by

the obstacles’ bounding boxes.

	form (str or Shape) – Form of the obstacles, among “disk”, “ellipse”, “rectangle”, or a
custom shape.

	params (dict, optional (default: None)) – Dictionnary containing the instructions to build a predefined form
(“disk”, “ellipse”, “rectangle”). See their creation methods for
details. Leave None when using a custom shape.

	heights (float or list, optional (default: None)) – Heights of the obstacles. If None, the obstacle will considered as
a “hole” in the structure, i.e. an uncrossable obstacle.

	properties (dict or list, optional (default: None)) – Properties of the obstacles if they constitue areas (only used if
heights is not None). If not provided and heights is not None,
will default to the “default_area” properties.

	etching (float, optional (default: 0)) – Etching of the obstacles’ corners (rounded corners). Valid only
for

	
static rectangle(height, width, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a rectangle of given height, width and center of mass.

	Parameters

	
	height (float) – Height of the rectangle in unit

	width (float) – Width of the rectangle in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
return_quantity

	Whether seed_neurons returns positions with units by default.

New in version 0.5.

	
seed_neurons(neurons=None, container=None, on_area=None, xmin=None, xmax=None, ymin=None, ymax=None, soma_radius=0, unit=None, return_quantity=None)

	Return the positions of the neurons inside the
Shape.

	Parameters

	
	neurons (int, optional (default: None)) – Number of neurons to seed. This argument is considered only if the
Shape has no parent, otherwise, a position is generated
for each neuron in parent.

	container (Shape, optional (default: None)) – Subshape acting like a mask, in which the neurons must be
contained. The resulting area where the neurons are generated is
the intersection() between of the current
shape and the container.

	on_area (str or list, optional (default: None)) – Area(s) where the seeded neurons should be.

	xmin (double, optional (default: lowest abscissa of the Shape)) – Limit the area where neurons will be seeded to the region on the
right of xmin.

	xmax (double, optional (default: highest abscissa of the Shape)) – Limit the area where neurons will be seeded to the region on the
left of xmax.

	ymin (double, optional (default: lowest ordinate of the Shape)) – Limit the area where neurons will be seeded to the region on the
upper side of ymin.

	ymax (double, optional (default: highest ordinate of the Shape)) – Limit the area where neurons will be seeded to the region on the
lower side of ymax.

	unit (string (default: None)) – Unit in which the positions of the neurons will be returned, among
‘um’, ‘mm’, ‘cm’, ‘dm’, ‘m’.

	return_quantity (bool, optional (default: False)) – Whether the positions should be returned as pint.Quantity
objects (requires Pint).

	.. versionchanged:: 0.5 – Accepts pint units and return_quantity argument.

Note

If both container and on_area are provided, the intersection of
the two is used.

	Returns

	positions (array of double with shape (N, 2) or pint.Quantity if) – return_quantity is True.

	
set_parent(parent)

	Set the parent nngt.Graph.

	
set_return_units(b)

	Set the default behavior for positions returned by seed_neurons.
If True, then the positions returned are quantities with units (from
the pint library), otherwise they are simply numpy arrays.

New in version 0.5.

Note

set_return_units(True) requires pint to be installed on the system,
otherwise an error will be raised.

	
unit

	Return the unit for the Shape coordinates.

	
nngt.geometry.culture_from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, internal_shapes_as='holes', default_properties=None, other_properties=None)

	Generate a culture from an SVG, a DXF, or a WKT/WKB file.

Valid file needs to contain only closed objects among:
rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

Changed in version 0.6: Added internal_shapes_as and other_properties keyword parameters.

	Parameters

	
	filename (str) – Path to the SVG, DXF, or WKT/WKB file.

	min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s exterior, in unit.

	max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s exterior, in
unit.

	unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’), milimeters (‘mm’),
centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

	parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if working with NNGT.

	interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should be interpolated into segments.

	internal_shapes_as (str, optional (default: “holes”)) – Defines how additional shapes contained in the main environment should
be processed. If “holes”, then these shapes are substracted from the
main environment; if “areas”, they are considered as areas.

	default_properties (dict, optional (default: None)) – Properties of the default area of the culture.

	other_properties (dict, optional (default: None)) – Properties of the non-default areas of the culture (internal shapes if
internal_shapes_as is set to “areas”).

	Returns

	culture (Shape object) – Shape, vertically centred around zero, such that
[image: min(y) + max(y) = 0].

	
nngt.geometry.pop_largest(shapes)

	Returns the largest shape, removing it from the list.
If shapes is a shapely.geometry.MultiPolygon, returns the
largest shapely.geometry.Polygon without modifying the object.

New in version 0.3.

	Parameters

	shapes (list of Shape objects or MultiPolygon.)

	
nngt.geometry.shapes_from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, default_properties=None, **kwargs)

	Generate a set of Shape objects from an SVG, a DXF, or a WKT/WKB
file.

Valid file needs to contain only closed objects among:
rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

New in version 0.3.

	Parameters

	
	filename (str) – Path to the SVG, DXF, or WKT/WKB file.

	min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s exterior, in unit.

	max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s exterior, in
unit.

	unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’), milimeters (‘mm’),
centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

	parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if working with NNGT.

	interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should be interpolated into segments.

	Returns

	culture (Shape object) – Shape, vertically centred around zero, such that
[image: min(y) + max(y) = 0].

	
nngt.geometry.plot_shape(shape, axis=None, m='', mc='#999999', fc='#8888ff', ec='#444444', alpha=0.5, brightness='height', show_contour=True, show=True, **kwargs)

	Plot a shape (you should set the axis aspect to 1 to respect the
proportions).

	Parameters

	
	shape (Shape) – Shape to plot.

	axis (matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] instance, optional (default: None)) – Axis on which the shape should be plotted. By default, a new figure
is created.

	m (str, optional (default: invisible)) – Marker to plot the shape’s vertices, matplotlib syntax.

	mc (str, optional (default: “#999999”)) – Color of the markers.

	fc (str, optional (default: “#8888ff”)) – Color of the shape’s interior.

	ec (str, optional (default: “#444444”)) – Color of the shape’s edges.

	alpha (float, optional (default: 0.5)) – Opacity of the shape’s interior.

	brightness (str, optional (default: height)) – Show how different other areas are from the ‘default_area’ (lower
values are darker, higher values are lighter).
Difference can concern the ‘height’, or any of the properties of the
Area objects.

	show_contour (bool, optional (default: True)) – Whether the shapes should be drawn with a contour.

	show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

	**kwargs (keywords arguments for matplotlib.patches.PathPatch [https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch])

Lib module

Tools for the other modules.

Warning

These tools have been designed primarily for internal use throughout the
library and often work only in very specific situations (e.g.
find_idx_nearest() works only on sorted arrays), so make
sure you read their doc carefully before using them.

Content

	nngt.lib.InvalidArgument

	Error raised when an argument is invalid.

	nngt.lib.delta_distrib([graph, elist, num, …])

	Delta distribution for edge attributes.

	nngt.lib.find_idx_nearest(array, values)

	Find the indices of the nearest elements of values in a sorted array.

	nngt.lib.gaussian_distrib(graph[, elist, …])

	Gaussian distribution for edge attributes.

	nngt.lib.is_integer(obj)

	Return whether the object is an integer

	nngt.lib.is_iterable(obj)

	Return whether the object is iterable

	nngt.lib.lin_correlated_distrib(graph[, …])

	

	nngt.lib.log_correlated_distrib(graph[, …])

	

	nngt.lib.lognormal_distrib(graph[, elist, …])

	Lognormal distribution for edge attributes.

	nngt.lib.nonstring_container(obj)

	Returns true for any iterable which is not a string or byte sequence.

	nngt.lib.uniform_distrib(graph[, elist, …])

	Uniform distribution for edge attributes.

Details

	
class nngt.lib.InvalidArgument

	Error raised when an argument is invalid.

	
nngt.lib.delta_distrib(graph=None, elist=None, num=None, value=1.0, **kwargs)

	Delta distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	value (float, optional (default: 1.)) – Value of the delta distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.find_idx_nearest(array, values)

	Find the indices of the nearest elements of values in a sorted array.

Warning

Both array and values should be numpy.array objects and
array MUST be sorted in increasing order.

	Parameters

	
	array (reference list or np.ndarray)

	values (double, list or array of values to find in array)

	Returns

	idx (int or array representing the index of the closest value in array)

	
nngt.lib.gaussian_distrib(graph, elist=None, num=None, avg=None, std=None, **kwargs)

	Gaussian distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	avg (float, optional (default: 0.)) – Average of the Gaussian distribution.

	std (float, optional (default: 1.5)) – Standard deviation of the Gaussian distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.is_integer(obj)

	Return whether the object is an integer

	
nngt.lib.is_iterable(obj)

	Return whether the object is iterable

	
nngt.lib.lin_correlated_distrib(graph, elist=None, correl_attribute='betweenness', noise_scale=None, lower=None, upper=None, slope=None, offset=0.0, last_edges=False, **kwargs)

	

	
nngt.lib.log_correlated_distrib(graph, elist=None, correl_attribute='betweenness', noise_scale=None, lower=0.0, upper=2.0, **kwargs)

	

	
nngt.lib.lognormal_distrib(graph, elist=None, num=None, position=None, scale=None, **kwargs)

	Lognormal distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	position (float, optional (default: 0.)) – Average of the normal distribution (i.e. log of the actual mean of the
lognormal distribution).

	scale (float, optional (default: 1.5)) – Standard deviation of the normal distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.nonstring_container(obj)

	Returns true for any iterable which is not a string or byte sequence.

	
nngt.lib.uniform_distrib(graph, elist=None, num=None, lower=None, upper=None, **kwargs)

	Uniform distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	lower (float, optional (default: 0.)) – Min value of the uniform distribution.

	upper (float, optional (default: 1.5)) – Max value of the uniform distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

Plot module

Functions for plotting graphs and graph properties.

The following features are provided:

	basic graph plotting

	plotting the distribution of some attribute over the graph

	animation of some recorded activity

Content

	nngt.plot.Animation2d(source, multimeter[, …])

	Class to plot the raster plot, firing-rate, and average trajectory in a 2D phase-space for a network activity.

	nngt.plot.AnimationNetwork(source, network)

	Class to plot the raster plot, firing-rate, and space-embedded spiking activity (neurons on the graph representation flash when spiking) in time.

	nngt.plot.betweenness_distribution(network)

	Plotting the betweenness distribution of a graph.

	nngt.plot.chord_diagram(network[, weights, …])

	Plot a chord diagram.

	nngt.plot.compare_population_attributes(…)

	Compare node attributes between two sets of nodes.

	nngt.plot.correlation_to_attribute(network, …)

	For each node plot the value of reference_attributes against each of the other_attributes to check for correlations.

	nngt.plot.degree_distribution(network[, …])

	Plotting the degree distribution of a graph.

	nngt.plot.draw_network(network[, nsize, …])

	Draw a given graph/network.

	nngt.plot.edge_attributes_distribution(…)

	Return node attributes for a set of nodes.

	nngt.plot.hive_plot(network, radial[, axes, …])

	Draw a hive plot of the graph.

	nngt.plot.library_draw(network[, nsize, …])

	Draw a given Graph using the underlying library’s drawing functions.

	nngt.plot.node_attributes_distribution(…)

	Return node attributes for a set of nodes.

	nngt.plot.palette_continuous([numbers])

	

	nngt.plot.palette_discrete([numbers])

	

Details

	
class nngt.plot.Animation2d(source, multimeter, start=0.0, timewindow=None, trace=5.0, x='time', y='V_m', sort_neurons=None, network=None, interval=50, vector_field=False, **kwargs)

	Class to plot the raster plot, firing-rate, and average trajectory in
a 2D phase-space for a network activity.

Generate a SubplotAnimation instance to plot a network activity.

	Parameters

	
	source (tuple) – NEST gid of the ``spike_detector``(s) which recorded the network.

	multimeter (tuple) – NEST gid of the ``multimeter``(s) which recorded the network.

	timewindow (double, optional (default: None)) – Time window which will be shown for the spikes and self.second.

	trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed in red.

	x (str, optional (default: “time”)) – Name of the x-axis variable (must be either “time” or the name
of a NEST recordable in the multimeter).

	y (str, optional (default: “V_m”)) – Name of the y-axis variable (must be either “time” or the name
of a NEST recordable in the multimeter).

	vector_field (bool, optional (default: False)) – Whether the [image: \dot{x}] and [image: \dot{y}] arrows should be
added to phase space. Requires additional ‘dotx’ and ‘doty’
arguments which are user defined functions to compute the
derivatives of x and x in time. These functions take 3
parameters, which are x, y, and time_dependent, where the
last parameter is a list of doubles associated to recordables
from the neuron model (see example for details). These recordables
must be declared in a time_dependent parameter.

	sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”,
“out-degree”, “total-degree” or “betweenness”), an activity-related
property (“firing_rate”, ‘B2’) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the
sort_neurons property from bottom to top inside each group.

	**kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’, ‘num_xarrows’,
‘num_yarrows’, ‘dotx’, ‘doty’, ‘time_dependent’, ‘recordables’,
‘arrow_scale’.

	
class nngt.plot.AnimationNetwork(source, network, resolution=1.0, start=0.0, timewindow=None, trace=5.0, show_spikes=False, sort_neurons=None, decimate_connections=False, interval=50, repeat=True, resting_size=None, active_size=None, **kwargs)

	Class to plot the raster plot, firing-rate, and space-embedded spiking
activity (neurons on the graph representation flash when spiking) in time.

Generate a SubplotAnimation instance to plot a network activity.

	Parameters

	
	source (tuple) – NEST gid of the ``spike_detector``(s) which recorded the network.

	network (SpatialNetwork) – Network embedded in space to plot the actvity of the neurons in
space.

	resolution (double, optional (default: None)) – Time resolution of the animation.

	timewindow (double, optional (default: None)) – Time window which will be shown for the spikes and self.second.

	trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed in red.

	show_spikes (bool, optional (default: True)) – Whether a spike trajectory should be displayed on the network.

	sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”,
“out-degree”, “total-degree” or “betweenness”), an activity-related
property (“firing_rate”, ‘B2’) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the
sort_neurons property from bottom to top inside each group.

	**kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’, or all arguments for the
nngt.plot.draw_network().

	
nngt.plot.betweenness_distribution(network, btype='both', weights=False, nodes=None, logx=False, logy=False, num_nbins=None, num_ebins=None, axes=None, colors=None, norm=False, legend_location='right', show=True, **kwargs)

	Plotting the betweenness distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	btype (string, optional (default: “both”)) – type of betweenness to display (“node”, “edge” or “both”)

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes (taken into account only
for the node attribute).

	logx (bool, optional (default: False)) – use log-spaced bins.

	logy (bool, optional (default: False)) – use logscale for the degree count.

	num_nbins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the node distribution. Defaults to
max(num_nodes / 50., 10).

	num_ebins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the edge distribution. Defaults to
max(num_edges / 500., 10) (‘auto’ method will be slow).

	axes (list of matplotlib.axis.Axis [https://matplotlib.org/api/axis_api.html#matplotlib.axis.Axis], optional (default: new ones)) – Axes which should be used to plot the histogram, if None, new ones are
created.

	legend_location (str, optional (default; ‘right’)) – Location of the legend.

	show (bool, optional (default: True)) – Show the Figure right away if True, else keep it warm for later use.

	
nngt.plot.chord_diagram(network, weights=True, names=None, order=None, width=0.1, pad=2.0, gap=0.03, chordwidth=0.7, axis=None, colors=None, cmap=None, alpha=0.7, use_gradient=False, show=False, **kwargs)

	Plot a chord diagram.

	Parameters

	
	network (a nngt.Graph object) – Network used to plot the chord diagram.

	weights (bool or str, optional (default: ‘weight’ attribute)) – Weights used to plot the connections.

	names (str or list of str, optional (default: no names)) – Names of the nodes that will be displayed, either a node attribute
or a custom list (must be ordered following the nodes’ indices).

	order (list, optional (default: order of the matrix entries)) – Order in which the arcs should be placed around the trigonometric
circle.

	width (float, optional (default: 0.1)) – Width/thickness of the ideogram arc.

	pad (float, optional (default: 2)) – Distance between two neighboring ideogram arcs. Unit: degree.

	gap (float, optional (default: 0.03)) – Distance between the arc and the beginning of the cord.

	chordwidth (float, optional (default: 0.7)) – Position of the control points for the chords, controlling their shape.

	axis (matplotlib axis, optional (default: new axis)) – Matplotlib axis where the plot should be drawn.

	colors (list, optional (default: from cmap)) – List of user defined colors or floats.

	cmap (str or colormap object (default: viridis)) – Colormap to use.

	alpha (float in [0, 1], optional (default: 0.7)) – Opacity of the chord diagram.

	use_gradient (bool, optional (default: False)) – Whether a gradient should be use so that chord extremities have the
same color as the arc they belong to.

	**kwargs (keyword arguments) – Available kwargs are “fontsize” and “sort” (either “size” or
“distance”), “zero_entry_size” (in degrees, default: 0.5),
“rotate_names” (a bool or list of bools) to rotate (some of) the
names by 90°.

	
nngt.plot.compare_population_attributes(network, attributes, nodes=None, reference_nodes=None, num_bins='auto', reference_color='gray', title=None, logx=False, logy=False, show=True, **kwargs)

	Compare node attributes between two sets of nodes. Since number of nodes
can vary, normalized distributions are used.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”
* “b2” (requires NEST)
* “firing_rate” (requires NEST)

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	reference_nodes (list, optional (default: all nodes)) – Reference nodes for which the attributes should be returned in order
to compare with nodes.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwize a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.correlation_to_attribute(network, reference_attribute, other_attributes, attribute_type='node', nodes=None, edges=None, fig=None, title=None, show=True)

	For each node plot the value of reference_attributes against each of the
other_attributes to check for correlations.

Changed in version 2.0: Added fig argument.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	reference_attribute (str or array-like) – Attribute which should serve as reference, among:

	“betweenness”

	“clustering”

	“in-degree”, “out-degree”, “total-degree”

	“in-strength”, “out-strength”, “total-strength”

	“subgraph_centrality”

	“b2” (requires NEST)

	“firing_rate” (requires NEST)

	a custom array of values, in which case one entry per node in nodes
is required.

	other_attributes (str or list) – Attributes that will be compared to the reference.

	attribute_type (str, optional (default: ‘node’)) – Whether we are dealing with ‘node’ or ‘edge’ attributes

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

	fig (matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure], optional (default: new Figure)) – Figure to which the plot should be added.

	title (str, optional (default: automatic).) – Custom title, use “” to remove the automatic title.

	show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

	
nngt.plot.degree_distribution(network, deg_type='total', nodes=None, num_bins='doane', weights=False, logx=False, logy=False, axis=None, axis_num=None, colors=None, norm=False, show=True, title=None, **kwargs)

	Plotting the degree distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – The graph to analyze.

	deg_type (string or N-tuple, optional (default: “total”)) – Type of degree to consider (“in”, “out”, or “total”)

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes.

	num_bins (str, int or N-tuple, optional (default: ‘doane’):) – Number of bins used to sample the distribution. Defaults to ‘doane’.
Use to ‘auto’ for numpy automatic selection or ‘bayes’ for unsupervised
Bayesian blocks method.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	logx (bool, optional (default: False)) – Use log-spaced bins.

	logy (bool, optional (default: False)) – Use logscale for the degree count.

	axis (matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] instance, optional (default: new one)) – Axis which should be used to plot the histogram, if None, a new one is
created.

	show (bool, optional (default: True)) – Show the Figure right away if True, else keep it warm for later use.

	**kwargs (keyword arguments for matplotlib.axes.Axes.bar().)

	
nngt.plot.draw_network(network, nsize='total-degree', ncolor='group', nshape='o', nborder_color='k', nborder_width=0.5, esize=1.0, ecolor='k', ealpha=0.5, max_nsize=None, max_esize=2.0, curved_edges=False, threshold=0.5, decimate_connections=None, spatial=True, restrict_sources=None, restrict_targets=None, restrict_nodes=None, restrict_edges=None, show_environment=True, fast=False, size=(600, 600), xlims=None, ylims=None, dpi=75, axis=None, colorbar=False, cb_label=None, layout=None, show=False, **kwargs)

	Draw a given graph/network.

	Parameters

	
	network (Graph or subclass) – The graph/network to plot.

	nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes as a percentage of the canvas length. Otherwise, it
can be a string that correlates the size to a node attribute among
“in/out/total-degree”, “in/out/total-strength”, or “betweenness”.

	ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a float in [0, 1], position of the color in the
current palette, otherwise a string that correlates the color to a node
attribute among “in/out/total-degree”, “betweenness” or “group”.

	nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see Matplotlib markers [http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers]).
When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

	nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border using predefined Matplotlib colors [http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors]).
or floats in [0, 1] defining the position in the palette.

	nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in percent of canvas size.

	esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of canvas length. Available string values
are “betweenness” and “weight”.

	ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”, edges color will depend on the source
and target groups, i.e. only edges from and toward same groups will
have the same color.

	max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this normalizes the edge
width between 0. and max_esize.

	threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

	decimate_connections (int, optional (default: keep all connections)) – Plot only one connection every decimate_connections.
Use -1 to hide all edges.

	spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

	restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from a restricted set of source nodes.

	restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a restricted set of target nodes.

	restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset of nodes.

	restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

	show_environment (bool, optional (default: True)) – Plot the environment if the graph is spatial.

	fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. Zooming on the drawing made
using this method leaves the size of the nodes and edges unchanged, it
is therefore not recommended when size consistency matters, e.g. for
some spatial representations.

	size (tuple of ints, optional (default: (600,600))) – (width, height) tuple for the canvas size (in px).

	dpi (int, optional (default: 75)) – Resolution (dot per inch).

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node colors or not.

	cb_label (str, optional (default: None)) – A label for the colorbar.

	layout (str, optional (default: random or spatial positions)) – Name of a standard layout to structure the network. Available layouts
are: “circular” or “random”. If no layout is provided and the network
is spatial, then node positions will be used by default.

	show (bool, optional (default: True)) – Display the plot immediately.

	**kwargs (dict) – Optional keyword arguments including node_cmap to set the
nodes colormap (default is “magma” for continuous variables and
“Set1” for groups) and “title” to add a title to the plot.

	
nngt.plot.edge_attributes_distribution(network, attributes, edges=None, num_bins='auto', logx=False, logy=False, norm=False, title=None, colors=None, show=True, **kwargs)

	Return node attributes for a set of nodes.

New in version 1.0.3.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned (e.g. “betweenness”, “delay”,
“weight”).

	edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.hive_plot(network, radial, axes=None, axes_bins=None, axes_range=None, axes_angles=None, axes_labels=None, axes_units=None, intra_connections=True, highlight_nodes=None, highlight_edges=None, nsize=None, esize=None, max_nsize=10, max_esize=1, axes_colors=None, edge_colors=None, edge_alpha=0.05, nborder_color='k', nborder_width=0.2, show_names=True, show_circles=False, axis=None, tight=True, show=False)

	Draw a hive plot of the graph.

Note

For directed networks, the direction of intra-axis connections is
counter-clockwise.
For inter-axes connections, the default edge color is closest to the color
of the source group (i.e. from a red group to a blue group, edge color will
be a reddish violet , while from blue to red, it will be a blueish violet).

	Parameters

	
	network (Graph) – Graph to plot.

	radial (str, list of str or array-like) – Values that will be used to place the nodes on the axes. Either one
identical property is used for all axes (traditional hive plot) or
one radial coordinate per axis is used (custom hive plot).
If radial is a string or a list of strings, then these must correspond
to the names of node attributes stored in the graph.

	axes (str, or list of str, optional (default: one per radial coordinate)) – Name of the attribute(s) that will be used to make each of the axes
(i.e. each group of nodes).
This can be either “groups” if the graph has a structure or is a
Network, a list of (Meta)Group names, or any (list of)
node attribute(s).
If a single node attribute is used, axes_bins must be provided to
make one axis for each range of values.
If there are multiple radial coordinates, then leaving axes blanck
will plot all nodes on each of the axes (one per radial coordinate).

	axes_bins (int or array-like, optional (default: all nodes on each axis)) – Required if there is a single radial coordinate and a single axis
entry: provides the bins that will be used to separate the nodes
into groups (one per axis). For N axes, there must therefore be N + 1
entries in axes_bins, or axis_bins must be equal to N, in which
case the nodes are separated into N evenly sized bins.

	axes_units (str, optional) – Units used to scale the axes. Either “native” to have them scaled
between the minimal and maximal radial coordinates among all axes,
“rank”, to use the min and max ranks of the nodes on all axes, or
“normed”, to have each axis go from zero (minimal local radial
coordinate) to one (maximal local radial coordinate).
“native” is the default if there is a single radial coordinate,
“normed” is the default for multiple coordinates.

	axes_angles (list of angles, optional (default: automatic)) – Angles for each of the axes, by increasing degree. If
intra_connections is True, then angles of duplicate axes must be
adjacent, e.g. [a1, a1bis, a2, a2bis, a3, a3bis].

	axes_labels (str or list of str, optional) – Label of each axis. For binned axes, it can be automatically formatted
via the three entries {name}, {start}, {stop}.
E.g. “{name} in [{start}, {stop}]” would give “CC in [0, 0.2]” for
a first axis and “CC in [0.2, 0.4]” for a second axis.

	intra_connections (bool, optional (default: True)) – Show connections between nodes belonging to the same axis. If true,
then each axis is duplicated to display intra-axis connections.

	highlight_nodes (list of nodes, optional (default: all nodes)) – Highlight a subset of nodes and their connections, all other nodes
and connections will be gray.

	highlight_edges (list of edges, optional (default: all edges)) – Highlight a subset of edges; all other connections will be gray.

	nsize (float, str, or array-like, optional (default: automatic)) – Size of the nodes on the axes. Either a fixed size, the name of a
node attribute, or a list of user-defined values.

	esize (float or str, optional (default: 1)) – Size of the edges. Either a fixed size or the name of an edge
attribute.

	max_nsize (float, optional (default: 10)) – Maximum node size if nsize is an attribute or a list of
user-defined values.

	max_esize (float, optional (default: 1)) – Maximum edge size if esize is an attribute.

	axes_colors (valid matplotlib color/colormap, optional (default: Set1)) – Color associated to each axis.

	nborder_color (matplotlib color, optional (default: “k”)) – Color of the node’s border.
or floats in [0, 1] defining the position in the palette.

	nborder_width (float, optional (default: 0.2)) – Width of the border.

	edge_colors (valid matplotlib color/colormap, optional (default: auto)) – Color of the edges. By default it is the intermediate color between
two axes colors. To provide custom colors, they must be provided as
a dictionnary of axes edges {(0, 0): "r", (0, 1): "g", (1, 0): "b"}
with default color being black.

	edge_alpha (float, optional (default: 0.05)) – Edge opacity.

	show_names (bool, optional (default: True)) – Show axes names and properties.

	show_circles (bool, optional (default: False)) – Show the circles associated to the maximum value of each axis.

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	tight (bool, optional (default: True)) – Set figure layout to tight (set to False if plotting multiple axes on
a single figure).

	show (bool, optional (default: True)) – Display the plot immediately.

	
nngt.plot.library_draw(network, nsize='total-degree', ncolor='group', nshape='o', nborder_color='k', nborder_width=0.5, esize=1.0, ecolor='k', ealpha=0.5, max_nsize=5.0, max_esize=2.0, curved_edges=False, threshold=0.5, decimate_connections=None, spatial=True, restrict_sources=None, restrict_targets=None, restrict_nodes=None, restrict_edges=None, show_environment=True, size=(600, 600), xlims=None, ylims=None, dpi=75, axis=None, colorbar=False, show_labels=False, layout=None, show=False, **kwargs)

	Draw a given Graph using the underlying library’s drawing
functions.

New in version 2.0.

Warning

When using igraph or graph-tool, if you want to use the axis
argument, then you must first switch the matplotlib backend to its
cairo version using e.g. plt.switch_backend("Qt5Cairo") if your
normal backend is Qt5 (“Qt5Agg”).

	Parameters

	
	network (Graph or subclass) – The graph/network to plot.

	nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes as a percentage of the canvas length. Otherwise, it
can be a string that correlates the size to a node attribute among
“in/out/total-degree”, or “betweenness”.

	ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a float in [0, 1], position of the color in the
current palette, otherwise a string that correlates the color to a node
attribute among “in/out/total-degree”, “betweenness” or “group”.

	nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see Matplotlib markers [http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers]).
When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

	nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border using predefined Matplotlib colors [http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors]).
or floats in [0, 1] defining the position in the palette.

	nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in percent of canvas size.

	esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of canvas length. Available string values
are “betweenness” and “weight”.

	ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”, edges color will depend on the source
and target groups, i.e. only edges from and toward same groups will
have the same color.

	max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this normalizes the edge
width between 0. and max_esize.

	threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

	decimate_connections (int, optional (default: keep all connections)) – Plot only one connection every decimate_connections.
Use -1 to hide all edges.

	spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

	restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from a restricted set of source nodes.

	restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a restricted set of target nodes.

	restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset of nodes.

	restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

	show_environment (bool, optional (default: True)) – Plot the environment if the graph is spatial.

	fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. This method leads to less
pretty plots and zooming on the graph will make the edges start or
ending in places that will differ more or less strongly from the actual
node positions.

	size (tuple of ints, optional (default: (600, 600))) – (width, height) tuple for the canvas size (in px).

	dpi (int, optional (default: 75)) – Resolution (dot per inch).

	colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node colors or not.

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	layout (str, optional (default: library-dependent or spatial positions)) – Name of a standard layout to structure the network. Available layouts
are: “circular”, “spring-block”, “random”. If no layout is
provided and the network is spatial, then node positions will be
used by default.

	show (bool, optional (default: True)) – Display the plot immediately.

	**kwargs (dict) – Optional keyword arguments including node_cmap to set the
nodes colormap (default is “magma” for continuous variables and
“Set1” for groups) and the boolean simple_nodes to make node
plotting faster.

	
nngt.plot.node_attributes_distribution(network, attributes, nodes=None, num_bins='auto', logx=False, logy=False, norm=False, title=None, colors=None, show=True, **kwargs)

	Return node attributes for a set of nodes.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “closeness”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”
* “b2” (requires NEST)
* “firing_rate” (requires NEST)

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.palette_continuous(numbers=None)

	

	
nngt.plot.palette_discrete(numbers=None)

	

Simulation module

Module to interact easily with the NEST simulator. It allows to:

	build a NEST network from Network or
SpatialNetwork objects,

	monitor the activity of the network (taking neural groups into account)

	plot the activity while separating the behaviours of predefined neural groups

Content

	nngt.simulation.ActivityRecord(spike_data, …)

	Class to record the properties of the simulated activity.

	nngt.simulation.activity_types(…[, …])

	Analyze the spiking pattern of a neural network.

	nngt.simulation.analyze_raster([raster, …])

	Return the activity types for a given raster.

	nngt.simulation.get_nest_adjacency([…])

	Get the adjacency matrix describing a NEST network.

	nngt.simulation.get_recording(network, record)

	Return the evolution of some recorded values for each neuron.

	nngt.simulation.make_nest_network(network[, …])

	Create a new network which will be filled with neurons and connector objects to reproduce the topology from the initial network.

	nngt.simulation.monitor_groups(group_names, …)

	Monitoring the activity of nodes in the network.

	nngt.simulation.monitor_nodes(gids[, …])

	Monitoring the activity of nodes in the network.

	nngt.simulation.plot_activity([…])

	Plot the monitored activity.

	nngt.simulation.randomize_neural_states(…)

	Randomize the neural states according to the instructions.

	nngt.simulation.raster_plot(times, senders)

	Plotting routine that constructs a raster plot along with an optional histogram.

	nngt.simulation.reproducible_weights(…[, …])

	Find the values of the connection weights that will give PSP responses of min_weight and max_weight in mV.

	nngt.simulation.save_spikes(filename[, …])

	Plot the monitored activity.

	nngt.simulation.set_minis(network, …[, …])

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or “minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs) synapses.

	nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	nngt.simulation.set_poisson_input(gids, rate)

	Submit neurons to a Poissonian rate of spikes.

	nngt.simulation.set_step_currents(gids, …)

	Set step-current excitations

Details

	
class nngt.simulation.ActivityRecord(spike_data, phases, properties, parameters=None)

	Class to record the properties of the simulated activity.

Initialize the instance using spike_data (store proxy to an optional
network) and compute the properties of provided data.

	Parameters

	
	spike_data (2D array) – Array of shape (num_spikes, 2), containing the senders on the 1st
row and the times on the 2nd row.

	phases (dict) – Limits of the different phases in the simulated period.

	properties (dict) – Values of the different properties of the activity (e.g.
“firing_rate”, “IBI”…).

	parameters (dict, optional (default: None)) – Parameters used to compute the phases.

Note

The firing rate is computed as num_spikes / total simulation time,
the period is the sum of an IBI and a bursting period.

	
data

	Returns the (N, 2) array of (senders, spike times).

	
phases

	
	“bursting” for periods of high activity where a large fraction
of the network is recruited.

	“quiescent” for periods of low activity

	“mixed” for firing rate in between “quiescent” and “bursting”.

	“localized” for periods of high activity but where only a small
fraction of the network is recruited.

Note

See parameters for details on the conditions used to
differenciate these phases.

	Type

	Return the phases detected

	
properties

	Returns the properties of the activity.
Contains the following entries:

	“firing_rate”: average value in Hz for 1 neuron in the network.

	“bursting”: True if there were bursts of activity detected.

	“burst_duration”, “IBI”, “ISI”, and “period” in ms, if
“bursting” is True.

	“SpB” (Spikes per Burst): average number of spikes per neuron
during a burst.

	
simplify()

	

	
nngt.simulation.activity_types(spike_detector, limits, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, simplify=False, fignums=[], show=False)

	Analyze the spiking pattern of a neural network.

	@todo:

	think about inserting t=0. and t=simtime at the beginning and at the
end of times.

	Parameters

	
	spike_detector (NEST node(s) (tuple or list of tuples)) – The recording device that monitored the network’s spikes.

	limits (tuple of floats) – Time limits of the simulation region which should be studied (in ms).

	network (Network, optional (default: None)) – Neural network that was analyzed

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	return_steps (bool, optional (default: False)) – If True, a second dictionary, phases_steps will also be returned.
@todo: not implemented yet

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the limits[0]
first milliseconds are ignored, then the skip_bursts first bursts of the
remaining activity are ignored.

	Returns

	phases (dict) – Dictionary containing the time intervals (in ms) for all four phases
(bursting’, `quiescent’, `mixed’, and `localized) as lists.
E.g: phases["bursting"] could give [[123.5,334.2],
[857.1,1000.6]].

	
nngt.simulation.analyze_raster(raster=None, limits=None, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, skip_ms=0.0, simplify=False, fignums=[], show=False)

	Return the activity types for a given raster.

	Parameters

	
	raster (array-like (N, 2) or str) – Either an array containing the ids of the spiking neurons on the first
column, then the corresponding times on the second column, or the path
to a NEST .gdf recording.

	limits (tuple of floats) – Time limits of the simulation regrion which should be studied (in ms).

	network (Network, optional (default: None)) – Network on which the recorded activity was simulated.

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the
limits[0] first milliseconds are ignored, then the skip_bursts
first bursts of the remaining activity are ignored.

	Returns

	activity (ActivityRecord) – Object containing the phases and the properties of the activity
from these phases.

	
nngt.simulation.get_nest_adjacency(id_converter=None)

	Get the adjacency matrix describing a NEST network.

	Parameters

	id_converter (dict, optional (default: None)) – A dictionary which maps NEST gids to the desired neurons ids.

	Returns

	mat_adj (lil_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix]) – Adjacency matrix of the network.

	
nngt.simulation.get_recording(network, record, recorder=None, nodes=None)

	Return the evolution of some recorded values for each neuron.

	Parameters

	
	network (nngt.Network) – Network for which the activity was simulated.

	record (str or list) – Name of the record(s) to obtain.

	recorder (tuple of ints, optional (default: all multimeters)) – GID of the “spike_detector” objects recording the network activity.

	nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the recording should be returned.

	Returns

	values (dict of dict of arrays) – Dictionary containing, for each record, an M array with the
recorded values for n-th neuron is stored under entry n (integer).
A times entry is also added; it should be the same size for all
records, otherwise an error will be raised.

Examples

After the creation of a Network called net, use the
following code:

import nest

rec, _ = monitor_nodes(
 net.nest_gids, "multimeter", {"record_from": ["V_m"]}, net)
nest.Simulate(100.)
recording = nngt.simulation.get_recording(net, "V_m")

access the membrane potential of first neuron + the times
V_m = recording["V_m"][0]
times = recording["times"]

	
nngt.simulation.make_nest_network(network, send_only=None, weights=True)

	Create a new network which will be filled with neurons and
connector objects to reproduce the topology from the initial network.

Changed in version 0.8: Added send_only parameter.

	Parameters

	
	network (nngt.Network or nngt.SpatialNetwork) – the network we want to reproduce in NEST.

	send_only (int, str, or list of str, optional (default: None)) – Restrict the nodes that are created in NEST to either inhibitory or
excitatory neurons send_only [image: \in \{ 1, -1\}] to a group or a
list of groups.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	Returns

	gids (tuple (nodes in NEST)) – GIDs of the neurons in the network.

	
nngt.simulation.monitor_groups(group_names, network, nest_recorder=None, params=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	group_name (list of strings) – Names of the groups that should be recorded.

	network (Network or subclass) – Network which population will be used to differentiate groups.

	nest_recorder (strings or list, optional (default: “spike_detector”0)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	Returns

	
	recorders (list or NodeCollection of the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.monitor_nodes(gids, nest_recorder=None, params=None, network=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	gids (tuple of ints or list of tuples) – GIDs of the neurons in the NEST subnetwork; either one list per
recorder if they should monitor different neurons or a unique list
which will be monitored by all devices.

	nest_recorder (strings or list, optional (default: “spike_detector”)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	network (Network or subclass, optional (default: None)) – Network which population will be used to differentiate groups.

	Returns

	
	recorders (list or NodeCollection containing the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.plot_activity(gid_recorder=None, record=None, network=None, gids=None, axis=None, show=False, limits=None, histogram=False, title=None, fignum=None, label=None, sort=None, average=False, normalize=1.0, decimate=None, transparent=True, kernel_center=0.0, kernel_std=None, resolution=None, cut_gaussian=5.0, **kwargs)

	Plot the monitored activity.

Changed in version 1.2: Switched hist to histogram and default value to False.

Changed in version 1.0.1: Added axis parameter, restored missing fignum parameter.

	Parameters

	
	gid_recorder (tuple or list of tuples, optional (default: None)) – The gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	record (tuple or list, optional (default: None)) – List of the monitored variables for each device. If gid_recorder is
None, record can also be None and only spikes are considered.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	gids (tuple, optional (default: None)) – NEST gids of the neurons which should be monitored.

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity. This takes precedence
over fignum.

	show (bool, optional (default: False)) – Whether to show the plot right away or to wait for the next plt.show().

	histogram (bool, optional (default: False)) – Whether to display the histogram when plotting spikes rasters.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike for raster plots).

	title (str, optional (default: None)) – Title of the plot.

	fignum (int, or dict, optional (default: None)) – Plot the activity on an existing figure (from figure.number). This
parameter is ignored if axis is provided.

	label (str or list, optional (default: None)) – Add labels to the plot (one per recorder).

	sort (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”, “out-degree”,
“total-degree” or “betweenness”), an activity-related property
(“firing_rate” or neuronal property) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the sort
property from bottom to top inside each group.

	normalize (float or list, optional (default: None)) – Normalize the recorded results by a given float. If a list is provided,
there should be one entry per voltmeter or multimeter in the recorders.
If the recording was done through monitor_groups, the population can
be passed to normalize the data by the nuber of nodes in each group.

	decimate (int or list of ints, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 5 will lead
to only 20% of the neurons being represented). If a list is provided,
it must have one entry per NeuralGroup in the population.

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms (for the histogram).

	kernel_std (float, optional (default: 0.5% of simulation time)) – Characteristic width of the Gaussian kernel (standard deviation) in ms
(for the histogram).

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed (for the histogram).

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	**kwargs (dict) – “color” and “alpha” values can be overriden here.

Warning

Sorting with “firing_rate” only works if NEST gids form a continuous
integer range.

	Returns

	lines (list of lists of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted, grouped by figure.

	
nngt.simulation.randomize_neural_states(network, instructions, groups=None, nodes=None, make_nest=False)

	Randomize the neural states according to the instructions.

Changed in version 0.8: Changed ids to nodes argument.

	Parameters

	
	network (Network subclass instance) – Network that will be simulated.

	instructions (dict) – Variables to initialize. Allowed keys are “V_m” and “w”. Values are
3-tuples of type ("distrib_name", double, double).

	groups (list of NeuralGroup, optional (default: None)) – If provided, only the neurons belonging to these groups will have their
properties randomized.

	nodes (array-like, optional (default: all neurons)) – NNGT ids of the neurons that will have their status randomized.

	make_nest (bool, optional (default: False)) – If True and network has not been converted to NEST, automatically
generate the network, else raises an exception.

Example

instructions = {
 "V_m": ("uniform", -80., -60.),
 "w": ("normal", 50., 5.)
}

	
nngt.simulation.raster_plot(times, senders, limits=None, title='Spike raster', histogram=False, num_bins=1000, color='b', decimate=None, axis=None, fignum=None, label=None, show=True, sort=None, sort_attribute=None, network=None, transparent=True, kernel_center=0.0, kernel_std=30.0, resolution=None, cut_gaussian=5.0, **kwargs)

	Plotting routine that constructs a raster plot along with
an optional histogram.

Changed in version 1.2: Switched hist to histogram.

Changed in version 1.0.1: Added axis parameter.

	Parameters

	
	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Spike times.

	senders (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Index for the spiking neuron for each time in times.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike).

	title (string, optional (default: ‘Spike raster’)) – Title of the raster plot.

	histogram (bool, optional (default: True)) – Whether to plot the raster’s histogram.

	num_bins (int, optional (default: 1000)) – Number of bins for the histogram.

	color (string or float, optional (default: ‘b’)) – Color of the plot lines and markers.

	decimate (int, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 10 will lead
to only 10% of the neurons being represented).

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity.

	fignum (int, optional (default: None)) – Id of another raster plot to which the new data should be added.

	label (str, optional (default: None)) – Label the current data.

	show (bool, optional (default: True)) – Whether to show the plot right away or to wait for the next plt.show().

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

	kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel (standard deviation) in ms.

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed.

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	Returns

	lines (list of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted.

	
nngt.simulation.reproducible_weights(weights, neuron_model, di_param={}, timestep=0.05, simtime=50.0, num_bins=1000, log=False)

	Find the values of the connection weights that will give PSP responses of
min_weight and max_weight in mV.

	Parameters

	
	weights (list of floats) – Exact desired synaptic weights.

	neuron_model (string) – Name of the model used.

	di_param (dict, optional (default: {})) – Parameters of the model, default parameters if not supplied.

	timestep (float, optional (default: 0.01)) – Timestep of the simulation in ms.

	simtime (float, optional (default: 10.)) – Simulation time in ms (default: 10).

	num_bins (int, optional (default: 10000)) – Number of bins used to discretize the exact synaptic weights.

	log (bool, optional (default: False)) – Whether bins should use a logarithmic scale.

Note

If the parameters used are not the default ones, they MUST be provided,
otherwise the resulting weights will likely be WRONG.

	
nngt.simulation.save_spikes(filename, recorder=None, network=None, save_positions=True, **kwargs)

	Plot the monitored activity.

New in version 0.7.

	Parameters

	
	filename (str) – Path to the file where the activity should be saved.

	recorder (tuple or list of tuples, optional (default: None)) – The NEST gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	save_positions (bool, optional (default: True)) – Whether to include the position of the neurons in the file; this
requires network to be provided.

	**kwargs (see numpy.savetxt() [https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt])

	
nngt.simulation.set_minis(network, base_rate, weight, syn_type=1, nodes=None, gids=None)

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or
“minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs)
synapses.
These minis consists in only a fraction of the usual strength of a spike-
triggered PSC and can be modeled by a Poisson process.
This Poisson process occurs independently at every synapse of a neuron, so
a neuron receiving [image: k] inputs will be subjected to these events with
a rate [image: k*\lambda], where [image: \lambda] is the base rate.

	Parameters

	
	network (Network object) – Network on which the minis should be simulated.

	base_rate (float) – Rate for the Poisson process on one synapse ([image: \lambda]), in Hz.

	weight (float or array of size N) – Amplitude of a minitature post-synaptic event.

	syn_type (int, optional (default: 1)) – Synaptic type of the noisy connections. By default, mEPSCs are
generated, by taking into account only the excitatory degrees and
synaptic weights. To setup mIPSCs, used syn_type=-1.

	nodes (array-like (size N), optional (default: all nodes)) – NNGT ids of the neurons that should be subjected to minis.

	gids (array-like (size N), optional (default: all neurons)) – NEST gids of the neurons that should be subjected to minis.

Note

nodes and gids are not compatible, only one one the two arguments can
be used in any given call to set_minis.

	
nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	mean (float) – Mean current value.

	std (float) – Standard deviation of the current

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

	
nngt.simulation.set_poisson_input(gids, rate, syn_spec=None, **kwargs)

	Submit neurons to a Poissonian rate of spikes.

Changed in version 2.0: Added kwargs.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	rate (float) – Rate of the spike train (in Hz).

	syn_spec (dict, optional (default: static synapse with weight 1)) – Properties of the connection between the poisson_generator object
and the target neurons.

	**kwargs (dict) – Other optional parameters for the poisson_generator.

	Returns

	poisson_input (tuple) – The NEST gid of the poisson_generator.

	
nngt.simulation.set_step_currents(gids, times, currents)

	Set step-current excitations

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the times where the current will change (by default the current
generator is initiated at I=0. for t=0.)

	currents (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the new current value after the associated time value in
times.

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

Tutorial

This page provides a step-by-step walkthrough of the basic features of NNGT.

To run this tutorial, it is recommended to use either IPython [http://ipython.org/] or Jupyter [https://jupyter.org/],
since they will provide automatic autocompletion of the various functions, as
well as easy access to the docstring help.

First, import the NNGT package:

>>> import nngt

Then, you will be able to use the help from IPython by typing, for instance:

>>> nngt.Graph?

In Jupyter, the docstring can be viewed using Shift + Tab.

The source file for the tutorial can be found here:
doc/examples/introductory_tutorial.py [https://git.sr.ht/~tfardet/NNGT/tree/main/item/doc/examples/introductory_tutorial.py].

Note

For a list of example files, see the ‘examples’ directory on GitHub [https://github.com/Silmathoron/NNGT/tree/master/doc/examples].

For specific tutorials see also:

	Graph generation

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

	Properties of graph components

Content:

	NNGT properties and configuration

	The Graph object

	Basic functions

	Node and edge attributes

	Generating and analyzing more complex networks

	Using random numbers

	Structuring nodes: Group and Structure

	The same with neurons: NeuralGroup, NeuralPop

	Real neuronal networks and NEST interaction: the Network

	Underlying graph objects and libraries

	Example using graph-tool

	Example using igraph

	Example using networkx

NNGT properties and configuration

Upon loading, NNGT will display its current configuration, e.g.:

NNGT loaded

Graph library: igraph 0.7.1
Multithreading: True (1 thread)
MPI: False
Plotting: True
NEST support: NEST 2.14.0
Shapely: 1.6.1
SVG support: True
DXF support: False
Database: False

Let’s walk through this configuration:

	the backend used here is igraph, so all graph-theoretical tools will be
derived from those of the igraph [http://igraph.org/] library and we’re using version 0.7.1.

	Multithreaded algorithms will be used, currently running on only one thread
(see Parallelism for more details)

	MPI algorithms are not in use (you cannot use both MT and MPI at the same
time)

	Plotting is available because the matplotlib [https://matplotlib.org/] library is installed

	NEST is installed on the machine (version 2.14), so NNGT automatically
loaded it

	Shapely [http://toblerity.org/shapely/manual.html] is also available, which allows the creation of complex structures
for space-embedded networks (see Geometry module for more details)

	Importing SVG files to generate spatial structures is possible, meaning that
the svg.path [https://pypi.python.org/pypi/svg.path] module is installed.

	Importing DXF files to generate spatial structures is not possible because
the dxfgrabber [https://pythonhosted.org/dxfgrabber/] module is not installed.

	Using the database is not possible because peewee [http://docs.peewee-orm.com/en/latest/] is not installed.

In general, most of NNGT options can be found/set through the
get_config()/set_config() functions, or made permanent
by modifying the ~/.nngt/nngt.conf configuration file.

The Graph object

Basic functions

Let’s create an empty Graph:

g = nngt.Graph()

We can then add some nodes to it

g.new_node(10) # create nodes 0, 1, ... to 9
print(g.node_nb(), '\n') # returns 10

And create edges between these nodes:

g.new_edge(1, 4) # create one connection going from 1 to 4
print(g.edge_nb()) # returns 1
g.new_edges([(0, 3), (5, 9), (9, 3)])
print(g.edge_nb(), '\n') # returns 4

Node and edge attributes

Adding a node with specific attributes:

g2 = nngt.Graph()

add a new node with attributes
attributes = {
 'size': 2.,
 'color': 'blue',
 'a': 5,
 'blob': []
}

attribute_types = {
 'size': 'double',
 'color': 'string',
 'a': 'int',
 'blob': 'object'
}

g2.new_node(attributes=attributes, value_types=attribute_types)
print(g2.node_attributes, '\n')

By default, nodes that are added without specifying attribute values will get
their attributes filled with default values which depend on the type:

	NaN for “double”

	0 for “int”

	"" for “string”

	None for “object”

g2.new_node(2)
for a double attribute like 'size', default value is NaN
print(g2.get_node_attributes(name="size"))
for a string attribute like 'color', default value is ""
print(g2.get_node_attributes(name="color"))
for an int attribute like 'a', default value is 0
print(g2.get_node_attributes(name='a'))
for an object attribute like 'blob', default value is None
print(g2.get_node_attributes(name='blob'), '\n')

Adding several nodes and attributes at the same time:

g2.new_node(3, attributes={'size': [4., 5., 1.], 'color': ['r', 'g', 'b']},
 value_types={'size': 'double', 'color': 'string'})
print(g2.node_attributes['size'])
print(g2.node_attributes['color'], '\n')

Attributes can also be created afterwards:

import numpy as np
g3 = nngt.Graph(nodes=100)
g3.new_node_attribute('size', 'double',
 values=np.random.uniform(0, 20, 100))
print(g3.node_attributes['size'][:5], '\n')

All the previous techniques can also be used with new_edge()
or new_edges(), and new_edge_attribute().
Note that attributes can also be set selectively:

edges = g3.new_edges(np.random.randint(0, 50, (10, 2)), ignore_invalid=True)
g3.new_edge_attribute('rank', 'int')
g3.set_edge_attribute('rank', val=2, edges=edges[:3, :])
print(g3.edge_attributes['rank'], '\n')

Generating and analyzing more complex networks

NNGT provides a whole set of methods to connect nodes in specific fashions
inside a graph.
These methods are present in the nngt.generation module, and the network
properties can then be plotted and analyzed via the tools present in the
nngt.plot and nngt.analysis modules.

from nngt import generation as ng
from nngt import analysis as na
from nngt import plot as nplt

NNGT implements some fast generation tools to create several of the standard
networks, such as Erdős-Rényi:

g = ng.erdos_renyi(nodes=1000, avg_deg=100)

if nngt.get_config("with_plot"):
 nplt.degree_distribution(g, ('in', 'total'), show=False)

print("Clustering ER: {}".format(na.global_clustering(g)))

More heterogeneous networks, with scale-free degree distribution (but no
correlations like in Barabasi-Albert networks and user-defined exponents) are
also implemented:

g = ng.random_scale_free(1.8, 3.2, nodes=1000, avg_deg=100)

if nngt.get_config("with_plot"):
 nplt.degree_distribution(g, ('in', 'out'), num_bins=30, logx=True,
 logy=True, show=True)

print("Clustering SF: {}".format(na.global_clustering(g)))

For more details, see the full page on Graph generation.

Using random numbers

By default, NNGT uses the numpy random-number generators (RNGs) which are
seeded automatically when numpy is loaded.

However, you can seed the RNGs manually using the following command:

nngt.set_config("msd", 0)

which will seed the master seed to 0 (or any other value you enter).
Once seeded manually, a NNGT script will always give the same results provided
the same number of thread is being used.

Indeed, when using multithreading, sub-RNGs are used (one per thread). By
default, these RNGs are seeded from the master seed as msd + n + 1 where n
is the thread number, starting from zero.
If needed, these sub-RNGs can also be seeded manually using (for 4 threads)

nngt.set_config("seeds", [1, 2, 3, 4])

Warning

When using NEST, the simulator’s RNGs must be seeded separately using the
NEST commands; see the
NEST user manual [http://www.nest-simulator.org/random-numbers/] for
details.

Structuring nodes: Group and Structure

The Group allows the creation of nodes that belong
together. You can then make a complex Structure from these
groups and connect them with specific connectivities using the
connect_groups() function.

''' ------------------------- #
Creating a structured graph
------------------------- '''

room1 = nngt.Group(25)
room2 = nngt.Group(50)
room3 = nngt.Group(40)
room4 = nngt.Group(35)

names = ["R1", "R2", "R3", "R4"]

struct = nngt.Structure.from_groups((room1, room2, room3, room4), names)

g = nngt.Graph(structure=struct)

for room in struct:
 nngt.generation.connect_groups(g, room, room, "all_to_all")

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
 avg_deg=10, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=20)

nngt.generation.connect_groups(g, room4, room3, "erdos_renyi", avg_deg=10)

if nngt.get_config("with_plot"):
 # chord diagram
 sg = g.get_structure_graph()

 nngt.plot.chord_diagram(sg, names="name", sort="distance",
 use_gradient=True, show=True)

 # spring-block layout
 nngt.plot.library_draw(g, node_cmap="viridis", show=True)

For more details, see the full page on Groups, structures, and neuronal populations.

The same with neurons: NeuralGroup, NeuralPop

The NeuralGroup allows the creation of nodes that belong
together. You can then make a population from these groups and connect them
with specific connectivities using the
connect_groups() function.

 neuron_param={"tau_m": 20.},
 name="fast_spiking_interneurons")

''' --------------------------- #
Creating neuronal populations
--------------------------- '''

making populations from scratch
pop = nngt.NeuralPop(with_models=False) # empty population
syn_spec = {
 'default': {"model": "tsodyks2_synapse"}, # default connections
 ("pyramidal_cells", "pyramidal_cells"): {"U": 0.6} # change a parameter
}

nest_pop = NeuralPop.from_groups([pyr, fsi], syn_spec=syn_spec)

''' ------------------------------- #
Complex population and metagroups
------------------------------- '''

Let's model part of a cortical column with

For more details, see the full page on Groups, structures, and neuronal populations.

Real neuronal networks and NEST interaction: the Network

Besides connectivity, the main interest of the NeuralGroup is
that you can pass it the biological properties that the neurons belonging to
this group will share.

Since we are using NEST, these properties are:

	the model’s name

	its non-default properties

	the synapses that the neurons have and their properties

	the type of the neurons (1 for excitatory or -1 for inhibitory)

''' Create groups with different parameters '''
adaptive spiking neurons
base_params = {
 'E_L': -60., 'V_th': -58., 'b': 20., 'tau_w': 100.,
 'V_reset': -65., 't_ref': 2., 'g_L': 10., 'C_m': 250.
}
oscillators
params1, params2 = base_params.copy(), base_params.copy()
params1.update(
 {'E_L': -65., 'b': 40., 'I_e': 200., 'tau_w': 400., "V_th": -57.})
bursters
params2.update({'b': 25., 'V_reset': -55., 'tau_w': 300.})

oscill = nngt.NeuralGroup(
 nodes=400, neuron_model='aeif_psc_alpha', neuron_type=1,
 neuron_param=params1)

burst = nngt.NeuralGroup(
 nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
 neuron_param=params2)

adapt = nngt.NeuralGroup(
 nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
 neuron_param=base_params)

synapses = {
 'default': {'model': 'tsodyks2_synapse'},
 ('oscillators', 'bursters'): {'model': 'tsodyks2_synapse', 'U': 0.6},
 ('oscillators', 'oscillators'): {'model': 'tsodyks2_synapse', 'U': 0.7},
 ('oscillators', 'adaptive'): {'model': 'tsodyks2_synapse', 'U': 0.5}
}

'''
Create the population that will represent the neuronal
network from these groups
'''
pop = nngt.NeuralPop.from_groups(
 [oscill, burst, adapt],
 names=['oscillators', 'bursters', 'adaptive'], syn_spec=synapses)

'''
Create the network from this population,
using a Gaussian in-degree
'''
net = ng.gaussian_degree(
 100., 15., population=pop, weights=155., delays=5.)

Once this network is created, it can simply be sent to nest through the
command: gids = net.to_nest(), and the NEST gids are returned.

In order to access the gids from each group, you can do:

oscill_gids = net.nest_gid[oscill.ids]

For more details to use NNGT with NEST, see Interacting with the NEST simulator.

Underlying graph objects and libraries

Starting with version 2.0 of NNGT, the library no longer uses inheritance but
composition to provide access to the underlying graph object, which is stored
in the graph attribute of the Graph class.

It can simply be accessed via:

g = nngt.Graph()

library_graph = g.graph

Using graph attribute, on can directly use functions of the
underlying graph library (networkx, igraph, or graph-tool) if their equivalent
is not yet provided in NNGT – see Consistent tools for graph analysis for implemented
functions.

Warning

One notable exception to this behaviour relates to the creation and
deletion of nodes or edges, for which you have to use the functions
provided by NNGT.
As a general rule, any operation that might alter the graph structure
should be done through NNGT and never directly by calling functions or
methods on the graph attribute.

Apart from this, you can use any analysis or drawing tool from the graph
library.

Example using graph-tool

>>> import graph_tool as gt
>>> import matplotlib.pyplot as plt
>>> print(gt.centrality.closeness(g.graph))
>>> gt.draw.graph_draw(g.graph)
>>> nngt.plot.draw_network(g)
>>> plt.show()

Example using igraph

>>> import igraph as ig
>>> import matplotlib.pyplot as plt
>>> print(g.graph.closeness(mode='out'))
>>> ig.plot(g.graph)
>>> nngt.plot.draw_network(g)
>>> plt.show()

Example using networkx

>>> import networkx as nx
>>> import matplotlib.pyplot as plt
>>> print(nx.closeness_centrality(g.graph.reverse()))
>>> nx.draw(g.graph)
>>> nngt.plot.draw_network(g)
>>> plt.show()

Note

People testing these 3 codes will notice that all closeness results are
different (though I made sure the functions of each libraries worked
on the same outgoing edges)!
This example is given voluntarily to remind you, when using these
libraries, to check that they indeed compute what you think they do and
what are the underlying hypotheses or definitions.

To avoid such issues and make sure that results are the same with all
libraries, use the functions provided in Consistent tools for graph analysis.

Go to other tutorials:

	Intro & user manual

	Graph generation

	Parallelism

	Groups, structures, and neuronal populations

	Interacting with the NEST simulator

	Activity analysis

	Properties of graph components

Gallery

This page contains a set of examples about different ways of visualizing
graphs and their properties using NNGT.

	Visualizing graph structures

	Visualizing graph properties

Visualizing graph structures

The following examples show how to use NNGT to draw graphs in ways that
make their structural properties stand out.

[image: Chord diagram]
Chord diagram

[image: Hive plot panel]
Hive plot panel

[image: Layouts for topological representations]
Layouts for topological representations

Visualizing graph properties

[image: Plot the degree distributions of a graph]
Plot the degree distributions of a graph

[image: Plot the betweenness distributions of a graph]
Plot the betweenness distributions of a graph

[image: Plot various graph properties]
Plot various graph properties

Visualizing graph structures

The following examples show how to use NNGT to draw graphs in ways that
make their structural properties stand out.

[image: Chord diagram]
Chord diagram

[image: Hive plot panel]
Hive plot panel

[image: Layouts for topological representations]
Layouts for topological representations

Download all examples in Python source code: graph_structure_python.zip

Download all examples in Jupyter notebooks: graph_structure_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Chord diagram

[image: plot chord diagram]
import matplotlib.pyplot as plt

import nngt

nngt.seed(0)

create a structured graph

room1 = nngt.Group(25)
room2 = nngt.Group(50)
room3 = nngt.Group(40)
room4 = nngt.Group(35)

names = ["R1", "R2", "R3", "R4"]

struct = nngt.Structure.from_groups((room1, room2, room3, room4), names)

g = nngt.Graph(structure=struct)

for room in struct:
 nngt.generation.connect_groups(g, room, room, "all_to_all")

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
 avg_deg=10, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=20)

nngt.generation.connect_groups(g, room4, room3, "erdos_renyi", avg_deg=10)

get the structure graph and plot

sg = g.get_structure_graph()

nngt.plot.chord_diagram(sg, names="name", sort="distance",
 use_gradient=True, show=True)

Total running time of the script: (0 minutes 1.711 seconds)

Download Python source code: plot_chord_diagram.py

Download Jupyter notebook: plot_chord_diagram.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Hive plot panel

[image: strength, cc, flux]
import os

import matplotlib.pyplot as plt

import nngt

dirpath = os.path.abspath(os.getcwd())
rootpath = os.path.abspath(dirpath + "/../../..")

load graph

g = nngt.load_from_file(rootpath + "/testing/Networks/rat_brain.graphml",
 attributes=["weight"], cleanup=True,
 attributes_types={"weight": float})

prepare attributes

cc = nngt.analysis.local_clustering(g, weights="weight")

g.new_node_attribute("cc", "double", values=cc)

g.new_node_attribute("strength", "double",
 values=g.get_degrees(weights="weight"))

flux = g.get_degrees("out") - g.get_degrees("in")

g.new_node_attribute("flux", "double", values=flux)

figure parameters

cc_bins = [0, 0.1, 0.25, 0.6]

todo = ["strength", "cc", "flux"]
bins = [3, cc_bins, 3]

make plot

fig, axes = plt.subplots(len(todo), len(todo), figsize=(10, 9))

for i in range(len(todo)):
 radial = todo[i]

 for j in range(len(todo)):
 ax_name = todo[j]
 ax_bins = bins[j]

 ax = axes[i, j]

 if i == 0:
 ax.set_title(ax_name)

 if j == 0:
 ax.set_ylabel(radial)

 size = todo[list(set([0, 1, 2]).difference([i, j]))[0]]

 nngt.plot.hive_plot(
 g, radial, axes=ax_name, edge_alpha=0.1, nsize=size, max_nsize=50,
 axes_bins=ax_bins, axes_units="native", axis=ax, show_names=False)

for i in range(len(todo)):
 fig.text(0.03, 0.8 - i*0.33, todo[i], rotation=90, fontsize="large")

plt.tight_layout()

plt.show()

Total running time of the script: (0 minutes 23.391 seconds)

Download Python source code: plot_hive_panel.py

Download Jupyter notebook: plot_hive_panel.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Layouts for topological representations

import os

import matplotlib as mpl
import matplotlib.pyplot as plt

import nngt

nngt.seed(0)

set matplotlib backend depending on the library
mpl_backend = mpl.get_backend()

if nngt.get_config("backend") in ("graph-tool", "igraph"):

 if mpl_backend.startswith("Qt4"):
 if mpl_backend != "Qt4Cairo":
 plt.switch_backend("Qt4Cairo")
 elif mpl_backend.startswith("Qt5"):
 if mpl_backend != "Qt5Cairo":
 plt.switch_backend("Qt5Cairo")
 elif mpl_backend.startswith("GTK"):
 if mpl_backend != "GTK3Cairo":
 plt.switch_backend("GTK3Cairo")
 elif mpl_backend != "cairo":
 plt.switch_backend("cairo")

prepare figure and parameters

_, axes = plt.subplots(2, 2, figsize=(10, 8))

num_nodes = 50

spring-block layout for structured graph

room1 = nngt.Group(10)
room2 = nngt.Group(20)
room3 = nngt.Group(20)

names = ["R1", "R2", "R3"]

struct = nngt.Structure.from_groups((room1, room2, room3), names)

g = nngt.Graph(structure=struct)

for room in struct:
 nngt.generation.connect_groups(g, room, room, "erdos_renyi", avg_deg=5)

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
 avg_deg=3, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=5)

nngt.plot.library_draw(g, tight=False, axis=axes[0, 0], show=False)

axes[0, 0].set_title("Spring-block layout")

random layout

sw = nngt.generation.watts_strogatz(4, 0.3, nodes=num_nodes)

betw = nngt.analysis.betweenness(sw, "node")

nngt.plot.draw_network(sw, nsize=betw, ncolor="out-degree", axis=axes[0, 1],
 tight=False, show=False)

axes[0, 1].set_title("Random layout")

circular layout for small-world networks

nngt.plot.draw_network(sw, nsize=betw, ncolor="out-degree", layout="circular",
 axis=axes[1, 0], show=False, tight=False)

axes[1, 0].set_title("Circular layout")

spatial layout

c1 = nngt.geometry.Shape.disk(100)
c2 = nngt.geometry.Shape.disk(100, centroid=(50, 0))

shape = nngt.geometry.Shape.from_polygon(c1.union(c2))

npos = shape.seed_neurons(num_nodes)

g = nngt.generation.distance_rule(10, shape=shape, nodes=num_nodes, avg_deg=5)

cc = nngt.analysis.local_clustering(g)

nngt.plot.draw_network(g, ncolor=cc, axis=axes[1, 1], tight=False, show=False)

axes[1, 1].set_title("Spatial layout")

plt.tight_layout()

save figure

fname = os.getcwd() + "/layouts.png"

plt.savefig(fname)
plt.switch_backend(mpl_backend)

img = plt.imread(fname)

_, ax = plt.subplots(figsize=(10, 8))
ax.imshow(img)

ax.axis('off')

plt.tight_layout()
plt.show()

try:
 os.remove(fname)
except:
 pass

[image: plot layouts]
Note that the last lines are just a little trick to make the figure be
automatically detected by Sphinx-gallery. For normal use cases you can just
do a regular plt.show().

Total running time of the script: (0 minutes 3.554 seconds)

Download Python source code: plot_layouts.py

Download Jupyter notebook: plot_layouts.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Visualizing graph properties

[image: Plot the degree distributions of a graph]
Plot the degree distributions of a graph

[image: Plot the betweenness distributions of a graph]
Plot the betweenness distributions of a graph

[image: Plot various graph properties]
Plot various graph properties

Download all examples in Python source code: graph_properties_python.zip

Download all examples in Jupyter notebooks: graph_properties_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Plot the degree distributions of a graph

import nngt
import nngt.plot as nplt

nngt.seed(0)

First, let’s create a scale-free network

g = nngt.generation.random_scale_free(2.1, 3.2, nodes=1000, avg_deg=100)

Plot the degree distribution

nplt.degree_distribution(g, deg_type=["in", "out"], show=True)

[image: Degree distribution for RandomSF]
It’s not bad… but we don’t see much! Let’s move a more relevant scale

nplt.degree_distribution(g, deg_type=["in", "out"], logy=True, show=True)

[image: Degree distribution for RandomSF]
Or we can use Bayesian binning

nplt.degree_distribution(g, deg_type=["in", "out"], num_bins="bayes",
 show=True)

[image: Degree distribution for RandomSF]
Total running time of the script: (0 minutes 1.818 seconds)

Download Python source code: plot_degrees.py

Download Jupyter notebook: plot_degrees.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Plot the betweenness distributions of a graph

import nngt
import nngt.plot as nplt
from nngt.geometry import Shape

nngt.seed(0)

Let’s start by making a random exponential graph

shape = Shape.disk(100)

g = nngt.generation.distance_rule(5, shape=shape, nodes=1000, avg_deg=3)

then we can plot the betweenness

nplt.betweenness_distribution(g, logx=True, show=True,
 legend_location='left')

[image: Betweenness distribution for DR]
we can of course change various parameters and plot only the nodes

nplt.betweenness_distribution(g, logx=False, show=True)

nplt.betweenness_distribution(g, btype="node", num_nbins="auto",
 alpha=0.5, show=True)

	[image: Betweenness distribution for DR]

	[image: Betweenness distribution for DR]

By the way, this is the graph we’re looking at

nplt.draw_network(g, max_nsize=1, show_environment=False, show=True)

[image: plot betweenness]
Total running time of the script: (0 minutes 41.210 seconds)

Download Python source code: plot_betweenness.py

Download Jupyter notebook: plot_betweenness.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Plot various graph properties

import nngt
import nngt.plot as nplt
from nngt.geometry import Shape

nngt.seed(0)

Let’s start by making a random exponential graph

shape = Shape.disk(100)

g = nngt.generation.distance_rule(5, shape=shape, nodes=1000, avg_deg=20)

Let’s plot the distances

nplt.edge_attributes_distribution(g, "distance", show=True)

[image: Distance distribution for DR]
We then compute the betweenness and see how it correlates with the distance

nbetw, ebetw = nngt.analysis.betweenness(g)

g.new_edge_attribute("betweenness", "float", values=ebetw)

nplt.correlation_to_attribute(g, "distance", "betweenness",
 attribute_type="edge", show=True)

[image: DR, Distance vs betweenness]
Let’s check the correlations between various node properties and their degree

g.new_node_attribute("betweenness", "float", values=nbetw)

attr = ["betweenness", "clustering", "in-degree", "subgraph_centrality"]

nplt.correlation_to_attribute(g, "out-degree", attr, show=True)

[image: DR, Out-degree vs betweenness, Out-degree vs clustering, Out-degree vs in-degree, Out-degree vs subgraph_centrality]
Total running time of the script: (1 minutes 12.720 seconds)

Download Python source code: plot_attributes.py

Download Jupyter notebook: plot_attributes.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Chord diagram

[image: plot chord diagram]
import matplotlib.pyplot as plt

import nngt

nngt.seed(0)

create a structured graph

room1 = nngt.Group(25)
room2 = nngt.Group(50)
room3 = nngt.Group(40)
room4 = nngt.Group(35)

names = ["R1", "R2", "R3", "R4"]

struct = nngt.Structure.from_groups((room1, room2, room3, room4), names)

g = nngt.Graph(structure=struct)

for room in struct:
 nngt.generation.connect_groups(g, room, room, "all_to_all")

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
 avg_deg=10, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=20)

nngt.generation.connect_groups(g, room4, room3, "erdos_renyi", avg_deg=10)

get the structure graph and plot

sg = g.get_structure_graph()

nngt.plot.chord_diagram(sg, names="name", sort="distance",
 use_gradient=True, show=True)

Total running time of the script: (0 minutes 1.711 seconds)

Download Python source code: plot_chord_diagram.py

Download Jupyter notebook: plot_chord_diagram.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Hive plot panel

[image: strength, cc, flux]
import os

import matplotlib.pyplot as plt

import nngt

dirpath = os.path.abspath(os.getcwd())
rootpath = os.path.abspath(dirpath + "/../../..")

load graph

g = nngt.load_from_file(rootpath + "/testing/Networks/rat_brain.graphml",
 attributes=["weight"], cleanup=True,
 attributes_types={"weight": float})

prepare attributes

cc = nngt.analysis.local_clustering(g, weights="weight")

g.new_node_attribute("cc", "double", values=cc)

g.new_node_attribute("strength", "double",
 values=g.get_degrees(weights="weight"))

flux = g.get_degrees("out") - g.get_degrees("in")

g.new_node_attribute("flux", "double", values=flux)

figure parameters

cc_bins = [0, 0.1, 0.25, 0.6]

todo = ["strength", "cc", "flux"]
bins = [3, cc_bins, 3]

make plot

fig, axes = plt.subplots(len(todo), len(todo), figsize=(10, 9))

for i in range(len(todo)):
 radial = todo[i]

 for j in range(len(todo)):
 ax_name = todo[j]
 ax_bins = bins[j]

 ax = axes[i, j]

 if i == 0:
 ax.set_title(ax_name)

 if j == 0:
 ax.set_ylabel(radial)

 size = todo[list(set([0, 1, 2]).difference([i, j]))[0]]

 nngt.plot.hive_plot(
 g, radial, axes=ax_name, edge_alpha=0.1, nsize=size, max_nsize=50,
 axes_bins=ax_bins, axes_units="native", axis=ax, show_names=False)

for i in range(len(todo)):
 fig.text(0.03, 0.8 - i*0.33, todo[i], rotation=90, fontsize="large")

plt.tight_layout()

plt.show()

Total running time of the script: (0 minutes 23.391 seconds)

Download Python source code: plot_hive_panel.py

Download Jupyter notebook: plot_hive_panel.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Layouts for topological representations

import os

import matplotlib as mpl
import matplotlib.pyplot as plt

import nngt

nngt.seed(0)

set matplotlib backend depending on the library
mpl_backend = mpl.get_backend()

if nngt.get_config("backend") in ("graph-tool", "igraph"):

 if mpl_backend.startswith("Qt4"):
 if mpl_backend != "Qt4Cairo":
 plt.switch_backend("Qt4Cairo")
 elif mpl_backend.startswith("Qt5"):
 if mpl_backend != "Qt5Cairo":
 plt.switch_backend("Qt5Cairo")
 elif mpl_backend.startswith("GTK"):
 if mpl_backend != "GTK3Cairo":
 plt.switch_backend("GTK3Cairo")
 elif mpl_backend != "cairo":
 plt.switch_backend("cairo")

prepare figure and parameters

_, axes = plt.subplots(2, 2, figsize=(10, 8))

num_nodes = 50

spring-block layout for structured graph

room1 = nngt.Group(10)
room2 = nngt.Group(20)
room3 = nngt.Group(20)

names = ["R1", "R2", "R3"]

struct = nngt.Structure.from_groups((room1, room2, room3), names)

g = nngt.Graph(structure=struct)

for room in struct:
 nngt.generation.connect_groups(g, room, room, "erdos_renyi", avg_deg=5)

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
 avg_deg=3, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=5)

nngt.plot.library_draw(g, tight=False, axis=axes[0, 0], show=False)

axes[0, 0].set_title("Spring-block layout")

random layout

sw = nngt.generation.watts_strogatz(4, 0.3, nodes=num_nodes)

betw = nngt.analysis.betweenness(sw, "node")

nngt.plot.draw_network(sw, nsize=betw, ncolor="out-degree", axis=axes[0, 1],
 tight=False, show=False)

axes[0, 1].set_title("Random layout")

circular layout for small-world networks

nngt.plot.draw_network(sw, nsize=betw, ncolor="out-degree", layout="circular",
 axis=axes[1, 0], show=False, tight=False)

axes[1, 0].set_title("Circular layout")

spatial layout

c1 = nngt.geometry.Shape.disk(100)
c2 = nngt.geometry.Shape.disk(100, centroid=(50, 0))

shape = nngt.geometry.Shape.from_polygon(c1.union(c2))

npos = shape.seed_neurons(num_nodes)

g = nngt.generation.distance_rule(10, shape=shape, nodes=num_nodes, avg_deg=5)

cc = nngt.analysis.local_clustering(g)

nngt.plot.draw_network(g, ncolor=cc, axis=axes[1, 1], tight=False, show=False)

axes[1, 1].set_title("Spatial layout")

plt.tight_layout()

save figure

fname = os.getcwd() + "/layouts.png"

plt.savefig(fname)
plt.switch_backend(mpl_backend)

img = plt.imread(fname)

_, ax = plt.subplots(figsize=(10, 8))
ax.imshow(img)

ax.axis('off')

plt.tight_layout()
plt.show()

try:
 os.remove(fname)
except:
 pass

[image: plot layouts]
Note that the last lines are just a little trick to make the figure be
automatically detected by Sphinx-gallery. For normal use cases you can just
do a regular plt.show().

Total running time of the script: (0 minutes 3.554 seconds)

Download Python source code: plot_layouts.py

Download Jupyter notebook: plot_layouts.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Plot the degree distributions of a graph

import nngt
import nngt.plot as nplt

nngt.seed(0)

First, let’s create a scale-free network

g = nngt.generation.random_scale_free(2.1, 3.2, nodes=1000, avg_deg=100)

Plot the degree distribution

nplt.degree_distribution(g, deg_type=["in", "out"], show=True)

[image: Degree distribution for RandomSF]
It’s not bad… but we don’t see much! Let’s move a more relevant scale

nplt.degree_distribution(g, deg_type=["in", "out"], logy=True, show=True)

[image: Degree distribution for RandomSF]
Or we can use Bayesian binning

nplt.degree_distribution(g, deg_type=["in", "out"], num_bins="bayes",
 show=True)

[image: Degree distribution for RandomSF]
Total running time of the script: (0 minutes 1.818 seconds)

Download Python source code: plot_degrees.py

Download Jupyter notebook: plot_degrees.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Plot the betweenness distributions of a graph

import nngt
import nngt.plot as nplt
from nngt.geometry import Shape

nngt.seed(0)

Let’s start by making a random exponential graph

shape = Shape.disk(100)

g = nngt.generation.distance_rule(5, shape=shape, nodes=1000, avg_deg=3)

then we can plot the betweenness

nplt.betweenness_distribution(g, logx=True, show=True,
 legend_location='left')

[image: Betweenness distribution for DR]
we can of course change various parameters and plot only the nodes

nplt.betweenness_distribution(g, logx=False, show=True)

nplt.betweenness_distribution(g, btype="node", num_nbins="auto",
 alpha=0.5, show=True)

	[image: Betweenness distribution for DR]

	[image: Betweenness distribution for DR]

By the way, this is the graph we’re looking at

nplt.draw_network(g, max_nsize=1, show_environment=False, show=True)

[image: plot betweenness]
Total running time of the script: (0 minutes 41.210 seconds)

Download Python source code: plot_betweenness.py

Download Jupyter notebook: plot_betweenness.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Plot various graph properties

import nngt
import nngt.plot as nplt
from nngt.geometry import Shape

nngt.seed(0)

Let’s start by making a random exponential graph

shape = Shape.disk(100)

g = nngt.generation.distance_rule(5, shape=shape, nodes=1000, avg_deg=20)

Let’s plot the distances

nplt.edge_attributes_distribution(g, "distance", show=True)

[image: Distance distribution for DR]
We then compute the betweenness and see how it correlates with the distance

nbetw, ebetw = nngt.analysis.betweenness(g)

g.new_edge_attribute("betweenness", "float", values=ebetw)

nplt.correlation_to_attribute(g, "distance", "betweenness",
 attribute_type="edge", show=True)

[image: DR, Distance vs betweenness]
Let’s check the correlations between various node properties and their degree

g.new_node_attribute("betweenness", "float", values=nbetw)

attr = ["betweenness", "clustering", "in-degree", "subgraph_centrality"]

nplt.correlation_to_attribute(g, "out-degree", attr, show=True)

[image: DR, Out-degree vs betweenness, Out-degree vs clustering, Out-degree vs in-degree, Out-degree vs subgraph_centrality]
Total running time of the script: (1 minutes 12.720 seconds)

Download Python source code: plot_attributes.py

Download Jupyter notebook: plot_attributes.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Contributing to NNGT

	Signaling issues and bugs

	Preparing a contribution

	Sending a patch to SourceHut

	First contribution

	Post-review changes: later contributions

	Making a PR on GitHub

Signaling issues and bugs

If you encounter something that you think is an error, please let me know
either via the user mailing list [https://lists.sr.ht/~tfardet/nngt-users]
or directly on the issue tracker [https://github.com/tfardet/NNGT/issues].

Warning

When signaling a bug, please always include a python script containing
a minimal working example (MWE) that reproduces the issue.

Preparing a contribution

To prepare a contribution to NNGT, you should follow these successive steps:

	start from the main branch: git checkout main,

	create a new branch from main: git checkout -b name-of-your-choice,

	make the changes you want to and commit them,

	check them locally using: pytest testing (you’ll need to install pytest
via pip install pytest)

Sending a patch to SourceHut

To contribute on SourceHut, you don’t need an account (though you can also
make a patch using the website if you have an account there).

What you need is to use git send-email, and you can find how to install and
set it up on this page [https://git-send-email.io].

Before sending you patch, please squash you commits using:

git checkout -b patch-branch
git merge --squash name-of-your-choice
git checkout -a -m "A descriptive message of the changes"

First contribution

Once this is done, you can push your patch to the mailing list using:

git send-email --annotate --to=~tfardet/nngt-developers@lists.sr.ht -v1 HEAD^

you can add further information in the description using annotate.

Warning

Always use --annotate because you will need to change the subject from
“[PATCH v1]” to “[PATCH NNGT]” or “[PATCH NNGT v1]” (as you prefer as long
as the second word is NNGT) so that the patch is automatically tested on
SourceHut

Do not hesitate to ask for help on the developer mailing list [https://lists.sr.ht/~tfardet/nngt-developers] if you need help
on your first contribution.

Post-review changes: later contributions

If changes are requested, apply the changes to the branch
name-of-your-choice, then reset patch-branch

git checkout patch-branch
git fetch origin
git reset --hard origin/main
git merge --squash name-of-your-choice
git checkout -a -m "A descriptive message of the changes"

then, publish the patch saying it’s a new version:

git send-email --annotate --to=~tfardet/nngt-developers@lists.sr.ht -v2 HEAD^

Or -v3, -v4, etc for later patches.

Warning

As before, use annotate to change the subject to “[PATCH NNGT]” or
“[PATCH NNGT v2]” so that the patch is automatically tested on SourceHut

Making a PR on GitHub

If you prefer using GitHub, then you can
open a PR on the repo [https://github.com/tfardet/NNGT/pulls].

Main module (API)

Overview

	NNGT

	Available modules

	Units

	Main classes and functions

	Details

For more details regarding the main classes, see:

	Graph classes

	Main functions

	Side classes

NNGT

Package aimed at facilitating the analysis of Neural Networks and Graphs’
Topologies in Python by providing a unified interface for network generation
and analysis.

The library mainly provides algorithms for

	generating networks

	studying their topological properties

	doing some basic spatial, topological, and statistical visualizations

	interacting with neuronal simulators and analyzing neuronal activity

Available modules

	analysis

	Tools to study graph topology and neuronal activity.

	core

	Where the main classes are coded; however, most useful classes and methods
for users are loaded at the main level (nngt) when the library is imported,
so nngt.core should generally not be used.

	generation

	Functions to generate specific networks.

	geometry

	Tools to work on metric graphs (see
PyNCulture [https://github.com/SENeC-Initiative/PyNCulture]).

	io

	Tools for input/output operations.

	lib

	Basic functions used by several most other modules.

	simulation

	Tools to provide complex network generation with NEST and help analyze the
influence of the network structure on neuronal activity.

	plot

	Plot data or graphs using matplotlib.

Units

Functions related to spatial embedding of networks are using micrometers
(um) as default unit; other units from the metric system can also be
provided:

	mm for milimeters

	cm centimeters

	dm for decimeters

	m for meters

Main classes and functions

	nngt.Graph([nodes, name, weighted, …])

	The basic graph class, which inherits from a library class such as graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

	nngt.Group([nodes, properties, name])

	Class defining groups of nodes.

	nngt.GroupProperty(size[, constraints, …])

	Class defining the properties needed to create groups of neurons from an existing Graph or one of its subclasses.

	nngt.MetaGroup([nodes, name])

	Class defining a meta-group of nodes.

	nngt.MetaNeuralGroup([nodes, name, properties])

	Class defining a meta-group of neurons.

	nngt.Network([name, weighted, directed, …])

	The detailed class that inherits from Graph and implements additional properties to describe various biological functions and interact with the NEST simulator.

	nngt.NeuralGroup([nodes, neuron_type, …])

	Class defining groups of neurons.

	nngt.NeuralPop([size, parent, meta_groups, …])

	The basic class that contains groups of neurons and their properties.

	nngt.SpatialGraph([nodes, name, weighted, …])

	The detailed class that inherits from Graph and implements additional properties to describe spatial graphs (i.e.

	nngt.SpatialNetwork(population[, name, …])

	Class that inherits from Network and SpatialGraph to provide a detailed description of a real neural network in space, i.e.

	nngt.Structure([size, parent, meta_groups])

	The basic class that contains groups of nodes and their properties.

	nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict containing all the relevant informations.

	nngt.get_config([key, detailed])

	Get the NNGT configuration as a dictionary.

	nngt.load_from_file(filename[, fmt, …])

	Load a Graph from a file.

	nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0) if MPI is used.

	nngt.save_to_file(graph, filename[, fmt, …])

	Save a graph to file.

	nngt.seed([msd, seeds])

	Seed the random generator used by NNGT (i.e.

	nngt.set_config(config[, value, silent])

	Set NNGT’s configuration.

	nngt.use_backend(backend[, reloading, silent])

	Allows the user to switch to a specific graph library as backend.

Details

	
class nngt.Graph(nodes=None, name='Graph', weighted=True, directed=True, copy_graph=None, structure=None, **kwargs)

	The basic graph class, which inherits from a library class such as
graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

The objects provides several functions to easily access some basic
properties.

Initialize Graph instance

Changed in version 2.0: Renamed from_graph to copy_graph.

Changed in version 2.2: Added structure argument.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	copy_graph (Graph, optional) – An optional Graph that will be copied.

	structure (Structure, optional (default: None)) – A structure dividing the graph into specific groups, which can
be used to generate specific connectivities and visualise the
connections in a more coarse-grained manner.

	kwargs (optional keywords arguments) – Optional arguments that can be passed to the graph, e.g. a dict
containing information on the synaptic weights
(weights={"distribution": "constant", "value": 2.3} which is
equivalent to weights=2.3), the synaptic delays, or a
type information.

Note

When using copy_graph, only the topological properties are
copied (nodes, edges, and attributes), spatial and biological
properties are ignored.
To copy a graph exactly, use copy().

	Returns

	self (Graph)

	
adjacency_matrix(types=False, weights=False, mformat='csr')

	Return the graph adjacency matrix.

Note

Source nodes are represented by the rows, targets by the
corresponding columns.

	Parameters

	
	types (bool, optional (default: False)) – Wether the edge types should be taken into account (negative values
for inhibitory connections).

	weights (bool or string, optional (default: False)) – Whether the adjacecy matrix should be weighted. If True, all
connections are multiply bythe associated synaptic strength; if
weight is a string, the connections are scaled bythe corresponding
edge attribute.

	mformat (str, optional (default: “csr”)) – Type of scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix that will be returned, by
default scipy.sparse.csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix].

	Returns

	mat (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix) – The adjacency matrix of the graph.

	
copy()

	Returns a deepcopy of the current Graph
instance

	
edge_attributes

	Access edge attributes.

See also

node_attributes,
get_edge_attributes,
new_edge_attribute,
set_edge_attribute.

	
static from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', from_string=False, name=None, directed=True, cleanup=False)

	Import a saved graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: deduced from filename)) – The format used to save the graph. Supported formats are:
“neighbour” (neighbour list), “ssp” (scipy.sparse), “edge_list”
(list of all the edges in the graph, one edge per line,
represented by a source target-pair), “gml” (gml format,
default if filename ends with ‘.gml’), “graphml” (graphml format,
default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot
format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats
(namely “neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of
custom formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a
notifier is present in the file, names will be deduced from it;
otherwise the attributes will be numbered.
For “edge_list”, attributes may also be present as additional
columns after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that
will take the argument value as a string input and convert it to
the proper type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information.
Relevant information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are
@type=SpatialGraph/Network/SpatialNetwork, which must be
followed by the relevant notifiers among @shape,
@population, and @graph.

	from_string (bool, optional (default: False)) – Load from a string instead of a file.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
classmethod from_library(library_graph, name='ImportedGraph', weighted=True, directed=True, **kwargs)

	Create a Graph by wrapping a graph object from one of
the supported libraries.

	Parameters

	
	library_graph (object) – Graph object from one of the supported libraries (graph-tool,
igraph, networkx).

	name (str, optional (default: “ImportedGraph”))

	**kwargs – Other standard arguments (see __init__())

	
classmethod from_matrix(matrix, weighted=True, directed=True, population=None, shape=None, positions=None, name=None, **kwargs)

	Creates a Graph from a scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or
a dense matrix.

	Parameters

	
	matrix (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Adjacency matrix.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	population (NeuralPop) – Population to associate to the new Network.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	name (str, optional) – Graph name.

	Returns

	Graph

	
get_attribute_type(attribute_name, attribute_class=None)

	Return the type of an attribute (e.g. string, double, int).

	Parameters

	
	attribute_name (str) – Name of the attribute.

	attribute_class (str, optional (default: both)) – Whether attribute_name is a “node” or an “edge” attribute.

	Returns

	type (str) – Type of the attribute.

	
get_betweenness(btype='both', weights=None)

	Returns the normalized betweenness centrality of the nodes and edges.

	Parameters

	
	g (Graph) – Graph to analyze.

	btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’, ‘edge’, or
‘both’). By default, both betweenness centralities are computed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or
False then use binary edges; if True, uses the ‘weight’
edge attribute, otherwise uses any valid edge attribute required.

	Returns

	
	nb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The nodes’ betweenness if btype is ‘node’ or ‘both’

	eb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The edges’ betweenness if btype is ‘edge’ or ‘both’

See also

betweenness()

	
get_degrees(mode='total', nodes=None, weights=None, edge_type='all')

	Degree sequence of all the nodes.

Changed in version 2.0: Changed deg_type to mode, node_list to nodes, use_weights
to weights, and edge_type to edge_type.

	Parameters

	
	mode (string, optional (default: “total”)) – Degree type (among ‘in’, ‘out’ or ‘total’).

	nodes (list, optional (default: None)) – List of the nodes which degree should be returned

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

	edge_type (int or str, optional (default: all)) – Restrict to a given synaptic type (“excitatory”, 1, or
“inhibitory”, -1), using either the “type” edge attribute for
non-Network or the
inhibitory nodes.

	Returns

	
	degrees (numpy.array)

	.. warning :: – When using MPI with “nngt” (distributed) backend, returns only the
degrees associated to local edges. “Complete” degrees are obtained
by taking the sum of the results on all MPI processes.

	
get_delays(edges=None)

	Returns the delays of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of delays

	
get_density()

	Density of the graph: [image: \frac{E}{N^2}], where E is the number
of edges and N the number of nodes.

	
get_edge_attributes(edges=None, name=None)

	Attributes of the graph’s edges.

Changed in version 1.0: Returns the full dict of edges attributes if called without
arguments.

New in version 0.8.

	Parameters

	
	edge (tuple or list of tuples, optional (default: None)) – Edge whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all graph’s attributes (synaptic weights, delays…)

	by default. If edge is specified, returns only the values for these

	edges. If name is specified, returns value of the attribute for each

	edge.

Note

The attributes values are ordered as the edges in
edges_array() if edges is None.

See also

get_node_attributes(),
new_edge_attribute(),
set_edge_attribute(),
new_node_attribute(),
set_node_attribute()

	
get_edge_types(edges=None)

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_edges(attribute=None, value=None, source_node=None, target_node=None)

	Return the edges in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned edges should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only edges with attribute
being equal to value will be returned.

	source_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those stemming from source_node.

	target_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those arriving at target_node.

See also

get_nodes(), edge_attributes

	
get_node_attributes(nodes=None, name=None)

	Attributes of the graph’s edges.

Changed in version 1.0.1: Corrected default behavior and made it the same as
get_edge_attributes().

New in version 0.9.

	Parameters

	
	nodes (list of ints, optional (default: None)) – Nodes whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all nodes attributes by default. If nodes is

	specified, returns a dict containing only the attributes of these

	nodes. If name is specified, returns a list containing the values of

	the specific attribute for the required nodes (or all nodes if

	unspecified).

See also

get_edge_attributes(),
new_node_attribute(),
set_node_attribute(),
new_edge_attributes(),
set_edge_attribute()

	
get_nodes(attribute=None, value=None)

	Return the nodes in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned nodes should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only nodes with attribute
being equal to value will be returned.

See also

get_edges(), node_attributes

	
get_structure_graph()

	Return a coarse-grained version of the graph containing one node
per nngt.Group.
Connections between groups are associated to the sum of all connection
weights.
If no structure is present, returns an empty Graph.

	
get_weights(edges=None)

	Returns the weights of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of weights

	
graph

	Returns the underlying library object.

Warning

Do not add or remove edges directly through this object.

See also

Underlying graph objects and libraries, Consistent tools for graph analysis

	
graph_id

	Unique int [https://docs.python.org/3/library/functions.html#int] identifying the instance.

	
is_connected(mode='strong')

	Return whether the graph is connected.

	Parameters

	mode (str, optional (default: “strong”)) – Whether to test connectedness with directed (“strong”) or
undirected (“weak”) connections.

References

	ig-connected

	igraph - is_connected [https://igraph.org/python/doc/igraph.GraphBase-class.html#is_connected]

	
is_directed()

	Whether the graph is directed or not

	
is_network()

	Whether the graph is a subclass of Network (i.e. if it
has a NeuralPop attribute).

	
is_spatial()

	Whether the graph is embedded in space (i.e. is a subclass of
SpatialGraph).

	
is_weighted()

	Whether the edges have weights

	
static make_network(graph, neural_pop, copy=False, **kwargs)

	Turn a Graph object into a Network, or a
SpatialGraph into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert

	neural_pop (NeuralPop) – Population to associate to the new Network

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a Network.

	
static make_spatial(graph, shape=None, positions=None, copy=False)

	Turn a Graph object into a SpatialGraph,
or a Network into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a SpatialGraph.
The shape argument can be skipped if positions are given; in that
case, the neurons will be embedded in a rectangle that contains them
all.

	
name

	Name of the graph.

	
neighbours(node, mode='all')

	Return the neighbours of node.

	Parameters

	
	node (int) – Index of the node of interest.

	mode (string, optional (default: “all”)) – Type of neighbours that will be returned: “all” returns all the
neighbours regardless of directionality, “in” returns the
in-neighbours (also called predecessors) and “out” retruns the
out-neighbours (or successors).

	Returns

	neighbours (set) – The neighbours of node.

	
new_edge_attribute(name, value_type, values=None, val=None)

	Create a new attribute for the edges.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	
new_node_attribute(name, value_type, values=None, val=None)

	Create a new attribute for the nodes.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the node attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all nodes.

See also

new_edge_attribute(),
set_node_attribute(),
get_node_attributes(),
set_edge_attribute(),
get_edge_attributes()

	
node_attributes

	Access node attributes.

See also

edge_attributes,
get_node_attributes,
new_node_attribute,
set_node_attribute.

	
classmethod num_graphs()

	Returns the number of alive instances.

	
set_delays(delay=None, elist=None, distribution=None, parameters=None, noise_scale=None)

	Set the delay for spike propagation between neurons.

	Parameters

	
	delay (float or class:numpy.array, optional (default: None)) – Value or list of delays (for user defined delays).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined delays).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the delay distribution.

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the delays.

	
set_edge_attribute(attribute, values=None, val=None, value_type=None, edges=None)

	Set attributes to the connections between neurons.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	edges (list of edges or array of shape (E, 2), optional (default: all)) – Edges whose attributes should be set. Others will remain unchanged.

See also

set_node_attribute(),
get_edge_attributes(),
new_edge_attribute(),
new_node_attribute(),
get_node_attributes()

	
set_name(name='')

	set graph name

	
set_node_attribute(attribute, values=None, val=None, value_type=None, nodes=None)

	Set attributes to the connections between neurons.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	nodes (list of nodes, optional (default: all)) – Nodes whose attributes should be set. Others will remain unchanged.

See also

set_edge_attribute(),
new_node_attribute(),
get_node_attributes(),
new_edge_attribute(),
get_edge_attributes(),

	
set_types(edge_type, nodes=None, fraction=None)

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
set_weights(weight=None, elist=None, distribution=None, parameters=None, noise_scale=None)

	Set the synaptic weights.

	Parameters

	
	weight (float or class:numpy.array, optional (default: None)) – Value or list of the weights (for user defined weights).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined weights).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the weight distribution.
Properties are as follow for the distributions

	‘constant’: ‘value’

	‘uniform’: ‘lower’, ‘upper’

	‘gaussian’: ‘avg’, ‘std’

	‘lognormal’: ‘position’, ‘scale’

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the weights.

Note

If distribution and parameters are provided and the weights are set
for the whole graph (elist is None), then the distribution properties
will be kept as the new default for subsequent edges. That is, if new
edges are created without specifying their weights, then these new
weights will automatically be drawn from this previous distribution.

	
structure

	Object structuring the graph into specific groups.

Note

Points to population if the graph is a
Network.

	
to_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')

	Save graph to file; options detailed below.

See also

nngt.lib.save_to_file() function for options.

	
to_undirected(combine_numeric_eattr='sum')

	Convert the graph to its undirected variant.

Note

All non-numeric edge attributes will be discarded from the returned
undirected graph.

	Parameters

	combine_numeric_eattr (str, optional (default: “sum”)) – How to combine numeric attributes from reciprocal edges.
Can be either:

	“sum” (attributes are summed)

	“min” (smallest value is kept)

	“max” (largest value is kept)

	“mean” (the average of both attributes is taken)

In addition, combine_numeric_eattr can be a dictionary with one
entry for each edge attribute.

	
type

	Type of the graph.

	
class nngt.Group(nodes=None, properties=None, name=None, **kwargs)

	Class defining groups of nodes.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

	properties – dict, optional (default: {})
properties associated to the nodes

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not.

Note

A Group contains a set of nodes that are unique;
the size of the group is the number of unique nodes contained in the group.
Passing non-unique nodes will automatically convert them to a unique set.

Warning

Equality between Group`s only compares
the size and ``properties` attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
nodes in an existing graph.

	properties (dict, optional (default: {})) – Dictionary containing the properties associated to the nodes.

	Returns

	A new Group instance.

	
add_nodes(nodes)

	Add nodes to the group.

	Parameters

	nodes (list of ids)

	
copy()

	Return a deep copy of the group.

	
ids

	

	
is_metagroup

	

	
is_valid

	i.e. if it has
either a size or some ids associated to it.

	Type

	Whether the group can be used in a structure

	
name

	

	
parent

	Return the parent Structure of the group

	
properties

	

	
size

	

	
class nngt.GroupProperty(size, constraints={}, neuron_model=None, neuron_param={}, syn_model=None, syn_param={})

	Class defining the properties needed to create groups of neurons from an
existing Graph or one of its subclasses.

	Variables

	
	size – int [https://docs.python.org/3/library/functions.html#int]
Size of the group.

	constraints – dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})
Constraints to respect when building the
NeuralGroup .

	neuron_model – str, optional (default: None)
name of the model to use when simulating the activity of this group.

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

Create a new instance of GroupProperties.

Notes

	The constraints can be chosen among:

	
	“avg_deg”, “min_deg”, “max_deg” (int [https://docs.python.org/3/library/functions.html#int]) to constrain the
total degree of the nodes

	“avg/min/max_in_deg”, “avg/min/max_out_deg”, to work with the
in/out-degrees

	“avg/min/max_betw” (double) to constrain the betweenness
centrality

	“in_shape” (nngt.geometry.Shape) to chose neurons inside
a given spatial region

Examples

>>> di_constrain = { "avg_deg": 10, "min_betw": 0.001 }
>>> group_prop = GroupProperties(200, constraints=di_constrain)

	
class nngt.MetaGroup(nodes=None, name=None, **kwargs)

	Class defining a meta-group of nodes.

Its main variables are:

	Variables

	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the nodes in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaGroup object.

	
class nngt.MetaNeuralGroup(nodes=None, name=None, properties=None, **kwargs)

	Class defining a meta-group of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is
None for meta-groups)

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the neurons in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaNeuralGroup object.

	
excitatory

	Return the ids of all excitatory nodes inside the meta-group.

	
inhibitory

	Return the ids of all inhibitory nodes inside the meta-group.

	
properties

	

	
class nngt.Network(name='Network', weighted=True, directed=True, from_graph=None, population=None, inh_weight_factor=1.0, **kwargs)

	The detailed class that inherits from Graph and implements
additional properties to describe various biological functions
and interact with the NEST simulator.

Initializes Network instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	from_graph (GraphObject, optional (default: None)) – An optional GraphObject to serve as base.

	population (nngt.NeuralPop, (default: None)) – An object containing the neural groups and their properties:
model(s) to use in NEST to simulate the neurons as well as their
parameters.

	inh_weight_factor (float, optional (default: 1.)) – Factor to apply to inhibitory synapses, to compensate for example
the strength difference due to timescales between excitatory and
inhibitory synapses.

	Returns

	self (Network)

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, **kwargs)

	Generate a network containing a population of two neural groups:
inhibitory and excitatory neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	i_ratio (double, optional (default: 0.2)) – Ratio of inhibitory neurons: [image: \frac{N_i}{N_e+N_i}].

	en_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the excitatory neuron.

	en_param (dict, optional (default: {})) – Dictionary of parameters for the the excitatory neuron.

	in_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the inhibitory neuron.

	in_param (dict, optional (default: {})) – Dictionary of parameters for the the inhibitory neuron.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	Returns

	net (Network or subclass) – Network of disconnected excitatory and inhibitory neurons.

See also

exc_and_inhib()

	
classmethod from_gids(gids, get_connections=True, get_params=False, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)

	Generate a network from gids.

Warning

Unless get_connections and get_params is True, or if your
population is homogeneous and you provide the required information, the
information contained by the network and its population attribute
will be erroneous!
To prevent conflicts the to_nest() function is not
available. If you know what you are doing, you should be able to find a
workaround…

	Parameters

	
	gids (array-like) – Ids of the neurons in NEST or simply user specified ids.

	get_params (bool, optional (default: True)) – Whether the parameters should be obtained from NEST (can be very
slow).

	neuron_model (string, optional (default: None)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
get_edge_types()

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_neuron_type(neuron_ids)

	Return the type of the neurons (+1 for excitatory, -1 for inhibitory).

	Parameters

	neuron_ids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
id_from_nest_gid(gids)

	Return the ids of the nodes in the nngt.Network instance from
the corresponding NEST gids.

	Parameters

	gids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
nest_gids

	

	
neuron_properties(idx_neuron)

	Properties of a neuron in the graph.

	Parameters

	idx_neuron (int) – Index of a neuron in the graph.

	Returns

	dict of the neuron’s properties.

	
classmethod num_networks()

	Returns the number of alive instances.

	
population

	NeuralPop that divides the neurons into groups with
specific properties.

	
set_types(edge_type, nodes=None, fraction=None)

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
to_nest(send_only=None, weights=True)

	Send the network to NEST.

See also

make_nest_network() for parameters

	
classmethod uniform(size, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)

	Generate a network containing only one type of neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	neuron_model (string, optional (default: ‘aief_cond_alpha’)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
class nngt.NeuralGroup(nodes=None, neuron_type=1, neuron_model=None, neuron_param=None, name=None, **kwargs)

	Class defining groups of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	neuron_type – int [https://docs.python.org/3/library/functions.html#int]
the default is 1 for excitatory neurons; -1 is for inhibitory
neurons; meta-groups must have neuron_type set to None

	neuron_model – str, optional (default: None)
the name of the model to use when simulating the activity of this group

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Warning

Equality between NeuralGroup`s only compares
the size and neuronal type, ``model` and param attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
neurons in an existing graph.

	neuron_type (int, optional (default: 1)) – Type of the neurons (1 for excitatory, -1 for inhibitory) or None
if not relevant (only allowed for metag roups).

	neuron_model (str, optional (default: None)) – NEST model for the neuron.

	neuron_param (dict, optional (default: model defaults)) – Dictionary containing the parameters associated to the NEST model.

	Returns

	A new NeuralGroup instance.

	
copy()

	Return a deep copy of the group.

	
has_model

	

	
ids

	

	
nest_gids

	

	
neuron_model

	

	
neuron_param

	

	
neuron_type

	

	
properties

	

	
class nngt.NeuralPop(size=None, parent=None, meta_groups=None, with_models=True, **kwargs)

	The basic class that contains groups of neurons and their properties.

	Variables

	
	has_models – bool [https://docs.python.org/3/library/functions.html#bool],
True if every group has a model attribute.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of neurons in the population.

	syn_spec – dict [https://docs.python.org/3/library/stdtypes.html#dict],
Dictionary containing informations about the synapses between the
different groups in the population.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether this population can be used to create a network in NEST.

Initialize NeuralPop instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of neurons that the population will contain.

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (dict of str/NeuralGroup items) – Optional set of groups. Contrary to the primary groups which
define the population and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	with_models (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the population’s groups contain models to use in NEST

	*args (items for OrderedDict parent)

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	pop (NeuralPop object.)

	
add_to_group(group_name, ids)

	Add neurons to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Neuron ids.

	
copy()

	Return a deep copy of the population.

	
create_group(neurons, name, neuron_type=1, neuron_model=None, neuron_param=None, replace=False)

	Create a new group in the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(neurons, name, neuron_param=None, replace=False)

	Create a new meta group and add it to the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, parent=None, meta_groups=None)

	Make a NeuralPop with a given ratio of inhibitory and excitatory
neurons.

Changed in version 0.8: Added syn_spec parameter.

Changed in version 1.2: Added meta_groups parameter

	Parameters

	
	size (int) – Number of neurons contained by the population.

	iratio (float, optional (default: 0.2)) – Fraction of the neurons that will be inhibitory.

	en_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe excitatory
neurons.

	en_param (dict, optional (default: default NEST parameters)) – Parameters of the excitatory neuron model.

	in_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe inhibitory
neurons.

	in_param (dict, optional (default: default NEST parameters)) – Parameters of the inhibitory neuron model.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (list dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary ‘excitatory’
and ‘inhibitory’ groups, meta groups are therefore no necessarily
disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

See also

nest.Connect(), as()

	
excitatory

	Return the ids of all excitatory nodes inside the population.

New in version 1.3.

	
classmethod from_groups(groups, names=None, syn_spec=None, parent=None, meta_groups=None, with_models=True)

	Make a NeuralPop object from a (list of) NeuralGroup
object(s).

	Parameters

	
	groups (list of NeuralGroup objects) – Groups that will be used to form the population. Note that a given
neuron can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a population named pop
will be retreived by either pop[0] or pop[‘0’].

	parent (Graph, optional (default: None)) – Parent if the population is created from an exiting graph.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value.
If a ‘default’ entry is provided, all unspecified connections will
be set to its value.

	meta_groups (list or dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	with_model (bool, optional (default: True)) – Whether the groups require models (set to False to use populations
for graph theoretical purposes, without NEST interaction)

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we created groups `g1`, `g2`, and `g3`
prop = {
 ('g1', 'g2'): {'model': 'tsodyks2_synapse', 'tau_fac': 50.},
 ('g1', g3'): {'weight': 100.},
 ...
}
pop = NeuronalPop.from_groups(
 [g1, g2, g3], names=['g1', 'g2', 'g3'], syn_spec=prop)

Note

If the population is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon population creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
classmethod from_network(graph, *args)

	Make a NeuralPop object from a network. The groups of neurons are
determined using instructions from an arbitrary number of
GroupProperties.

	
get_param(groups=None, neurons=None, element='neuron')

	Return the element (neuron or synapse) parameters for neurons or
groups of neurons in the population.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	neurons (int or array-like, optional (default: None)) – IDs of the neurons for which parameters should be returned.

	element (list of str, optional (default: "neuron")) – Element for which the parameters should be returned (either
"neuron" or "synapse").

	Returns

	param (list) – List of all dictionaries with the elements’ parameters.

	
has_models

	

	
inhibitory

	Return the ids of all inhibitory nodes inside the population.

New in version 1.3.

	
nest_gids

	Return the NEST gids of the nodes inside the population.

New in version 1.3.

	
set_model(model, group=None)

	Set the groups’ models.

	Parameters

	
	model (dict) – Dictionary containing the model type as key (“neuron” or “synapse”)
and the model name as value (e.g. {“neuron”: “iaf_neuron”}).

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups which models
should be updated.

Note

By default, synapses are registered as “static_synapse”s in NEST;
because of this, only the neuron_model attribute is checked by
the has_models function: it will answer True if all groups
have a ‘non-None’ neuron_model attribute.

Warning

No check is performed on the validity of the models, which means
that errors will only be detected when building the graph in NEST.

	
set_neuron_param(params, neurons=None, group=None)

	Set the parameters of specific neurons or of a whole group.

New in version 1.0.

	Parameters

	
	params (dict) – Dictionary containing parameters for the neurons. Entries can be
either a single number (same for all neurons) or a list (one entry
per neuron).

	neurons (list of ints, optional (default: None)) – Ids of the neurons whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying neurons from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both neurons and group are None, all neurons will be modified.

Warning

No check is performed on the validity of the parameters, which means
that errors will only be detected when building the graph in NEST.

	
syn_spec

	The properties of the synaptic connections between groups.
Returns a dict [https://docs.python.org/3/library/stdtypes.html#dict] containing tuples as keys and dicts of parameters
as values.

The keys are tuples containing the names of the groups in the
population, with the projecting group first (presynaptic neurons) and
the receiving group last (post-synaptic neurons).

Example

For a population of excitatory (“exc”) and inhibitory (“inh”) neurons.

syn_spec = {
 ("exc", "exc"): {'model': 'stdp_synapse', 'weight': 2.5},
 ("exc", "inh"): {'model': 'static_synapse'},
 ("exc", "inh"): {'model': 'stdp_synapse', 'delay': 5.},
 ("inh", "inh"): {
 'model': 'stdp_synapse', 'weight': 5.,
 'delay': ('normal', 5., 2.)}
 }
}

New in version 0.8.

	
classmethod uniform(size, neuron_type=1, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, parent=None, meta_groups=None)

	Make a NeuralPop of identical neurons belonging to a single “default”
group.

Changed in version 1.2: Added neuron_type and meta_groups parameters

	Parameters

	
	size (int) – Number of neurons in the population.

	neuron_type (int, optional (default: 1)) – Type of the neurons in the population: 1 for excitatory or -1 for
inhibitory.

	neuron_model (str, optional (default: default neuron model)) – Neuronal model for the simulator.

	neuron_param (dict, optional (default: default neuron parameters)) – Parameters associated to neuron_model.

	syn_model (str, optional (default: default static synapse)) – Synapse model for the simulator.

	syn_param (dict, optional (default: default synaptic parameters)) – Parameters associated to syn_model.

	parent (Graph object, optional (default: None)) – Parent graph described by the population.

	meta_groups (list or dict of str/NeuralGroup items) – Set of groups which can overlap: a neuron can belong to
several different meta groups, i.e. they do no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	
class nngt.SpatialGraph(nodes=0, name='SpatialGraph', weighted=True, directed=True, from_graph=None, shape=None, positions=None, **kwargs)

	The detailed class that inherits from Graph and implements
additional properties to describe spatial graphs (i.e. graph where the
structure is embedded in space.

Initialize SpatialClass instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of
side 1 cm)

	positions (numpy.array (N, 2), optional (default: None)) – Positions of the neurons; if not specified and nodes is not 0,
then neurons will be reparted at random inside the
Shape object of the instance.

	**kwargs (keyword arguments for Graph or) – Shape if no shape was given.

	Returns

	self (SpatialGraph)

	
get_positions(nodes=None)

	Returns a copy of the nodes’ positions as a (N, 2) array.

	Parameters

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be returned.

	
set_positions(positions, nodes=None)

	Set the nodes’ positions as a (N, 2) array.

	Parameters

	
	positions (array-like) – List of positions, of shape (N, 2).

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be set.

	
shape

	The environment’s spatial structure.

	
class nngt.SpatialNetwork(population, name='SpatialNetwork', weighted=True, directed=True, shape=None, from_graph=None, positions=None, **kwargs)

	Class that inherits from Network and
SpatialGraph to provide a detailed description of a real
neural network in space, i.e. with positions and biological properties to
interact with NEST.

Initialize SpatialNetwork instance

	Parameters

	
	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of side
1 cm)

	positions (numpy.array, optional (default: None)) – Positions of the neurons; if not specified and nodes != 0, then
neurons will be reparted at random inside the
Shape object of the instance.

	population (class:~nngt.NeuralPop, optional (default: None)) – Population from which the network will be built.

	Returns

	self (SpatialNetwork)

	
set_types(syn_type, nodes=None, fraction=None)

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
class nngt.Structure(size=None, parent=None, meta_groups=None, **kwargs)

	The basic class that contains groups of nodes and their properties.

	Variables

	
	ids – lst,
Returns the ids of nodes in the structure.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether the structure is consistent with its associated network.

	parent – Network,
Parent network.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of nodes in the structure.

Initialize Structure instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of nodes that the structure will contain.

	parent (Network, optional (default: None)) – Network associated to this structure.

	meta_groups (dict of str/Group items) – Optional set of groups. Contrary to the primary groups which
define the structure and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	struct (Structure object.)

	
add_meta_group(group, name=None, replace=False)

	Add an existing meta group to the structure.

	Parameters

	
	group (Group) – Meta group.

	name (str, optional (default: group name)) – Name of the meta group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

Note

The name of the group is automatically updated to match the name
argument.

	
add_to_group(group_name, ids)

	Add nodes to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Node ids.

	
copy()

	Return a deep copy of the structure.

	
create_group(nodes, name, properties=None, replace=False)

	Create a new group in the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(nodes, name, properties=None, replace=False)

	Create a new meta group and add it to the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod from_groups(groups, names=None, parent=None, meta_groups=None)

	Make a Structure object from a (list of)
Group object(s).

	Parameters

	
	groups (list of Group objects) – Groups that will be used to form the structure. Note that a given
node can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a structure named struct
will be retreived by either struct[0] or struct[‘0’].

	parent (Graph, optional (default: None)) – Parent if the structure is created from an exiting graph.

	meta_groups (list or dict of str/Group items) – Additional set of groups which can overlap: a node can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we already created groups `g1`, `g2`, and `g3`
struct = Structure.from_groups([g1, g2, g3],
 names=['g1', 'g2', 'g3'])

Note

If the structure is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon structure creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
get_group(nodes, numbers=False)

	Return the group of the nodes.

	Parameters

	
	nodes (int or array-like) – IDs of the nodes for which the group should be returned.

	numbers (bool, optional (default: False)) – Whether the group identifier should be returned as a number; if
False, the group names are returned.

	
get_properties(key=None, groups=None, nodes=None)

	Return the properties of nodes or groups of nodes in the structure.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	nodes (int or array-like, optional (default: None)) – IDs of the nodes for which parameters should be returned.

	Returns

	props (list) – List of all dictionaries with properties.

	
ids

	Return all the ids of the nodes inside the structure.

New in version 1.2.

	
is_valid

	Whether the structure is consistent with the associated network.

	
meta_groups

	

	
parent

	Parent Network, if it exists, otherwise None.

	
set_properties(props, nodes=None, group=None)

	Set the parameters of specific nodes or of a whole group.

New in version 2.2.

	Parameters

	
	props (dict) – Dictionary containing parameters for the nodes. Entries can be
either a single number (same for all nodes) or a list (one entry
per nodes).

	nodes (list of ints, optional (default: None)) – Ids of the nodes whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying nodes from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both nodes and group are None, all nodes will be modified.

	
size

	Number of nodes in this structure.

	
nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict
containing all the relevant informations.

	Parameters

	di_instructions (dict) – Dictionary containing the instructions to generate the graph. It must
have at least "graph_type" in its keys, with a value among
"distance_rule", "erdos_renyi", "fixed_degree", "newman_watts",
"price_scale_free", "random_scale_free". Depending on the type,
di_instructions should also contain at least all non-optional
arguments of the generator function.

See also

generation

	
nngt.get_config(key=None, detailed=False)

	Get the NNGT configuration as a dictionary.

Note

This function has no MPI barrier on it.

	
nngt.load_from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', name='LoadedGraph', directed=True, cleanup=False)

	Load a Graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Warning

Support for GraphML and DOT formats are currently limited and require
one of the non-default backends (DOT requires graph-tool).

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: “neighbour”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool`<http://graph-tool.skewed.de/>_ as library,
detected if `filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a notifier
is present in the file, names will be deduced from it; otherwise the
attributes will be numbered.
For “edge_list”, attributes may also be present as additional columns
after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper
type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which must be followed by the relevant notifiers among @shape,
@structure, and @graph.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	
nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0)
if MPI is used.

	Returns

	
	True if rank is 0, if mpi4py is not present or if MPI is not used,

	otherwise False.

	
nngt.save_to_file(graph, filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')

	Save a graph to file.

@todo: implement dot, xml/graphml, and gt formats

	Parameters

	
	graph (Graph or subclass) – Graph to save.

	filename (str) – The path to the file.

	fmt (str, optional (default: “auto”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: None)) – List of names for the edge attributes present in the graph that will be
saved to disk; by default (None), all attributes will be saved.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, with
info_name in (“attributes”, “attr_types”, “directed”, “name”,
“size”).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which are followed by the relevant notifiers among @shape,
@structure, and @graph to separate the sections.

Note

Positions are saved as bytes by numpy.nparray.tostring()

	
nngt.seed(msd=None, seeds=None)

	Seed the random generator used by NNGT
(i.e. the numpy RandomState: for details, see
numpy.random.RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]).

	Parameters

	
	msd (int, optional) – Master seed for numpy RandomState.
Must be convertible to 32-bit unsigned integers.

	seeds (list of ints, optional) – Seeds for RandomState (when using MPI).
Must be convertible to 32-bit unsigned integers, one entry per MPI
process.

	
nngt.set_config(config, value=None, silent=False)

	Set NNGT’s configuration.

	Parameters

	
	config (dict or str) – Either a full configuration dictionary or one key to be set together
with its associated value.

	value (object, optional (default: None)) – Value associated to config if config is a key.

Examples

>>> nngt.set_config({'multithreading': True, 'omp': 4})
>>> nngt.set_config('multithreading', False)

Notes

See the config file nngt/nngt.conf.default or ~/.nngt/nngt.conf for
details about your configuration.

This function has an MPI barrier on it, so it must always be called on all
processes.

See also

get_config()

	
nngt.use_backend(backend, reloading=True, silent=False)

	Allows the user to switch to a specific graph library as backend.

Warning

If Graph objects have already been created, they will no
longer be compatible with NNGT methods.

	Parameters

	
	backend (string) – Name of a graph library among ‘graph_tool’, ‘igraph’, ‘networkx’, or
‘nngt’.

	reloading (bool, optional (default: True)) – Whether the graph objects should be reloaded through reload
(this should always be set to True except when NNGT is first initiated!)

	silent (bool, optional (default: False)) – Whether the changes made to the configuration should be logged at the
DEBUG (True) or INFO (False) level.

Graph classes

	nngt.Graph([nodes, name, weighted, …])

	The basic graph class, which inherits from a library class such as graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

	nngt.SpatialGraph([nodes, name, weighted, …])

	The detailed class that inherits from Graph and implements additional properties to describe spatial graphs (i.e.

	nngt.Network([name, weighted, directed, …])

	The detailed class that inherits from Graph and implements additional properties to describe various biological functions and interact with the NEST simulator.

	nngt.SpatialNetwork(population[, name, …])

	Class that inherits from Network and SpatialGraph to provide a detailed description of a real neural network in space, i.e.

Details

	
class nngt.Graph(nodes=None, name='Graph', weighted=True, directed=True, copy_graph=None, structure=None, **kwargs)[source]

	The basic graph class, which inherits from a library class such as
graph_tool.Graph [https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], or igraph.Graph.

The objects provides several functions to easily access some basic
properties.

Initialize Graph instance

Changed in version 2.0: Renamed from_graph to copy_graph.

Changed in version 2.2: Added structure argument.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	copy_graph (Graph, optional) – An optional Graph that will be copied.

	structure (Structure, optional (default: None)) – A structure dividing the graph into specific groups, which can
be used to generate specific connectivities and visualise the
connections in a more coarse-grained manner.

	kwargs (optional keywords arguments) – Optional arguments that can be passed to the graph, e.g. a dict
containing information on the synaptic weights
(weights={"distribution": "constant", "value": 2.3} which is
equivalent to weights=2.3), the synaptic delays, or a
type information.

Note

When using copy_graph, only the topological properties are
copied (nodes, edges, and attributes), spatial and biological
properties are ignored.
To copy a graph exactly, use copy().

	Returns

	self (Graph)

	
adjacency_matrix(types=False, weights=False, mformat='csr')[source]

	Return the graph adjacency matrix.

Note

Source nodes are represented by the rows, targets by the
corresponding columns.

	Parameters

	
	types (bool, optional (default: False)) – Wether the edge types should be taken into account (negative values
for inhibitory connections).

	weights (bool or string, optional (default: False)) – Whether the adjacecy matrix should be weighted. If True, all
connections are multiply bythe associated synaptic strength; if
weight is a string, the connections are scaled bythe corresponding
edge attribute.

	mformat (str, optional (default: “csr”)) – Type of scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix that will be returned, by
default scipy.sparse.csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix].

	Returns

	mat (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix) – The adjacency matrix of the graph.

	
clear_all_edges()

	Remove all edges from the graph

	
copy()[source]

	Returns a deepcopy of the current Graph
instance

	
delete_edges(edges)

	Remove a list of edges

	
delete_nodes(nodes)

	Remove nodes (and associated edges) from the graph.

	
edge_attributes

	Access edge attributes.

See also

node_attributes,
get_edge_attributes,
new_edge_attribute,
set_edge_attribute.

	
edge_id(edge)

	Return the ID a given edge or a list of edges in the graph.
Raises an error if the edge is not in the graph or if one of the
vertices in the edge is nonexistent.

	Parameters

	edge (2-tuple or array of edges) – Edge descriptor (source, target).

	Returns

	index (int or array of ints) – Index of the given edge.

	
edge_nb()

	Number of edges in the graph

	
edges_array

	Edges of the graph, sorted by order of creation, as an array of
2-tuple.

	
static from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', from_string=False, name=None, directed=True, cleanup=False)[source]

	Import a saved graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: deduced from filename)) – The format used to save the graph. Supported formats are:
“neighbour” (neighbour list), “ssp” (scipy.sparse), “edge_list”
(list of all the edges in the graph, one edge per line,
represented by a source target-pair), “gml” (gml format,
default if filename ends with ‘.gml’), “graphml” (graphml format,
default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot
format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats
(namely “neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of
custom formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a
notifier is present in the file, names will be deduced from it;
otherwise the attributes will be numbered.
For “edge_list”, attributes may also be present as additional
columns after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that
will take the argument value as a string input and convert it to
the proper type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information.
Relevant information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are
@type=SpatialGraph/Network/SpatialNetwork, which must be
followed by the relevant notifiers among @shape,
@population, and @graph.

	from_string (bool, optional (default: False)) – Load from a string instead of a file.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
classmethod from_library(library_graph, name='ImportedGraph', weighted=True, directed=True, **kwargs)[source]

	Create a Graph by wrapping a graph object from one of
the supported libraries.

	Parameters

	
	library_graph (object) – Graph object from one of the supported libraries (graph-tool,
igraph, networkx).

	name (str, optional (default: “ImportedGraph”))

	**kwargs – Other standard arguments (see __init__())

	
classmethod from_matrix(matrix, weighted=True, directed=True, population=None, shape=None, positions=None, name=None, **kwargs)[source]

	Creates a Graph from a scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or
a dense matrix.

	Parameters

	
	matrix (scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] matrix or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Adjacency matrix.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	population (NeuralPop) – Population to associate to the new Network.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	name (str, optional) – Graph name.

	Returns

	Graph

	
get_attribute_type(attribute_name, attribute_class=None)[source]

	Return the type of an attribute (e.g. string, double, int).

	Parameters

	
	attribute_name (str) – Name of the attribute.

	attribute_class (str, optional (default: both)) – Whether attribute_name is a “node” or an “edge” attribute.

	Returns

	type (str) – Type of the attribute.

	
get_betweenness(btype='both', weights=None)[source]

	Returns the normalized betweenness centrality of the nodes and edges.

	Parameters

	
	g (Graph) – Graph to analyze.

	btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’, ‘edge’, or
‘both’). By default, both betweenness centralities are computed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or
False then use binary edges; if True, uses the ‘weight’
edge attribute, otherwise uses any valid edge attribute required.

	Returns

	
	nb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The nodes’ betweenness if btype is ‘node’ or ‘both’

	eb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The edges’ betweenness if btype is ‘edge’ or ‘both’

See also

betweenness()

	
get_degrees(mode='total', nodes=None, weights=None, edge_type='all')[source]

	Degree sequence of all the nodes.

Changed in version 2.0: Changed deg_type to mode, node_list to nodes, use_weights
to weights, and edge_type to edge_type.

	Parameters

	
	mode (string, optional (default: “total”)) – Degree type (among ‘in’, ‘out’ or ‘total’).

	nodes (list, optional (default: None)) – List of the nodes which degree should be returned

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

	edge_type (int or str, optional (default: all)) – Restrict to a given synaptic type (“excitatory”, 1, or
“inhibitory”, -1), using either the “type” edge attribute for
non-Network or the
inhibitory nodes.

	Returns

	
	degrees (numpy.array)

	.. warning :: – When using MPI with “nngt” (distributed) backend, returns only the
degrees associated to local edges. “Complete” degrees are obtained
by taking the sum of the results on all MPI processes.

	
get_delays(edges=None)[source]

	Returns the delays of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of delays

	
get_density()[source]

	Density of the graph: [image: \frac{E}{N^2}], where E is the number
of edges and N the number of nodes.

	
get_edge_attributes(edges=None, name=None)[source]

	Attributes of the graph’s edges.

Changed in version 1.0: Returns the full dict of edges attributes if called without
arguments.

New in version 0.8.

	Parameters

	
	edge (tuple or list of tuples, optional (default: None)) – Edge whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all graph’s attributes (synaptic weights, delays…)

	by default. If edge is specified, returns only the values for these

	edges. If name is specified, returns value of the attribute for each

	edge.

Note

The attributes values are ordered as the edges in
edges_array() if edges is None.

See also

get_node_attributes(),
new_edge_attribute(),
set_edge_attribute(),
new_node_attribute(),
set_node_attribute()

	
get_edge_types(edges=None)[source]

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_edges(attribute=None, value=None, source_node=None, target_node=None)[source]

	Return the edges in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned edges should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only edges with attribute
being equal to value will be returned.

	source_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those stemming from source_node.

	target_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those arriving at target_node.

See also

get_nodes(), edge_attributes

	
get_node_attributes(nodes=None, name=None)[source]

	Attributes of the graph’s edges.

Changed in version 1.0.1: Corrected default behavior and made it the same as
get_edge_attributes().

New in version 0.9.

	Parameters

	
	nodes (list of ints, optional (default: None)) – Nodes whose attribute should be displayed.

	name (str, optional (default: None)) – Name of the desired attribute.

	Returns

	
	Dict containing all nodes attributes by default. If nodes is

	specified, returns a dict containing only the attributes of these

	nodes. If name is specified, returns a list containing the values of

	the specific attribute for the required nodes (or all nodes if

	unspecified).

See also

get_edge_attributes(),
new_node_attribute(),
set_node_attribute(),
new_edge_attributes(),
set_edge_attribute()

	
get_nodes(attribute=None, value=None)[source]

	Return the nodes in the network fulfilling a given condition.

	Parameters

	
	attribute (str, optional (default: all nodes)) – Whether the attribute of the returned nodes should have a specific
value.

	value (object, optional (default : None)) – If an attribute name is passed, then only nodes with attribute
being equal to value will be returned.

See also

get_edges(), node_attributes

	
get_structure_graph()[source]

	Return a coarse-grained version of the graph containing one node
per nngt.Group.
Connections between groups are associated to the sum of all connection
weights.
If no structure is present, returns an empty Graph.

	
get_weights(edges=None)[source]

	Returns the weights of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of weights

	
graph

	Returns the underlying library object.

Warning

Do not add or remove edges directly through this object.

See also

Underlying graph objects and libraries, Consistent tools for graph analysis

	
graph_id

	Unique int [https://docs.python.org/3/library/functions.html#int] identifying the instance.

	
is_connected(mode='strong')[source]

	Return whether the graph is connected.

	Parameters

	mode (str, optional (default: “strong”)) – Whether to test connectedness with directed (“strong”) or
undirected (“weak”) connections.

References

	ig-connected

	igraph - is_connected [https://igraph.org/python/doc/igraph.GraphBase-class.html#is_connected]

	
is_directed()[source]

	Whether the graph is directed or not

	
is_network()[source]

	Whether the graph is a subclass of Network (i.e. if it
has a NeuralPop attribute).

	
is_spatial()[source]

	Whether the graph is embedded in space (i.e. is a subclass of
SpatialGraph).

	
is_weighted()[source]

	Whether the edges have weights

	
static make_network(graph, neural_pop, copy=False, **kwargs)[source]

	Turn a Graph object into a Network, or a
SpatialGraph into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert

	neural_pop (NeuralPop) – Population to associate to the new Network

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a Network.

	
static make_spatial(graph, shape=None, positions=None, copy=False)[source]

	Turn a Graph object into a SpatialGraph,
or a Network into a SpatialNetwork.

	Parameters

	
	graph (Graph or SpatialGraph) – Graph to convert.

	shape (Shape, optional (default: None)) – Shape to associate to the new SpatialGraph.

	positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

	copy (bool, optional (default: False)) – Whether the operation should be made in-place on the object or if a
new object should be returned.

Notes

In-place operation that directly converts the original graph if copy
is False, else returns the copied Graph turned into
a SpatialGraph.
The shape argument can be skipped if positions are given; in that
case, the neurons will be embedded in a rectangle that contains them
all.

	
name

	Name of the graph.

	
neighbours(node, mode='all')[source]

	Return the neighbours of node.

	Parameters

	
	node (int) – Index of the node of interest.

	mode (string, optional (default: “all”)) – Type of neighbours that will be returned: “all” returns all the
neighbours regardless of directionality, “in” returns the
in-neighbours (also called predecessors) and “out” retruns the
out-neighbours (or successors).

	Returns

	neighbours (set) – The neighbours of node.

	
new_edge(source, target, attributes=None, ignore=False, self_loop=False)

	Adding a connection to the graph, with optional properties.

Changed in version 2.0: Added self_loop argument to enable adding self-loops.

	Parameters

	
	source (int/node) – Source node.

	target (int/node) – Target node.

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})) – Dictionary containing optional edge properties. If the graph is
weighted, defaults to {"weight": 1.}, the unit weight for the
connection (synaptic strength in NEST).

	ignore (bool, optional (default: False)) – If set to True, ignore attempts to add an existing edge and accept
self-loops; otherwise an error is raised.

	self_loop (bool, optional (default: False)) – Whether to allow self-loops or not.

	Returns

	The new connection or None if nothing was added.

	
new_edge_attribute(name, value_type, values=None, val=None)[source]

	Create a new attribute for the edges.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	
new_edges(edge_list, attributes=None, check_duplicates=False, check_self_loops=True, check_existing=True, ignore_invalid=False)

	Add a list of edges to the graph.

Changed in version 2.0: Can perform all possible checks before adding new edges via the
check_duplicates check_self_loops, and check_existing
arguments.

	Parameters

	
	edge_list (list of 2-tuples or np.array of shape (edge_nb, 2)) – List of the edges that should be added as tuples (source, target)

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})) – Dictionary containing optional edge properties. If the graph is
weighted, defaults to {"weight": ones}, where ones is an
array the same length as the edge_list containing a unit weight
for each connection (synaptic strength in NEST).

	check_duplicates (bool, optional (default: False)) – Check for duplicate edges within edge_list.

	check_self_loops (bool, optional (default: True)) – Check for self-loops.

	check_existing (bool, optional (default: True)) – Check whether some of the edges in edge_list already exist in the
graph or exist multiple times in edge_list (also performs
check_duplicates).

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
whenever one of the three checks fails.

	.. warning:: – Setting check_existing to False will lead to undefined behavior
if existing edges are provided! Only use it (for speedup) if you
are sure that you are indeed only adding new edges.

	Returns

	Returns new edges only.

	
new_node(n=1, neuron_type=1, attributes=None, value_types=None, positions=None, groups=None)

	Adding a node to the graph, with optional properties.

	Parameters

	
	n (int, optional (default: 1)) – Number of nodes to add.

	neuron_type (int, optional (default: 1)) – Type of neuron (1 for excitatory, -1 for inhibitory)

	attributes (dict, optional (default: None)) – Dictionary containing the attributes of the nodes.

	value_types (dict, optional (default: None)) – Dict of the attributes types, necessary only if the attributes
do not exist yet.

	positions (array of shape (n, 2), optional (default: None)) – Positions of the neurons. Valid only for
SpatialGraph or SpatialNetwork.

	groups (str, int, or list, optional (default: None)) – NeuralGroup to which the neurons belong. Valid
only for Network or SpatialNetwork.

	Returns

	The node or a list of the nodes created.

	
new_node_attribute(name, value_type, values=None, val=None)[source]

	Create a new attribute for the nodes.

	Parameters

	
	name (str) – The name of the new attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

	values (array, optional (default: None)) – Values with which the node attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all nodes.

See also

new_edge_attribute(),
set_node_attribute(),
get_node_attributes(),
set_edge_attribute(),
get_edge_attributes()

	
node_attributes

	Access node attributes.

See also

edge_attributes,
get_node_attributes,
new_node_attribute,
set_node_attribute.

	
node_nb()

	Number of nodes in the graph

	
classmethod num_graphs()[source]

	Returns the number of alive instances.

	
set_delays(delay=None, elist=None, distribution=None, parameters=None, noise_scale=None)[source]

	Set the delay for spike propagation between neurons.

	Parameters

	
	delay (float or class:numpy.array, optional (default: None)) – Value or list of delays (for user defined delays).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined delays).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the delay distribution.

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the delays.

	
set_edge_attribute(attribute, values=None, val=None, value_type=None, edges=None)[source]

	Set attributes to the connections between neurons.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	edges (list of edges or array of shape (E, 2), optional (default: all)) – Edges whose attributes should be set. Others will remain unchanged.

See also

set_node_attribute(),
get_edge_attributes(),
new_edge_attribute(),
new_node_attribute(),
get_node_attributes()

	
set_name(name='')[source]

	set graph name

	
set_node_attribute(attribute, values=None, val=None, value_type=None, nodes=None)[source]

	Set attributes to the connections between neurons.

	Parameters

	
	attribute (str) – The name of the attribute.

	value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

	values (array, optional (default: None)) – Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)

	val (int, float or str , optional (default: None)) – Identical value for all edges.

	value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’, ‘string’. Only used
if the attribute does not exist and must be created.

	nodes (list of nodes, optional (default: all)) – Nodes whose attributes should be set. Others will remain unchanged.

See also

set_edge_attribute(),
new_node_attribute(),
get_node_attributes(),
new_edge_attribute(),
get_edge_attributes(),

	
set_types(edge_type, nodes=None, fraction=None)[source]

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
set_weights(weight=None, elist=None, distribution=None, parameters=None, noise_scale=None)[source]

	Set the synaptic weights.

	Parameters

	
	weight (float or class:numpy.array, optional (default: None)) – Value or list of the weights (for user defined weights).

	elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined weights).

	distribution (class:string, optional (default: None)) – Type of distribution (choose among “constant”, “uniform”,
“gaussian”, “lognormal”, “lin_corr”, “log_corr”).

	parameters (dict, optional (default: {})) – Dictionary containing the properties of the weight distribution.
Properties are as follow for the distributions

	‘constant’: ‘value’

	‘uniform’: ‘lower’, ‘upper’

	‘gaussian’: ‘avg’, ‘std’

	‘lognormal’: ‘position’, ‘scale’

	noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian noise that should be applied
on the weights.

Note

If distribution and parameters are provided and the weights are set
for the whole graph (elist is None), then the distribution properties
will be kept as the new default for subsequent edges. That is, if new
edges are created without specifying their weights, then these new
weights will automatically be drawn from this previous distribution.

	
structure

	Object structuring the graph into specific groups.

Note

Points to population if the graph is a
Network.

	
to_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')[source]

	Save graph to file; options detailed below.

See also

nngt.lib.save_to_file() function for options.

	
type

	Type of the graph.

	
class nngt.SpatialGraph(nodes=0, name='SpatialGraph', weighted=True, directed=True, from_graph=None, shape=None, positions=None, **kwargs)[source]

	The detailed class that inherits from Graph and implements
additional properties to describe spatial graphs (i.e. graph where the
structure is embedded in space.

Initialize SpatialClass instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of
side 1 cm)

	positions (numpy.array (N, 2), optional (default: None)) – Positions of the neurons; if not specified and nodes is not 0,
then neurons will be reparted at random inside the
Shape object of the instance.

	**kwargs (keyword arguments for Graph or) – Shape if no shape was given.

	Returns

	self (SpatialGraph)

	
get_positions(nodes=None)[source]

	Returns a copy of the nodes’ positions as a (N, 2) array.

	Parameters

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be returned.

	
set_positions(positions, nodes=None)[source]

	Set the nodes’ positions as a (N, 2) array.

	Parameters

	
	positions (array-like) – List of positions, of shape (N, 2).

	nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the position should be set.

	
shape

	The environment’s spatial structure.

	
class nngt.Network(name='Network', weighted=True, directed=True, from_graph=None, population=None, inh_weight_factor=1.0, **kwargs)[source]

	The detailed class that inherits from Graph and implements
additional properties to describe various biological functions
and interact with the NEST simulator.

Initializes Network instance.

	Parameters

	
	nodes (int, optional (default: 0)) – Number of nodes in the graph.

	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	from_graph (GraphObject, optional (default: None)) – An optional GraphObject to serve as base.

	population (nngt.NeuralPop, (default: None)) – An object containing the neural groups and their properties:
model(s) to use in NEST to simulate the neurons as well as their
parameters.

	inh_weight_factor (float, optional (default: 1.)) – Factor to apply to inhibitory synapses, to compensate for example
the strength difference due to timescales between excitatory and
inhibitory synapses.

	Returns

	self (Network)

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, **kwargs)[source]

	Generate a network containing a population of two neural groups:
inhibitory and excitatory neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	i_ratio (double, optional (default: 0.2)) – Ratio of inhibitory neurons: [image: \frac{N_i}{N_e+N_i}].

	en_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the excitatory neuron.

	en_param (dict, optional (default: {})) – Dictionary of parameters for the the excitatory neuron.

	in_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the inhibitory neuron.

	in_param (dict, optional (default: {})) – Dictionary of parameters for the the inhibitory neuron.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	Returns

	net (Network or subclass) – Network of disconnected excitatory and inhibitory neurons.

See also

exc_and_inhib()

	
classmethod from_gids(gids, get_connections=True, get_params=False, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)[source]

	Generate a network from gids.

Warning

Unless get_connections and get_params is True, or if your
population is homogeneous and you provide the required information, the
information contained by the network and its population attribute
will be erroneous!
To prevent conflicts the to_nest() function is not
available. If you know what you are doing, you should be able to find a
workaround…

	Parameters

	
	gids (array-like) – Ids of the neurons in NEST or simply user specified ids.

	get_params (bool, optional (default: True)) – Whether the parameters should be obtained from NEST (can be very
slow).

	neuron_model (string, optional (default: None)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
get_edge_types()[source]

	Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

	Parameters

	edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should be returned.

	Returns

	the list of types (1 for excitatory, -1 for inhibitory)

	
get_neuron_type(neuron_ids)[source]

	Return the type of the neurons (+1 for excitatory, -1 for inhibitory).

	Parameters

	neuron_ids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
id_from_nest_gid(gids)[source]

	Return the ids of the nodes in the nngt.Network instance from
the corresponding NEST gids.

	Parameters

	gids (int or tuple) – NEST gids.

	Returns

	ids (int or tuple) – Ids in the network. Same type as the requested gids type.

	
nest_gids

	

	
neuron_properties(idx_neuron)[source]

	Properties of a neuron in the graph.

	Parameters

	idx_neuron (int) – Index of a neuron in the graph.

	Returns

	dict of the neuron’s properties.

	
classmethod num_networks()[source]

	Returns the number of alive instances.

	
population

	NeuralPop that divides the neurons into groups with
specific properties.

	
set_types(edge_type, nodes=None, fraction=None)[source]

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

	
to_nest(send_only=None, weights=True)[source]

	Send the network to NEST.

See also

make_nest_network() for parameters

	
classmethod uniform(size, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, **kwargs)[source]

	Generate a network containing only one type of neurons.

	Parameters

	
	size (int) – Number of neurons in the network.

	neuron_model (string, optional (default: ‘aief_cond_alpha’)) – Name of the NEST neural model to use when simulating the activity.

	neuron_param (dict, optional (default: {})) – Dictionary containing the neural parameters; the default value will
make NEST use the default parameters of the model.

	syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use when simulating the activity.

	syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters; the default value
will make NEST use the default parameters of the model.

	Returns

	net (Network or subclass) – Uniform network of disconnected neurons.

	
class nngt.SpatialNetwork(population, name='SpatialNetwork', weighted=True, directed=True, shape=None, from_graph=None, positions=None, **kwargs)[source]

	Class that inherits from Network and
SpatialGraph to provide a detailed description of a real
neural network in space, i.e. with positions and biological properties to
interact with NEST.

Initialize SpatialNetwork instance

	Parameters

	
	name (string, optional (default: “Graph”)) – The name of this Graph instance.

	weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

	directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads to a square of side
1 cm)

	positions (numpy.array, optional (default: None)) – Positions of the neurons; if not specified and nodes != 0, then
neurons will be reparted at random inside the
Shape object of the instance.

	population (class:~nngt.NeuralPop, optional (default: None)) – Population from which the network will be built.

	Returns

	self (SpatialNetwork)

	
set_types(syn_type, nodes=None, fraction=None)[source]

	Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning

The special “type” attribute cannot be modified when using graphs
that inherit from the Network class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they
belong to.

	Parameters

	
	edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also 1) or
‘inhibitory’ (also -1).

	nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the
graph; if it is a list, ids of the edge_type nodes.

	fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as edge_type (if
nodes is not None, it is the fraction of the specified nodes’
edges, otherwise it is the fraction of all edges in the graph).

	Returns

	t_list (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the types in an order that matches the edges attribute of
the graph.

Main functions

	nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict containing all the relevant informations.

	nngt.get_config([key, detailed])

	Get the NNGT configuration as a dictionary.

	nngt.load_from_file(filename[, fmt, …])

	Load a Graph from a file.

	nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0) if MPI is used.

	nngt.save_to_file(graph, filename[, fmt, …])

	Save a graph to file.

	nngt.seed([msd, seeds])

	Seed the random generator used by NNGT (i.e.

	nngt.set_config(config[, value, silent])

	Set NNGT’s configuration.

	nngt.use_backend(backend[, reloading, silent])

	Allows the user to switch to a specific graph library as backend.

Details

	
nngt.generate(di_instructions, **kwargs)

	Generate a Graph or one of its subclasses from a dict
containing all the relevant informations.

	Parameters

	di_instructions (dict) – Dictionary containing the instructions to generate the graph. It must
have at least "graph_type" in its keys, with a value among
"distance_rule", "erdos_renyi", "fixed_degree", "newman_watts",
"price_scale_free", "random_scale_free". Depending on the type,
di_instructions should also contain at least all non-optional
arguments of the generator function.

See also

generation

	
nngt.get_config(key=None, detailed=False)

	Get the NNGT configuration as a dictionary.

Note

This function has no MPI barrier on it.

	
nngt.load_from_file(filename, fmt='auto', separator=' ', secondary=';', attributes=None, attributes_types=None, notifier='@', ignore='#', name='LoadedGraph', directed=True, cleanup=False)

	Load a Graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Warning

Support for GraphML and DOT formats are currently limited and require
one of the non-default backends (DOT requires graph-tool).

	Parameters

	
	filename (str) – The path to the file.

	fmt (str, optional (default: “neighbour”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool`<http://graph-tool.skewed.de/>_ as library,
detected if `filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: [])) – List of names for the attributes present in the file. If a notifier
is present in the file, names will be deduced from it; otherwise the
attributes will be numbered.
For “edge_list”, attributes may also be present as additional columns
after the source and the target.

	attributes_types (dict, optional (default: str)) – Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper
type.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and
associated info_value are of type (list, bool, str,
int).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which must be followed by the relevant notifiers among @shape,
@structure, and @graph.

	ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

	name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the graph.

	directed (bool, optional (default: from file information or True)) – Whether the graph is directed or not.

	cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.

	Returns

	graph (Graph or subclass) – Loaded graph.

	
nngt.num_mpi_processes()

	Returns the number of MPI processes (1 if MPI is not used)

	
nngt.on_master_process()

	Check whether the current code is executing on the master process (rank 0)
if MPI is used.

	Returns

	
	True if rank is 0, if mpi4py is not present or if MPI is not used,

	otherwise False.

	
nngt.save_to_file(graph, filename, fmt='auto', separator=' ', secondary=';', attributes=None, notifier='@')

	Save a graph to file.

@todo: implement dot, xml/graphml, and gt formats

	Parameters

	
	graph (Graph or subclass) – Graph to save.

	filename (str) – The path to the file.

	fmt (str, optional (default: “auto”)) – The format used to save the graph. Supported formats are: “neighbour”
(neighbour list, default if format cannot be deduced automatically),
“ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph,
one edge per line, represented by a source target-pair), “gml”
(gml format, default if filename ends with ‘.gml’), “graphml”
(graphml format, default if filename ends with ‘.graphml’ or ‘.xml’),
“dot” (dot format, default if filename ends with ‘.dot’), “gt” (only
when using graph_tool [http://graph-tool.skewed.de/] as library,
detected if filename ends with ‘.gt’).

	separator (str, optional (default ” “)) – separator used to separate inputs in the case of custom formats (namely
“neighbour” and “edge_list”)

	secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in the case of custom
formats.

	attributes (list, optional (default: None)) – List of names for the edge attributes present in the graph that will be
saved to disk; by default (None), all attributes will be saved.

	notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull information. Relevant
information are formatted @info_name=info_value, with
info_name in (“attributes”, “attr_types”, “directed”, “name”,
“size”).
Additional notifiers are @type=SpatialGraph/Network/SpatialNetwork,
which are followed by the relevant notifiers among @shape,
@structure, and @graph to separate the sections.

Note

Positions are saved as bytes by numpy.nparray.tostring()

	
nngt.seed(msd=None, seeds=None)

	Seed the random generator used by NNGT
(i.e. the numpy RandomState: for details, see
numpy.random.RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]).

	Parameters

	
	msd (int, optional) – Master seed for numpy RandomState.
Must be convertible to 32-bit unsigned integers.

	seeds (list of ints, optional) – Seeds for RandomState (when using MPI).
Must be convertible to 32-bit unsigned integers, one entry per MPI
process.

	
nngt.set_config(config, value=None, silent=False)

	Set NNGT’s configuration.

	Parameters

	
	config (dict or str) – Either a full configuration dictionary or one key to be set together
with its associated value.

	value (object, optional (default: None)) – Value associated to config if config is a key.

Examples

>>> nngt.set_config({'multithreading': True, 'omp': 4})
>>> nngt.set_config('multithreading', False)

Notes

See the config file nngt/nngt.conf.default or ~/.nngt/nngt.conf for
details about your configuration.

This function has an MPI barrier on it, so it must always be called on all
processes.

See also

get_config()

	
nngt.use_backend(backend, reloading=True, silent=False)

	Allows the user to switch to a specific graph library as backend.

Warning

If Graph objects have already been created, they will no
longer be compatible with NNGT methods.

	Parameters

	
	backend (string) – Name of a graph library among ‘graph_tool’, ‘igraph’, ‘networkx’, or
‘nngt’.

	reloading (bool, optional (default: True)) – Whether the graph objects should be reloaded through reload
(this should always be set to True except when NNGT is first initiated!)

	silent (bool, optional (default: False)) – Whether the changes made to the configuration should be logged at the
DEBUG (True) or INFO (False) level.

Side classes

	nngt.Group([nodes, properties, name])

	Class defining groups of nodes.

	nngt.GroupProperty(size[, constraints, …])

	Class defining the properties needed to create groups of neurons from an existing Graph or one of its subclasses.

	nngt.MetaGroup([nodes, name])

	Class defining a meta-group of nodes.

	nngt.MetaNeuralGroup([nodes, name, properties])

	Class defining a meta-group of neurons.

	nngt.NeuralGroup([nodes, neuron_type, …])

	Class defining groups of neurons.

	nngt.NeuralPop([size, parent, meta_groups, …])

	The basic class that contains groups of neurons and their properties.

	nngt.Structure([size, parent, meta_groups])

	The basic class that contains groups of nodes and their properties.

Details

	
class nngt.Group(nodes=None, properties=None, name=None, **kwargs)

	Class defining groups of nodes.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

	properties – dict, optional (default: {})
properties associated to the nodes

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not.

Note

A Group contains a set of nodes that are unique;
the size of the group is the number of unique nodes contained in the group.
Passing non-unique nodes will automatically convert them to a unique set.

Warning

Equality between Group`s only compares
the size and ``properties` attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
nodes in an existing graph.

	properties (dict, optional (default: {})) – Dictionary containing the properties associated to the nodes.

	Returns

	A new Group instance.

	
add_nodes(nodes)

	Add nodes to the group.

	Parameters

	nodes (list of ids)

	
copy()

	Return a deep copy of the group.

	
ids

	

	
is_metagroup

	

	
is_valid

	i.e. if it has
either a size or some ids associated to it.

	Type

	Whether the group can be used in a structure

	
name

	

	
parent

	Return the parent Structure of the group

	
properties

	

	
size

	

	
class nngt.GroupProperty(size, constraints={}, neuron_model=None, neuron_param={}, syn_model=None, syn_param={})

	Class defining the properties needed to create groups of neurons from an
existing Graph or one of its subclasses.

	Variables

	
	size – int [https://docs.python.org/3/library/functions.html#int]
Size of the group.

	constraints – dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default: {})
Constraints to respect when building the
NeuralGroup .

	neuron_model – str, optional (default: None)
name of the model to use when simulating the activity of this group.

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

Create a new instance of GroupProperties.

Notes

	The constraints can be chosen among:

	
	“avg_deg”, “min_deg”, “max_deg” (int [https://docs.python.org/3/library/functions.html#int]) to constrain the
total degree of the nodes

	“avg/min/max_in_deg”, “avg/min/max_out_deg”, to work with the
in/out-degrees

	“avg/min/max_betw” (double) to constrain the betweenness
centrality

	“in_shape” (nngt.geometry.Shape) to chose neurons inside
a given spatial region

Examples

>>> di_constrain = { "avg_deg": 10, "min_betw": 0.001 }
>>> group_prop = GroupProperties(200, constraints=di_constrain)

	
class nngt.MetaGroup(nodes=None, name=None, **kwargs)

	Class defining a meta-group of nodes.

Its main variables are:

	Variables

	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the nodes in this group.

Calling the class creates a group of nodes.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the nodes in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaGroup object.

	
class nngt.MetaNeuralGroup(nodes=None, name=None, properties=None, **kwargs)

	Class defining a meta-group of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is
None for meta-groups)

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of
the neurons in an existing graph.

	name (str, optional (default: “Group N”)) – Name of the meta-group.

	Returns

	A new MetaNeuralGroup object.

	
excitatory

	Return the ids of all excitatory nodes inside the meta-group.

	
inhibitory

	Return the ids of all inhibitory nodes inside the meta-group.

	
properties

	

	
class nngt.NeuralGroup(nodes=None, neuron_type=1, neuron_model=None, neuron_param=None, name=None, **kwargs)

	Class defining groups of neurons.

Its main variables are:

	Variables

	
	ids – list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]
the ids of the neurons in this group.

	neuron_type – int [https://docs.python.org/3/library/functions.html#int]
the default is 1 for excitatory neurons; -1 is for inhibitory
neurons; meta-groups must have neuron_type set to None

	neuron_model – str, optional (default: None)
the name of the model to use when simulating the activity of this group

	neuron_param – dict, optional (default: {})
the parameters to use (if they differ from the model’s defaults)

	is_metagroup – bool [https://docs.python.org/3/library/functions.html#bool]
whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Warning

Equality between NeuralGroup`s only compares
the size and neuronal type, ``model` and param attributes.
This means that groups differing only by their ids will register as
equal.

Calling the class creates a group of neurons.
The default is an empty group but it is not a valid object for
most use cases.

	Parameters

	
	nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteriori, NNGT indices of the
neurons in an existing graph.

	neuron_type (int, optional (default: 1)) – Type of the neurons (1 for excitatory, -1 for inhibitory) or None
if not relevant (only allowed for metag roups).

	neuron_model (str, optional (default: None)) – NEST model for the neuron.

	neuron_param (dict, optional (default: model defaults)) – Dictionary containing the parameters associated to the NEST model.

	Returns

	A new NeuralGroup instance.

	
copy()

	Return a deep copy of the group.

	
has_model

	

	
ids

	

	
nest_gids

	

	
neuron_model

	

	
neuron_param

	

	
neuron_type

	

	
properties

	

	
class nngt.NeuralPop(size=None, parent=None, meta_groups=None, with_models=True, **kwargs)

	The basic class that contains groups of neurons and their properties.

	Variables

	
	has_models – bool [https://docs.python.org/3/library/functions.html#bool],
True if every group has a model attribute.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of neurons in the population.

	syn_spec – dict [https://docs.python.org/3/library/stdtypes.html#dict],
Dictionary containing informations about the synapses between the
different groups in the population.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether this population can be used to create a network in NEST.

Initialize NeuralPop instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of neurons that the population will contain.

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (dict of str/NeuralGroup items) – Optional set of groups. Contrary to the primary groups which
define the population and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	with_models (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the population’s groups contain models to use in NEST

	*args (items for OrderedDict parent)

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	pop (NeuralPop object.)

	
add_to_group(group_name, ids)

	Add neurons to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Neuron ids.

	
copy()

	Return a deep copy of the population.

	
create_group(neurons, name, neuron_type=1, neuron_model=None, neuron_param=None, replace=False)

	Create a new group in the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(neurons, name, neuron_param=None, replace=False)

	Create a new meta group and add it to the population.

	Parameters

	
	neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

	name (str) – Name of the group.

	neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for inhibitory.

	neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

	neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the NEST simulator. If None,
default parameters will be used.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod exc_and_inhib(size, iratio=0.2, en_model='aeif_cond_alpha', en_param=None, in_model='aeif_cond_alpha', in_param=None, syn_spec=None, parent=None, meta_groups=None)

	Make a NeuralPop with a given ratio of inhibitory and excitatory
neurons.

Changed in version 0.8: Added syn_spec parameter.

Changed in version 1.2: Added meta_groups parameter

	Parameters

	
	size (int) – Number of neurons contained by the population.

	iratio (float, optional (default: 0.2)) – Fraction of the neurons that will be inhibitory.

	en_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe excitatory
neurons.

	en_param (dict, optional (default: default NEST parameters)) – Parameters of the excitatory neuron model.

	in_model (str, optional (default: default_neuron)) – Name of the NEST model that will be used to describe inhibitory
neurons.

	in_param (dict, optional (default: default NEST parameters)) – Parameters of the inhibitory neuron model.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value. If provided, all connections
between groups will be set according to the values contained in
syn_spec. Valid keys are:

	(‘excitatory’, ‘excitatory’)

	(‘excitatory’, ‘inhibitory’)

	(‘inhibitory’, ‘excitatory’)

	(‘inhibitory’, ‘inhibitory’)

	parent (Network, optional (default: None)) – Network associated to this population.

	meta_groups (list dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary ‘excitatory’
and ‘inhibitory’ groups, meta groups are therefore no necessarily
disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

See also

nest.Connect(), as()

	
excitatory

	Return the ids of all excitatory nodes inside the population.

New in version 1.3.

	
classmethod from_groups(groups, names=None, syn_spec=None, parent=None, meta_groups=None, with_models=True)

	Make a NeuralPop object from a (list of) NeuralGroup
object(s).

	Parameters

	
	groups (list of NeuralGroup objects) – Groups that will be used to form the population. Note that a given
neuron can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a population named pop
will be retreived by either pop[0] or pop[‘0’].

	parent (Graph, optional (default: None)) – Parent if the population is created from an exiting graph.

	syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge between groups as key and the
associated synaptic parameters for the post-synaptic neurons (i.e.
those of the second group) as value.
If a ‘default’ entry is provided, all unspecified connections will
be set to its value.

	meta_groups (list or dict of str/NeuralGroup items) – Additional set of groups which can overlap: a neuron can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	with_model (bool, optional (default: True)) – Whether the groups require models (set to False to use populations
for graph theoretical purposes, without NEST interaction)

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we created groups `g1`, `g2`, and `g3`
prop = {
 ('g1', 'g2'): {'model': 'tsodyks2_synapse', 'tau_fac': 50.},
 ('g1', g3'): {'weight': 100.},
 ...
}
pop = NeuronalPop.from_groups(
 [g1, g2, g3], names=['g1', 'g2', 'g3'], syn_spec=prop)

Note

If the population is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon population creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
classmethod from_network(graph, *args)

	Make a NeuralPop object from a network. The groups of neurons are
determined using instructions from an arbitrary number of
GroupProperties.

	
get_param(groups=None, neurons=None, element='neuron')

	Return the element (neuron or synapse) parameters for neurons or
groups of neurons in the population.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	neurons (int or array-like, optional (default: None)) – IDs of the neurons for which parameters should be returned.

	element (list of str, optional (default: "neuron")) – Element for which the parameters should be returned (either
"neuron" or "synapse").

	Returns

	param (list) – List of all dictionaries with the elements’ parameters.

	
has_models

	

	
inhibitory

	Return the ids of all inhibitory nodes inside the population.

New in version 1.3.

	
nest_gids

	Return the NEST gids of the nodes inside the population.

New in version 1.3.

	
set_model(model, group=None)

	Set the groups’ models.

	Parameters

	
	model (dict) – Dictionary containing the model type as key (“neuron” or “synapse”)
and the model name as value (e.g. {“neuron”: “iaf_neuron”}).

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups which models
should be updated.

Note

By default, synapses are registered as “static_synapse”s in NEST;
because of this, only the neuron_model attribute is checked by
the has_models function: it will answer True if all groups
have a ‘non-None’ neuron_model attribute.

Warning

No check is performed on the validity of the models, which means
that errors will only be detected when building the graph in NEST.

	
set_neuron_param(params, neurons=None, group=None)

	Set the parameters of specific neurons or of a whole group.

New in version 1.0.

	Parameters

	
	params (dict) – Dictionary containing parameters for the neurons. Entries can be
either a single number (same for all neurons) or a list (one entry
per neuron).

	neurons (list of ints, optional (default: None)) – Ids of the neurons whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying neurons from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both neurons and group are None, all neurons will be modified.

Warning

No check is performed on the validity of the parameters, which means
that errors will only be detected when building the graph in NEST.

	
syn_spec

	The properties of the synaptic connections between groups.
Returns a dict [https://docs.python.org/3/library/stdtypes.html#dict] containing tuples as keys and dicts of parameters
as values.

The keys are tuples containing the names of the groups in the
population, with the projecting group first (presynaptic neurons) and
the receiving group last (post-synaptic neurons).

Example

For a population of excitatory (“exc”) and inhibitory (“inh”) neurons.

syn_spec = {
 ("exc", "exc"): {'model': 'stdp_synapse', 'weight': 2.5},
 ("exc", "inh"): {'model': 'static_synapse'},
 ("exc", "inh"): {'model': 'stdp_synapse', 'delay': 5.},
 ("inh", "inh"): {
 'model': 'stdp_synapse', 'weight': 5.,
 'delay': ('normal', 5., 2.)}
 }
}

New in version 0.8.

	
classmethod uniform(size, neuron_type=1, neuron_model='aeif_cond_alpha', neuron_param=None, syn_model='static_synapse', syn_param=None, parent=None, meta_groups=None)

	Make a NeuralPop of identical neurons belonging to a single “default”
group.

Changed in version 1.2: Added neuron_type and meta_groups parameters

	Parameters

	
	size (int) – Number of neurons in the population.

	neuron_type (int, optional (default: 1)) – Type of the neurons in the population: 1 for excitatory or -1 for
inhibitory.

	neuron_model (str, optional (default: default neuron model)) – Neuronal model for the simulator.

	neuron_param (dict, optional (default: default neuron parameters)) – Parameters associated to neuron_model.

	syn_model (str, optional (default: default static synapse)) – Synapse model for the simulator.

	syn_param (dict, optional (default: default synaptic parameters)) – Parameters associated to syn_model.

	parent (Graph object, optional (default: None)) – Parent graph described by the population.

	meta_groups (list or dict of str/NeuralGroup items) – Set of groups which can overlap: a neuron can belong to
several different meta groups, i.e. they do no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

	
class nngt.Structure(size=None, parent=None, meta_groups=None, **kwargs)

	The basic class that contains groups of nodes and their properties.

	Variables

	
	ids – lst,
Returns the ids of nodes in the structure.

	is_valid – bool [https://docs.python.org/3/library/functions.html#bool],
Whether the structure is consistent with its associated network.

	parent – Network,
Parent network.

	size – int [https://docs.python.org/3/library/functions.html#int],
Returns the number of nodes in the structure.

Initialize Structure instance.

	Parameters

	
	size (int, optional (default: 0)) – Number of nodes that the structure will contain.

	parent (Network, optional (default: None)) – Network associated to this structure.

	meta_groups (dict of str/Group items) – Optional set of groups. Contrary to the primary groups which
define the structure and must be disjoint, meta groups can
overlap: a neuron can belong to several different meta
groups.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Returns

	struct (Structure object.)

	
add_meta_group(group, name=None, replace=False)

	Add an existing meta group to the structure.

	Parameters

	
	group (Group) – Meta group.

	name (str, optional (default: group name)) – Name of the meta group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

Note

The name of the group is automatically updated to match the name
argument.

	
add_to_group(group_name, ids)

	Add nodes to a specific group.

	Parameters

	
	group_name (str or int) – Name or index of the group.

	ids (list or 1D-array) – Node ids.

	
copy()

	Return a deep copy of the structure.

	
create_group(nodes, name, properties=None, replace=False)

	Create a new group in the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
create_meta_group(nodes, name, properties=None, replace=False)

	Create a new meta group and add it to the structure.

	Parameters

	
	nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

	name (str) – Name of the group.

	properties (dict, optional (default: None)) – Properties associated to the nodes in this group.

	replace (bool, optional (default: False)) – Whether to override previous exiting meta group with same name.

	
classmethod from_groups(groups, names=None, parent=None, meta_groups=None)

	Make a Structure object from a (list of)
Group object(s).

	Parameters

	
	groups (list of Group objects) – Groups that will be used to form the structure. Note that a given
node can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

	names (list of str, optional (default: None)) – Names that can be used as keys to retreive a specific group. If not
provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string.
In the latter case, the first group in a structure named struct
will be retreived by either struct[0] or struct[‘0’].

	parent (Graph, optional (default: None)) – Parent if the structure is created from an exiting graph.

	meta_groups (list or dict of str/Group items) – Additional set of groups which can overlap: a node can belong to
several different meta groups. Contrary to the primary groups, meta
groups do therefore no need to be disjoint.
If all meta-groups have a name, they can be passed directly through
a list; otherwise a dict is necessary.

Example

For synaptic properties, if provided in syn_spec, all connections
between groups will be set according to the values.
Keys can be either group names or types (1 for excitatory, -1 for
inhibitory). Because of this, several combination can be available for
the connections between two groups. Because of this, priority is given
to source (presynaptic properties), i.e. NNGT will look for the entry
matching the first group name as source before looking for entries
matching the second group name as target.

we already created groups `g1`, `g2`, and `g3`
struct = Structure.from_groups([g1, g2, g3],
 names=['g1', 'g2', 'g3'])

Note

If the structure is not generated from an existing
Graph and the groups do not contain explicit ids, then
the ids will be generated upon structure creation: the first group, of
size N0, will be associated the indices 0 to N0 - 1, the second group
(size N1), will get N0 to N0 + N1 - 1, etc.

	
get_group(nodes, numbers=False)

	Return the group of the nodes.

	Parameters

	
	nodes (int or array-like) – IDs of the nodes for which the group should be returned.

	numbers (bool, optional (default: False)) – Whether the group identifier should be returned as a number; if
False, the group names are returned.

	
get_properties(key=None, groups=None, nodes=None)

	Return the properties of nodes or groups of nodes in the structure.

	Parameters

	
	groups (str, int or array-like, optional (default: None)) – Names or numbers of the groups for which the neural properties
should be returned.

	nodes (int or array-like, optional (default: None)) – IDs of the nodes for which parameters should be returned.

	Returns

	props (list) – List of all dictionaries with properties.

	
ids

	Return all the ids of the nodes inside the structure.

New in version 1.2.

	
is_valid

	Whether the structure is consistent with the associated network.

	
meta_groups

	

	
parent

	Parent Network, if it exists, otherwise None.

	
set_properties(props, nodes=None, group=None)

	Set the parameters of specific nodes or of a whole group.

New in version 2.2.

	Parameters

	
	props (dict) – Dictionary containing parameters for the nodes. Entries can be
either a single number (same for all nodes) or a list (one entry
per nodes).

	nodes (list of ints, optional (default: None)) – Ids of the nodes whose parameters should be modified.

	group (list of strings, optional (default: None)) – List of strings containing the names of the groups whose parameters
should be updated. When modifying nodes from a single group, it
is still usefull to specify the group name to speed up the pace.

Note

If both nodes and group are None, all nodes will be modified.

	
size

	Number of nodes in this structure.

Analysis module

Tools to analyze neuronal networks, using either their topological properties,
their activity, or more importantly, taking both into account.

Content

	nngt.analysis.adjacency_matrix(graph[, …])

	Adjacency matrix of the graph.

	nngt.analysis.all_shortest_paths(g, source, …)

	Yields all shortest paths from source to target.

	nngt.analysis.assortativity(g, degree[, weights])

	Returns the assortativity of the graph.

	nngt.analysis.average_path_length(g[, …])

	Returns the average shortest path length between sources and targets.

	nngt.analysis.bayesian_blocks(t[, x, sigma, …])

	Bayesian Blocks Implementation

	nngt.analysis.betweenness(g[, btype, weights])

	Returns the normalized betweenness centrality of the nodes and edges.

	nngt.analysis.betweenness_distrib(graph[, …])

	Betweenness distribution of a graph.

	nngt.analysis.binning(x[, bins, log])

	Binning function providing automatic binning using Bayesian blocks in addition to standard linear and logarithmic uniform bins.

	nngt.analysis.closeness(g[, weights, nodes, …])

	Returns the closeness centrality of some nodes.

	nngt.analysis.connected_components(g[, ctype])

	Returns the connected component to which each node belongs.

	nngt.analysis.degree_distrib(graph[, …])

	Degree distribution of a graph.

	nngt.analysis.diameter(g[, directed, …])

	Returns the diameter of the graph.

	nngt.analysis.get_b2([network, …])

	Return the B2 coefficient for the neurons.

	nngt.analysis.get_firing_rate([network, …])

	Return the average firing rate for the neurons.

	nngt.analysis.get_spikes([recorder, …])

	Return a 2D sparse matrix, where:

	nngt.analysis.global_clustering(g[, …])

	Returns the global clustering coefficient.

	nngt.analysis.global_clustering_binary_undirected(g)

	Returns the undirected global clustering coefficient.

	nngt.analysis.local_closure(g[, directed, …])

	Compute the local closure for each node, as defined in [Yin2019] as the fraction of 2-walks that are closed.

	nngt.analysis.local_clustering(g[, nodes, …])

	Local (weighted directed) clustering coefficient of the nodes, ignoring self-loops.

	nngt.analysis.local_clustering_binary_undirected(g)

	Returns the undirected local clustering coefficient of some nodes.

	nngt.analysis.node_attributes(network, …)

	Return node attributes for a set of nodes.

	nngt.analysis.num_iedges(graph)

	Returns the number of inhibitory connections.

	nngt.analysis.reciprocity(g)

	Calculate the edge reciprocity of the graph.

	nngt.analysis.shortest_distance(g[, …])

	Returns the length of the shortest paths between sources`and `targets.

	nngt.analysis.shortest_path(g, source, target)

	Returns a shortest path between source`and `target.

	nngt.analysis.small_world_propensity(g[, …])

	Returns the small-world propensity of the graph as first defined in [Muldoon2016].

	nngt.analysis.spectral_radius(graph[, …])

	Spectral radius of the graph, defined as the eigenvalue of greatest module.

	nngt.analysis.subgraph_centrality(graph[, …])

	Returns the subgraph centrality for each node in the graph.

	nngt.analysis.total_firing_rate([network, …])

	Computes the total firing rate of the network from the spike times.

	nngt.analysis.transitivity(g[, directed, …])

	Same as global_clustering().

	nngt.analysis.triangle_count(g[, nodes, …])

	Returns the number or the strength (also called intensity) of triangles for each node.

	nngt.analysis.triplet_count(g[, nodes, …])

	Returns the number or the strength (also called intensity) of triplets for each node.

Details

	
nngt.analysis.adjacency_matrix(graph, types=False, weights=False)

	Adjacency matrix of the graph.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	types (bool, optional (default: False)) – Whether the excitatory/inhibitory type of the connnections should be
considered (only if the weighing factor is the synaptic strength).

	weights (bool or string, optional (default: False)) – Whether weights should be taken into account; if True, then connections
are weighed by their synaptic strength, if False, then a binary matrix
is returned, if weights is a string, then the ponderation is the
correponding value of the edge attribute (e.g. “distance” will return
an adjacency matrix where each connection is multiplied by its length).

	Returns

	a csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix].

References

	gt-adjacency

	graph-tool - spectral.adjacency [https://graph-tool.skewed.de/static/doc/spectral.html#graph_tool.spectral.adjacency]

	nx-adjacency

	networkx - convert_matrix.to_scipy_sparse_matrix [https://networkx.github.io/documentation/stable/reference/generated/networkx.convert_matrix.to_scipy_sparse_matrix.html]

	
nngt.analysis.all_shortest_paths(g, source, target, directed=None, weights=None, combine_weights='mean')

	Yields all shortest paths from source to target.
The algorithms returns an empty generator if there is no path between the
nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	source (int) – Node from which the paths starts.

	target (int, optional (default: all nodes)) – Node where the paths ends.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	all_paths (generator) – Generator yielding paths as lists of ints.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.all_shortest_paths [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.all_shortest_paths.html]

	
nngt.analysis.assortativity(g, degree, weights=None)

	Returns the assortativity of the graph.
This tells whether nodes are preferentially connected together depending
on their degree.

	Parameters

	
	g (Graph) – Graph to analyze.

	degree (str) – The type of degree that should be considered.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

References

	nx-assortativity

	networkx - algorithms.assortativity.degree_assortativity_coefficient [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.assortativity.degree_assortativity_coefficient.html]

	
nngt.analysis.average_path_length(g, sources=None, targets=None, directed=None, weights=None, combine_weights='mean', unconnected=False)

	Returns the average shortest path length between sources and targets.
The algorithms raises an error if all nodes are not connected unless
unconnected is set to True.

The average path length is defined as

[image: L = \frac{1}{N_p} \sum_{u,v} d(u, v),]

where [image: N_p] is the number of paths between sources and targets,
and [image: d(u, v)] is the shortest path distance from u to v.

If sources and targets are both None, then the total number of paths is
[image: N_p = N(N - 1)], with [image: N] the number of nodes in the graph.

	Parameters

	
	g (Graph) – Graph to analyze.

	sources (list of nodes, optional (default: all)) – Nodes from which the paths must be computed.

	targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	unconnected (bool, optional (default: False)) – If set to true, ignores unconnected nodes and returns the average path
length of the existing paths.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.average_shortest_path_length [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.average_shortest_path_length.html]

	
nngt.analysis.bayesian_blocks(t, x=None, sigma=None, fitness='events', **kwargs)

	Bayesian Blocks Implementation

This is a flexible implementation of the Bayesian Blocks algorithm
described in Scargle 2012 1

New in version 0.7.

	Parameters

	
	t (array_like) – data times (one dimensional, length N)

	x (array_like (optional)) – data values

	sigma (array_like or float (optional)) – data errors

	fitness (str or object) – the fitness function to use.
If a string, the following options are supported:

	
	‘events’binned or unbinned event data

	extra arguments are p0, which gives the false alarm probability
to compute the prior, or gamma which gives the slope of the
prior on the number of bins.

	
	‘regular_events’non-overlapping events measured at multiples

	of a fundamental tick rate, dt, which must be specified as an
additional argument. The prior can be specified through gamma,
which gives the slope of the prior on the number of bins.

	
	‘measures’fitness for a measured sequence with Gaussian errors

	The prior can be specified using gamma, which gives the slope
of the prior on the number of bins. If gamma is not specified,
then a simulation-derived prior will be used.

Alternatively, the fitness can be a user-specified object of
type derived from the FitnessFunc class.

	Returns

	edges (ndarray) – array containing the (N+1) bin edges

Examples

Event data:

>>> t = np.random.normal(size=100)
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Event data with repeats:

>>> t = np.random.normal(size=100)
>>> t[80:] = t[:20]
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Regular event data:

>>> dt = 0.01
>>> t = dt * np.arange(1000)
>>> x = np.zeros(len(t))
>>> x[np.random.randint(0, len(t), len(t) / 10)] = 1
>>> bins = bayesian_blocks(t, fitness='regular_events', dt=dt, gamma=0.9)

Measured point data with errors:

>>> t = 100 * np.random.random(100)
>>> x = np.exp(-0.5 * (t - 50) ** 2)
>>> sigma = 0.1
>>> x_obs = np.random.normal(x, sigma)
>>> bins = bayesian_blocks(t, fitness='measures')

References

	1

	Scargle, J et al. (2012)
http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

See also

	astroML.plotting.hist()

	histogram plotting function which can make use of bayesian blocks.

	
nngt.analysis.betweenness(g, btype='both', weights=None)

	Returns the normalized betweenness centrality of the nodes and edges.

	Parameters

	
	g (Graph) – Graph to analyze.

	btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’, ‘edge’, or
‘both’). By default, both betweenness centralities are computed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	Returns

	
	nb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The nodes’ betweenness if btype is ‘node’ or ‘both’

	eb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The edges’ betweenness if btype is ‘edge’ or ‘both’

References

	nx-ebetw

	networkx - algorithms.centrality.edge_betweenness_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.edge_betweenness_centrality.html]

	nx-nbetw

	networkx - networkx.algorithms.centrality.betweenness_centrality [https://networkx.github.io/documentation/stable/reference/networkx/generated/networkx.networkx.algorithms.centrality.betweenness_centrality.html]

	
nngt.analysis.betweenness_distrib(graph, weights=None, nodes=None, num_nbins='bayes', num_ebins='bayes', log=False)

	Betweenness distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes (only impacts the node
attribute).

	log (bool, optional (default: False)) – use log-spaced bins.

	num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], or ‘bayes’
will provide automatic bin optimization. Otherwise, an int for the
number of bins can be provided, or the direct bins list.

	Returns

	
	ncounts (numpy.array) – number of nodes in each bin

	nbetw (numpy.array) – bins for node betweenness

	ecounts (numpy.array) – number of edges in each bin

	ebetw (numpy.array) – bins for edge betweenness

	
nngt.analysis.binning(x, bins='bayes', log=False)

	Binning function providing automatic binning using Bayesian blocks in
addition to standard linear and logarithmic uniform bins.

New in version 0.7.

	Parameters

	
	x (array-like) – Array of data to be histogrammed

	bins (int, list or ‘auto’, optional (default: ‘bayes’)) – If bins is ‘bayes’, in use bayesian blocks for dynamic bin widths; if
it is an int, the interval will be separated into

	log (bool, optional (default: False)) – Whether the bins should be evenly spaced on a logarithmic scale.

	
nngt.analysis.closeness(g, weights=None, nodes=None, mode='out', harmonic=False, default=nan)

	Returns the closeness centrality of some nodes.

Closeness centrality of a node u is defined, for the harmonic version,
as the sum of the reciprocal of the shortest path distance [image: d_{uv}]
from u to the N - 1 other nodes in the graph (if mode is “out”,
reciprocally [image: d_{vu}], the distance to u from another node v,
if mode is “in”):

[image: C(u) = \frac{1}{N - 1} \sum_{v \neq u} \frac{1}{d_{uv}},]

or, using the arithmetic definition, as the reciprocal of the
average shortest path distance to/from u over to all other nodes:

[image: C(u) = \frac{n - 1}{\sum_{v \neq u} d_{uv}},]

where d_{uv} is the shortest-path distance from u to v,
and n is the number of nodes in the component.

By definition, the distance is infinite when nodes are not connected by
a path in the harmonic case (such that [image: \frac{1}{d(v, u)} = 0]),
while the distance itself is taken as zero for unconnected nodes in the
first equation.

	Parameters

	
	g (Graph) – Graph to analyze.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list, optional (default: all nodes)) – The list of nodes for which the clutering will be returned

	mode (str, optional (default: “out”)) – For directed graphs, whether the distances are computed from (“out”) or
to (“in”) each of the nodes.

	harmonic (bool, optional (default: False)) – Whether the arithmetic (default) or the harmonic (recommended) version
of the closeness should be used.

	Returns

	
	c (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of closeness centralities, on per node.

	.. warning :: – For compatibility reasons (harmonic closeness is not implemented for
igraph), the arithmetic version is used by default; however, it is
recommended to use the harmonic version instead whenever possible.

References

	nx-harmonic

	networkx - algorithms.centrality.harmonic_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.harmonic_centrality.html]

	nx-closeness

	networkx - algorithms.centrality.closeness_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html]

	
nngt.analysis.connected_components(g, ctype=None)

	Returns the connected component to which each node belongs.

	Parameters

	
	g (Graph) – Graph to analyze.

	ctype (str, optional (default ‘scc’)) – Type of component that will be searched: either strongly connected
(‘scc’, by default) or weakly connected (‘wcc’).

	Returns

	cc, hist (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The component associated to each node (cc) and the number of nodes in
each of the component (hist).

References

	nx-ucc

	networkx - algorithms.components.connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.connected_components.html]

	nx-scc

	networkx - algorithms.components.strongly_connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.strongly_connected_components.html]

	nx-wcc

	networkx - algorithms.components.weakly_connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.weakly_connected_components.html]

	
nngt.analysis.degree_distrib(graph, deg_type='total', nodes=None, weights=None, log=False, num_bins='bayes')

	Degree distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	deg_type (string, optional (default: “total”)) – type of degree to consider (“in”, “out”, or “total”).

	nodes (list of ints, optional (default: None)) – Restrict the distribution to a set of nodes (default: all nodes).

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	log (bool, optional (default: False)) – use log-spaced bins.

	num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], or ‘bayes’
will provide automatic bin optimization. Otherwise, an int for the
number of bins can be provided, or the direct bins list.

See also

numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], binning()

	Returns

	
	counts (numpy.array) – number of nodes in each bin

	deg (numpy.array) – bins

	
nngt.analysis.diameter(g, directed=None, weights=None, combine_weights='mean', is_connected=False)

	Returns the diameter of the graph.

Changed in version 2.3: Added combine_weights argument.

Changed in version 2.0: Added directed and is_connected arguments.

It returns infinity if the graph is not connected (strongly connected for
directed graphs) unless is_connected is True, in which case it returns
the longest existing shortest distance.

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: g.is_directed())) – Whether to compute the directed diameter if the graph is directed.
If False, then the graph is treated as undirected. The option switches
to False automatically if g is undirected.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	is_connected (bool, optional (default: False)) – If False, check whether the graph is connected or not and return
infinite diameter if graph is unconnected. If True, the graph is
assumed to be connected.

See also

nngt.analysis.shortest_distance()

References

	nx-diameter

	networkx - algorithms.distance_measures.diameter [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.distance_measures.diameter.html]

	nx-dijkstra

	networkx - algorithms.shortest_paths.weighted.all_pairs_dijkstra [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra.html]

	
nngt.analysis.get_b2(network=None, spike_detector=None, data=None, nodes=None)

	Return the B2 coefficient for the neurons.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (array-like of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	nodes (array-like, optional (default: all neurons)) – NNGT ids of the nodes for which the B2 should be computed.

	Returns

	b2 (array-like) – B2 coefficient for each neuron in nodes.

	
nngt.analysis.get_firing_rate(network=None, spike_detector=None, data=None, nodes=None)

	Return the average firing rate for the neurons.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the B2 should be computed.

	Returns

	fr (array-like) – Firing rate for each neuron in nodes.

	
nngt.analysis.get_spikes(recorder=None, spike_times=None, senders=None, astype='ssp')

	Return a 2D sparse matrix, where:

	each row i contains the spikes of neuron i (in NEST),

	each column j contains the times of the jth spike for all neurons.

Changed in version 1.0: Neurons are now located in the row corresponding to their NEST GID.

	Parameters

	
	recorder (tuple, optional (default: None)) – Tuple of NEST gids, where the first one should point to the
spike_detector which recorded the spikes.

	spike_times (array-like, optional (default: None)) – If recorder is not provided, the spikes’ data can be passed directly
through their spike_times and the associated senders.

	senders (array-like, optional (default: None)) – senders[i] corresponds to the neuron which fired at spike_times[i].

	astype (str, optional (default: “ssp”)) – Format of the returned data. Default is sparse lil_matrix (“ssp”)
with one row per neuron, otherwise “np” returns a (T, 2) array, with
T the number of spikes (the first row being the NEST gid, the second
the spike time).

Example

>>> get_spikes()

>>> get_spikes(recorder)

>>> times = [1.5, 2.68, 125.6]
>>> neuron_ids = [12, 0, 65]
>>> get_spikes(spike_times=times, senders=neuron_ids)

Note

If no arguments are passed to the function, the first spike_recorder
available in NEST will be used.
Neuron positions correspond to their GIDs in NEST.

	Returns

	
	CSR matrix containing the spikes sorted by neuron GIDs (rows) and time

	(columns).

	
nngt.analysis.global_clustering(g, directed=True, weights=None, method='continuous', mode='total', combine_weights='mean')

	Returns the global clustering coefficient.

This corresponds to the ratio of triangles to the number of triplets.
For directed and weighted cases, see definitions of generalized triangles
and triplets in the associated functions below.

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘barrat’
[Barrat2004], ‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’
[Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

References

	gt-global-clustering

	graph-tool - clustering.global_clustering [https://graph-tool.skewed.de/static/doc/clustering.html#graph_tool.clustering.global_clustering]

	ig-global-clustering

	igraph - transitivity_undirected [https://igraph.org/python/doc/igraph.GraphBase-class.html#transitivity_undirected]

	nx-global-clustering

	networkx - algorithms.cluster.transitivity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html]

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arxiv:cond-mat/0408629.

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76 (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

See also

triplet_count()
triangle_count()

	
nngt.analysis.global_clustering_binary_undirected(g)

	Returns the undirected global clustering coefficient.

This corresponds to the ratio of undirected triangles to the number of
undirected triads.

	Parameters

	g (Graph) – Graph to analyze.

References

	nx-global-clustering

	networkx - algorithms.cluster.transitivity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html]

	
nngt.analysis.local_closure(g, directed=True, weights=None, method=None, mode='cycle-out', combine_weights='mean')

	Compute the local closure for each node, as defined in [Yin2019] as the
fraction of 2-walks that are closed.

For undirected binary or weighted adjacency matrices
[image: W = \{ w_{ij} \}], the normal (or Zhang-like) definition is given
by:

[image: H_i^0 = \frac{\sum_{j\neq k} w_{ij} w_{jk} w_{ki}} {\sum_{j\neq k\neq i} w_{ij}w_{jk}} = \frac{W^3_{ii}}{\sum_{j \neq i} W^2_{ij}}]

While a continuous version of the local closure is also proposed as:

[image: H_i = \frac{\sum_{j\neq k} \sqrt[3]{w_{ij} w_{jk} w_{ki}}^2} {\sum_{j\neq k\neq i} \sqrt{w_{ij}w_{jk}}} = \frac{\left(W^{\left[\frac{2}{3} \right]} \right)_{ii}^3} {\sum_{j \neq i} \left(W^{\left[\frac{1}{2} \right]} \right)^2_{ij}}]

with [image: W^{[\alpha]} = \{ w^\alpha_{ij} \}].

Directed versions of the local closure where defined as follow for a node
[image: i] connected to nodes [image: j] and [image: k]:

	“cycle-out” is given by the pattern [(i, j), (j, k), (k, i)],

	“cycle-in” is given by the pattern [(k, j), (j, i), (i, k)],

	“fan-in” is given by the pattern [(k, j), (j, i), (k, i)],

	“fan-out” is given by the pattern [(i, j), (j, k), (i, k)].

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘normal’/’zhang’
or ‘continuous’.

	mode (str, optional (default: “circle-out”)) – Type of clustering to use for directed graphs, among “circle-out”,
“circle-in”, “fan-in”, or “fan-out”.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

References

	Yin2019(1,2)

	Yin, Benson, and Leskovec. The Local Closure Coefficient: A
New Perspective On Network Clustering. Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining 2019, 303-311.
DOI: 10.1145/3289600.3290991 [https://dx.doi.org/10.1145/3289600.3290991], PDF [https://www.cs.cornell.edu/~arb/papers/closure-coefficients-WSDM-2019.pdf].

	
nngt.analysis.local_clustering(g, nodes=None, directed=True, weights=None, method='continuous', mode='total', combine_weights='mean')

	Local (weighted directed) clustering coefficient of the nodes, ignoring
self-loops.

If no weights are requested and the graph is undirected, returns the
undirected binary clustering.

For all weighted cases, the weights are assumed to be positive and they are
normalized to dimensionless values between 0 and 1 through a division by
the highest weight.

The default method for weighted networks is based on a modification of
the proposal in [Zhang2005] with:

[image: C_i = \frac{\sum_{jk} \sqrt[3]{w_{ij} w_{ik} w_{jk}}} {\sum_{j\neq k} \sqrt{w_{ij} w_{ik}}} = \frac{\left(W^{\left[\frac{2}{3}\right]}\right)^3_{ii}} {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - s_i}]

for undirected networks, with
[image: W = \{ w_{ij}\} = \tilde{W} / \max(\tilde{W})] the normalized
weight matrix, [image: s_i] the normalized strength of node [image: i], and
[image: s^{[\frac{1}{2}]}_i = \sum_k \sqrt{w_{ik}}] the strength associated
to the matrix [image: W^{[\frac{1}{2}]} = \{\sqrt{w_{ij}}\}].

For directed networks, we used the total clustering defined in
[Fagiolo2007] by default, hence the second equation becomes:

[image: C_i = \frac{\frac{1}{2}\left(W^{\left[\frac{2}{3}\right]} + W^{\left[\frac{2}{3}\right],T}\right)^3_{ii}} {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - 2s^{\leftrightarrow}_i - s_i}]

with [image: s^{\leftrightarrow} = \sum_k \sqrt{w_{ik}w_{ki}}] the
reciprocal strength (associated to reciprocal connections).

For the other modes, see the generalized definitions in [Fagiolo2007].

Contrary to ‘barrat’ and ‘onnela’ [Saramaki2007], this method displays
all following properties:

	fully continuous (no jump in clustering when weights go to zero),

	equivalent to binary clustering when all weights are 1,

	equivalence between no-edge and zero-weight edge cases,

	normalized (always between zero and 1).

Using either ‘continuous’ or ‘zhang’ is recommended for weighted graphs.

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘barrat’
[Barrat2004]/[Clemente2018], ‘continuous’, ‘onnela’ [Onnela2005]/
[Fagiolo2007], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“sum”: equivalent to mean due to weight normalization.

	Returns

	lc (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of clustering coefficients, on per node.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Clemente2018

	Clemente, Grassi. Directed Clustering in Weighted
Networks: A New Perspective. Chaos, Solitons & Fractals 2018, 107,
26–38. DOI: 10.1016/j.chaos.2017.12.007 [https://dx.doi.org/10.1016/j.chaos.2017.12.007], arXiv: 1706.07322 [https://arxiv.org/abs/1706.07322].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arXiv: cond-mat/0408629 [https://arxiv.org/abs/cond-mat/0408629].

	Saramaki2007

	Saramäki, Kivelä, Onnela, Kaski, Kertész. Generalizations
of the Clustering Coefficient to Weighted Complex Networks.
Phys. Rev. E 2007, 75 (2), 027105. DOI: 10.1103/PhysRevE.75.027105 [https://dx.doi.org/10.1103/PhysRevE.75.027105],
arXiv: cond-mat/0608670 [https://arxiv.org/abs/cond-mat/0608670].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

See also

undirected_binary_clustering(), global_clustering()

	
nngt.analysis.local_clustering_binary_undirected(g, nodes=None)

	Returns the undirected local clustering coefficient of some nodes.

If g is directed, then it is converted to a simple undirected graph
(no parallel edges).

	Parameters

	
	g (Graph) – Graph to analyze.

	nodes (list, optional (default: all nodes)) – The list of nodes for which the clustering will be returned

	Returns

	lc (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of clustering coefficients, on per node.

References

	nx-local-clustering

	networkx - algorithms.cluster.clustering [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.clustering.html]

	
nngt.analysis.node_attributes(network, attributes, nodes=None, data=None)

	Return node attributes for a set of nodes.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “closeness”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	data (numpy.array of shape (N, 2), optional (default: None)) – Potential data on the spike events; if not None, it must contain the
sender ids on the first column and the spike times on the second.

	Returns

	values (array-like or dict) – Returns the attributes, either as an array if only one attribute is
required (attributes is a str [https://docs.python.org/3/library/stdtypes.html#str]) or as a dict [https://docs.python.org/3/library/stdtypes.html#dict] of arrays.

	
nngt.analysis.num_iedges(graph)

	Returns the number of inhibitory connections.

For Network objects, this corresponds to the number of edges
stemming from inhibitory nodes (given by
nngt.NeuralPop.inhibitory()).
Otherwise, counts the edges where the type attribute is -1.

	
nngt.analysis.reciprocity(g)

	Calculate the edge reciprocity of the graph.

The reciprocity is defined as the number of edges that have a reciprocal
edge (an edge between the same nodes but in the opposite direction)
divided by the total number of edges.
This is also the probability for any given edge, that its reciprocal edge
exists.
By definition, the reciprocity of undirected graphs is 1.

@todo: check whether we can get this for single nodes for all libraries.

	Parameters

	g (Graph) – Graph to analyze.

References

	nx-reciprocity

	networkx - algorithms.reciprocity.overall_reciprocity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.reciprocity.overall_reciprocity.html]

	
nngt.analysis.shortest_distance(g, sources=None, targets=None, directed=None, weights=None, combine_weights='mean')

	Returns the length of the shortest paths between sources`and `targets.
The algorithms return infinity if there are no paths between nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	sources (list of nodes, optional (default: all)) – Nodes from which the paths must be computed.

	targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	distance (float, or 1d/2d numpy array of floats) – Distance (if single source and single target) or distance array.
For multiple sources and targets, the shape of the matrix is (S, T),
with S the number of sources and T the number of targets; for a single
source or target, return a 1d-array of length T or S.

References

	nx-sp

	networkx - algorithms.shortest_paths.weighted.multi_source_dijkstra [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra.html]

	
nngt.analysis.shortest_path(g, source, target, directed=None, weights=None, combine_weights='mean')

	Returns a shortest path between source`and `target.
The algorithms returns an empty list if there is no path between the nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	source (int) – Node from which the path starts.

	target (int) – Node where the path ends.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	path (list of ints) – Order of the nodes making up the path from source to target.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.shortest_path [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html]

	
nngt.analysis.small_world_propensity(g, directed=None, use_global_clustering=False, use_diameter=False, weights=None, combine_weights='mean', clustering='continuous', lattice=None, random=None, return_deviations=False)

	Returns the small-world propensity of the graph as first defined in
[Muldoon2016].

[image: \phi = 1 - \sqrt{\frac{\Pi_{[0, 1]}(\Delta_C^2) + \Pi_{[0, 1]}(\Delta_L^2)}{2}}]

with [image: \Delta_C] the clustering deviation, i.e. the relative global or
average clustering of g compared to two reference graphs

[image: \Delta_C = \frac{C_{latt} - C_g}{C_{latt} - C_{rand}}]

and [image: Delta_L] the deviation of the average path length or diameter,
i.e. the relative average path length of g compared to that of the
reference graphs

[image: \Delta_L = \frac{L_g - L_{rand}}{L_{latt} - L_{rand}}.]

In both cases, latt and rand refer to the equivalent lattice and
Erdos-Renyi (ER) graphs obtained by rewiring g to obtain respectively the
highest and lowest combination of clustering and average path length.

Both deviations are clipped to the [0, 1] range in case some graphs have a
higher clustering than the lattice or a lower average path length than the
ER graph.

	Parameters

	
	g (Graph object) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.
If False, then the graph is treated as undirected. The option switches
to False automatically if g is undirected.

	use_global_clustering (bool, optional (default: True)) – If False, then the average local clustering is used instead of the
global clustering.

	use_diameter (bool, optional (default: False)) – Use the diameter instead of the average path length to have more global
information. Ccan also be much faster in some cases, especially using
graph-tool as the backend.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	clustering (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering coefficients, either
‘barrat’ [Barrat2004], ‘continuous’ (recommended), or ‘onnela’
[Onnela2005].

	lattice (nngt.Graph, optional (default: generated from g)) – Lattice to use as reference (since its generation is deterministic,
enables to avoid multiple generations when running the algorithm
several times with the same graph)

	random (nngt.Graph, optional (default: generated from g)) – Random graph to use as reference. Can be useful for reproducibility or
for very sparse graphs where ER algorithm would statistically lead to
a disconnected graph.

	return_deviations (bool, optional (default: False)) – If True, the deviations are also returned, in addition to the
small-world propensity.

Note

If weights are provided, the distance calculation uses the inverse of
the weights.
This implementation differs slightly from the original implementation [https://github.com/KordingLab/nctpy] as it can also use the global
instead of the average clustering coefficient, the diameter instead of
the avreage path length, and it is generalized to directed networks.

References

	Muldoon2016(1,2)

	Muldoon, Bridgeford, Bassett. Small-World Propensity and
Weighted Brain Networks. Sci Rep 2016, 6 (1), 22057.
DOI: 10.1038/srep22057 [https://dx.doi.org/10.1038/srep22057], arXiv: 1505.02194 [https://arxiv.org/abs/1505.02194].

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arxiv:cond-mat/0408629.

	Returns

	
	phi (float in [0, 1]) – The small-world propensity.

	delta_l (float) – The average path-length deviation (if return_deviations is True).

	delta_c (float) – The clustering deviation (if return_deviations is True).

See also

nngt.analysis.average_path_length(), nngt.analysis.diameter(), nngt.analysis.global_clustering(), nngt.analysis.local_clustering(), nngt.generation.lattice_rewire(), nngt.generation.random_rewire()

	
nngt.analysis.spectral_radius(graph, typed=True, weights=True)

	Spectral radius of the graph, defined as the eigenvalue of greatest module.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	typed (bool, optional (default: True)) – Whether the excitatory/inhibitory type of the connnections should be
considered.

	weights (bool, optional (default: True)) – Whether weights should be taken into account, defaults to the “weight”
edge attribute if present.

	Returns

	the spectral radius as a float.

	
nngt.analysis.subgraph_centrality(graph, weights=True, nodes=None, normalize='max_centrality')

	Returns the subgraph centrality for each node in the graph.

Defined according to [Estrada2005] as:

[image: sc(i) = e^{W}_{ii}]

where [image: W] is the (potentially weighted and normalized) adjacency
matrix.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	weights (bool or string, optional (default: True)) – Whether weights should be taken into account; if True, then connections
are weighed by their synaptic strength, if False, then a binary matrix
is returned, if weights is a string, then the ponderation is the
correponding value of the edge attribute (e.g. “distance” will return
an adjacency matrix where each connection is multiplied by its length).

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the subgraph centrality should be returned (all
centralities are computed anyway in the algorithm).

	normalize (str or False, optional (default: “max_centrality”)) – Whether the centrality should be normalized. Accepted normalizations
are “max_eigenvalue” (the matrix is divided by its largest eigenvalue),
“max_centrality” (the largest centrality is one), and False to get
the non-normalized centralities.

	Returns

	centralities (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The subgraph centrality of each node.

References

	Estrada2005

	Ernesto Estrada and Juan A. Rodríguez-Velázquez,
Subgraph centrality in complex networks, PHYSICAL REVIEW E 71, 056103
(2005), DOI: 10.1103/PhysRevE.71.056103 [https://dx.doi.org/10.1103/PhysRevE.71.056103], arXiv: cond-mat/0504730 [https://arxiv.org/abs/cond-mat/0504730].

	
nngt.analysis.total_firing_rate(network=None, spike_detector=None, nodes=None, data=None, kernel_center=0.0, kernel_std=30.0, resolution=None, cut_gaussian=5.0)

	Computes the total firing rate of the network from the spike times.
Firing rate is obtained as the convolution of the spikes with a Gaussian
kernel characterized by a standard deviation and a temporal shift.

New in version 0.7.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

	kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel (standard deviation) in ms.

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed.

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed. By default, we consider
the 5-sigma range. Decreasing this value will increase speed at the
cost of lower fidelity; increasing it with increase the fidelity at the
cost of speed.

	Returns

	
	fr (array-like) – The firing rate in Hz.

	times (array-like) – The times associated to the firing rate values.

	
nngt.analysis.transitivity(g, directed=True, weights=None)

	Same as global_clustering().

	
nngt.analysis.triangle_count(g, nodes=None, directed=True, weights=None, method='normal', mode='total', combine_weights='mean')

	Returns the number or the strength (also called intensity) of triangles
for each node.

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘normal’)) – Method used to compute the weighted triangles, either ‘normal’, where
the weights are directly used, or the definitions associated to the
weighted clustering: ‘barrat’ [Barrat2004], ‘continuous’, ‘onnela’
[Onnela2005], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	tr (array) – Number or weight of triangles to which each node belongs.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arXiv: cond-mat/0408629 [https://arxiv.org/abs/cond-mat/0408629].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

	
nngt.analysis.triplet_count(g, nodes=None, directed=True, weights=None, method='normal', mode='total', combine_weights='mean')

	Returns the number or the strength (also called intensity) of triplets for
each node.

For binary networks, the triplets of node [image: i] are defined as:

[image: T_i = \sum_{j,k} a_{ij}a_{ik}]

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted triplets, either ‘normal’, where
the edge weights are directly used, or the definitions used for
weighted clustering coefficients, ‘barrat’ [Barrat2004],
‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	tr (array) – Number or weight of triplets to which each node belongs.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

Core module

Core classes and functions. Most of them are not visible in the module as they
are directly loaded at nngt level.

Content

	
nngt.core.GraphObject

	alias of nngt.core.nx_graph._NxGraph

Generation module

Functions that generates the underlying connectivity of graphs, as well
as the connection properties (weight/strength and delay).

Content

Generation functions

	nngt.generation.all_to_all([nodes, …])

	Generate a graph where all nodes are connected.

	nngt.generation.circular(coord_nb[, …])

	Generate a circular graph.

	nngt.generation.distance_rule(scale[, rule, …])

	Create a graph using a 2D distance rule to create the connection between neurons.

	nngt.generation.erdos_renyi([density, …])

	Generate a random graph as defined by Erdos and Renyi but with a reciprocity that can be chosen.

	nngt.generation.fixed_degree(degree[, …])

	Generate a random graph with constant in- or out-degree.

	nngt.generation.from_degree_list(degrees[, …])

	Generate a random graph from a given list of degrees.

	nngt.generation.gaussian_degree(avg, std[, …])

	Generate a random graph with constant in- or out-degree.

	nngt.generation.newman_watts(coord_nb[, …])

	Generate a (potentially small-world) graph using the Newman-Watts algorithm.

	nngt.generation.price_scale_free(m[, c, …])

	Generate a Price graph model (Barabasi-Albert if undirected).

	nngt.generation.random_scale_free(in_exp, …)

	Generate a free-scale graph of given reciprocity and otherwise devoid of correlations.

	nngt.generation.watts_strogatz(coord_nb[, …])

	Generate a (potentially small-world) graph using the Watts-Strogatz algorithm.

Connectors

	nngt.generation.connect_nodes(network, …)

	Function to connect nodes with a given graph model.

	nngt.generation.connect_groups(network, …)

	Function to connect groups with a given graph model.

	nngt.generation.connect_neural_types(…[, …])

	Function to connect excitatory and inhibitory population with a given graph model.

Rewiring functions

	nngt.generation.random_rewire(g[, …])

	Generate a new rewired graph from g.

	nngt.generation.lattice_rewire(g[, …])

	Build a (generally irregular) lattice by rewiring the edges of a graph.

Details

	
nngt.generation.all_to_all(nodes=0, weighted=True, directed=True, multigraph=False, name='AllToAll', shape=None, positions=None, population=None, **kwargs)

	Generate a graph where all nodes are connected.

New in version 1.0.

	Parameters

	
	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirectional (only for directed graphs
– undirected graphs have a reciprocity of 1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

Note

nodes is required unless population is provided.

	Returns

	graph_all (Graph, or subclass) – A new generated graph.

	
nngt.generation.circular(coord_nb, reciprocity=1.0, reciprocity_choice='random', nodes=0, weighted=True, directed=True, multigraph=False, name='Circular', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a circular graph.

The nodes are placed on a circle and connected to their coord_nb closest
neighbours.
If the graph is directed, the number of connections depends on the value
of reciprocity: if reciprocity == 0., then only half of all possible
connections will be created, so that no bidirectional edges exist; on the
other hand, for reciprocity == 1., all possible edges are created; for
intermediate values of reciprocity, the number of edges increases
linearly as 0.5*(1 + reciprocity / (2 - reciprocity))*nodes*coord_nb.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	reciprocity (double, optional (default: 1.)) – Proportion of reciprocal edges in the graph.

	reciprocity_choice (str, optional (default: “random”)) – How reciprocal edges should be chosen, which can be either “random” or
“closest”. If the latter option is used, then connections
between first neighbours are rendered reciprocal first, then between
second neighbours, etc.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	density (double, optional (default: 0.1)) – Structural density given by edges / (nodes`*`nodes).

	edges (int (optional)) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_circ (Graph or subclass)

	
nngt.generation.connect_groups(network, source_groups, target_groups, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect groups with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	source_groups (str, NeuralGroup, or iterable) – Names of the source groups (which contain the pre-synaptic neurons) or
directly the group objects themselves.

	target_groups (str, NeuralGroup, or iterable) – Names of the target groups (which contain the post-synaptic neurons) or
directly the group objects themselves.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
groups which have their property sets are the source_groups.

	
nngt.generation.connect_neural_groups(*args, **kwargs)

	Deprecatd alias of connect_groups().

	
nngt.generation.connect_neural_types(network, source_type, target_type, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect excitatory and inhibitory population with a given graph
model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	source_type (int or list) – The type of source neurons (1 for excitatory, -1 for
inhibitory neurons).

	target_type (int or list) – The type of target neurons.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
nodes which have their property sets are the source_type.

	
nngt.generation.connect_nodes(network, sources, targets, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect nodes with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	sources (list) – Ids of the source nodes.

	targets (list) – Ids of the target nodes.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	**kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
nodes which have their property sets are the sources.

	
nngt.generation.distance_rule(scale, rule='exp', shape=None, neuron_density=1000.0, max_proba=-1.0, nodes=0, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, name='DR', positions=None, population=None, from_graph=None, **kwargs)

	Create a graph using a 2D distance rule to create the connection between
neurons. Available rules are linear and exponential.

	Parameters

	
	scale (float) – Characteristic scale for the distance rule. E.g for linear distance-
rule, [image: P(i,j) \propto (1-d_{ij}/scale))], whereas for the
exponential distance-rule, [image: P(i,j) \propto e^{-d_{ij}/scale}].

	rule (string, optional (default: ‘exp’)) – Rule that will be apply to draw the connections between neurons.
Choose among “exp” (exponential), “gaussian” (Gaussian), or
“lin” (linear).

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment. If not specified, a square will be
created with the appropriate dimensions for the number of neurons and
the neuron spatial density.

	neuron_density (float, optional (default: 1000.)) – Density of neurons in space ([image: neurons \cdot mm^{-2}]).

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	p (float, optional) – Normalization factor for the distance rule; it is equal to the
probability of connection when testing a node at zero distance.

	density (double, optional) – Structural density given by edges / (nodes * nodes).

	edges (int, optional) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	unit (string (default: ‘um’)) – Unit for the length scale among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “DR”)) – Name of the created graph.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D (N, 2) or 3D (N, 3) shaped array containing the positions of the
neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	
nngt.generation.erdos_renyi(density=None, nodes=0, edges=None, avg_deg=None, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='ER', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph as defined by Erdos and Renyi but with a
reciprocity that can be chosen.

	Parameters

	
	density (double, optional (default: -1.)) – Structural density given by edges / nodes[image: ^2]. It is also the
probability for each possible edge in the graph to exist.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	edges (int (optional)) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirectional (only for
directed graphs – undirected graphs have a reciprocity of 1 by
definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_er (Graph, or subclass) – A new generated graph or the modified from_graph.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the
object will be deleted before the new connectivity is implemented.

	
nngt.generation.fixed_degree(degree, degree_type='in', nodes=0, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='FD', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph with constant in- or out-degree.

	Parameters

	
	degree (int) – The value of the constant degree.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in', 'out' or 'total'.

	@todo

	‘total’ not implemented yet.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet. Fraction of edges that are bidirectional
(only for directed graphs – undirected graphs have a reciprocity of
1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the
object will be deleted before the new connectivity is implemented.

	Returns

	graph_fd (Graph, or subclass) – A new generated graph or the modified from_graph.

	
nngt.generation.from_degree_list(degrees, degree_type='in', weighted=True, directed=True, multigraph=False, name='DL', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph from a given list of degrees.

	Parameters

	
	degrees (list) – The list of degrees for each node in the graph.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in', 'out' or 'total'.
@todo ‘total’ not implemented yet.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_dl (Graph, or subclass) – A new generated graph or the modified from_graph.

	
nngt.generation.gaussian_degree(avg, std, degree_type='in', nodes=0, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='GD', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph with constant in- or out-degree.

	Parameters

	
	avg (float) – The value of the average degree.

	std (float) – The standard deviation of the Gaussian distribution.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among ‘in’, ‘out’ or ‘total’ (or the
full version: ‘in-degree’…)
@todo: Implement ‘total’ degree

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet. Fraction of edges that are bidirectional
(only for directed graphs – undirected graphs have a reciprocity of
1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_gd (Graph, or subclass) – A new generated graph or the modified from_graph.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the object
will be deleted before the new connectivity is implemented.

	
nngt.generation.lattice_rewire(g, target_reciprocity=1.0, node_attr_constraints=None, edge_attr_constraints=None, weight=None, weight_constraint='distance', distance_sort='inverse')

	Build a (generally irregular) lattice by rewiring the edges of a graph.

New in version 2.0.

The lattice is based on a circular graph, meaning that the nodes are placed
on a circle and connected based on the topological distance between them,
the distance being defined through the positive modulo:

[image: d_{ij} = (i - j) \% N]

with [image: N] the number of nodes in the graph.

	Parameters

	
	g (Graph) – Graph based on which the lattice will be generated.

	target_reciprocity (float, optional (default: 1.)) – Value of reciprocity that should be aimed at. Depending on the number
of edges, it may not be possible to reach this value exactly.

	node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained: either “preserve”,
where all nodes keep their attributes, or “together”, where attributes
are randomized by groups (all attributes of a given node are sent to
the same new node). By default, attributes are completely and
separately randomized.

	edge_attr_constraints (str, optional (default: randomize all but weight)) – Whether attribute randomization is constrained.
If “distance” is used, then all number attributes (float or int) are
sorted and are first associated to the shortest or longest edges
depending on the value of distance_sort. Note that, for directed
graphs, if a reciprocal edge exists, it is immediately assigned the
next highest (respectively lowest) attribute after that of its directed
couterpart.
If “together” is used, edges attributes are randomized by groups (all
attributes of a given edge are sent to the same new edge) either
randomly if weight is None, or following the constrained weight
attribute. By default, attributes are completely and separately
randomized (except for weight if it has been provided).

	weight (str, optional (default: None)) – Whether a specific edge attribute should play the role of weight and
have special constraints.

	weight_constraint (str, optional (default: “distance”)) – Same as edge_attr_constraints` but only applies to weight and can
only be “distance” or None since “together” was related to weight.

	distance_sort (str, optional (default: “inverse”)) – How attributes are sorted with edge distance: either “inverse”, with
the shortest edges being assigned the largest weights, or with a
“linear” sort, where shortest edges are assigned the lowest weights.

	
nngt.generation.newman_watts(coord_nb, proba_shortcut=None, reciprocity_circular=1.0, reciprocity_choice_circular='random', nodes=0, edges=None, weighted=True, directed=True, multigraph=False, name='NW', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a (potentially small-world) graph using the Newman-Watts
algorithm.

For directed networks, the reciprocity of the initial circular network can
be chosen.

Changed in version 2.0: Added the reciprocity_circular and reciprocity_choice_circular
options.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for each existing
edge on the initial lattice.
If edges is provided, then will be computed automatically as
edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)

	reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the initial circular graph.

	reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges should be chosen in the initial circular graph.
This can be either “random” or “closest”. If the latter option
is used, then connections between first neighbours are rendered
reciprocal first, then between second neighbours, etc.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	edges (int (optional)) – The number of edges between the nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_nw (Graph or subclass)

Note

nodes is required unless from_graph or population is provided.

	
nngt.generation.price_scale_free(m, c=None, gamma=1, nodes=0, reciprocity=0, weighted=True, directed=True, multigraph=False, name='PriceSF', shape=None, positions=None, population=None, **kwargs)

	Generate a Price graph model (Barabasi-Albert if undirected).

	Parameters

	
	m (int) – The number of edges each new node will make.

	c (double, optional (0 if undirected, else 1)) – Constant added to the probability of a vertex receiving an edge.

	gamma (double, optional (default: 1)) – Preferential attachment power.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (float, optional (default: 0)) – Reciprocity of the graph (between 0 and 1). For directed graphs, this
will be the probability of the target node connecting back to the
source node when a new edge is added.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	Returns

	graph_price (Graph or subclass.)

Note

nodes is required unless population is provided.

Notes

The (generalized) Price network is either a directed or undirected graph
(the latter is better known as the Barabási-Albert network).
It is generated via a growth process, adding a new node at each step and
connecting it to [image: m] previous nodes, chosen with probability:

[image: p \propto k^\gamma + c]

where [image: k] is the (in-)degree of the vertex.

We must therefore have [image: c \ge 0] for directed graphs and
[image: c > -1] for undirected graphs.

If the reciprocity [image: r] is non-zero, each targeted node reciprocates
the connection with probability [image: r].
Expected reciprocity of the final graph is [image: 2r / (1 + r)].

If [image: \gamma=1], and reciprocity is zero, the tail of resulting
in-degree distribution of the directed case is given by

[image: P_{k_{in}} \sim k_{in}^{-(2 + c/m)},]

or for the undirected case

[image: P_{k} \sim k^{-(3 + c/m)}.]

However, if [image: \gamma \ne 1], the in-degree distribution is not
scale-free.

	
nngt.generation.random_rewire(g, constraints=None, node_attr_constraints=None, edge_attr_constraints=None)

	Generate a new rewired graph from g.

New in version 2.0.

	Parameters

	
	g (Graph) – Base graph based on which a new rewired graph will be generated.

	constraints (str, optional (default: no constraints)) – Defines which properties of g will be maintained in the rewired
graph. By default, the graph is completely rewired into an Erdos-Renyi
model. Available constraints are “in-degree”, “out-degree”,
“total-degree”, “all-degrees”, and “clustering”.

	node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained: either “preserve”,
where all nodes keep their attributes, or “together”, where attributes
are randomized by groups (all attributes of a given node are sent to
the same new node). By default, attributes are completely and
separately randomized.

	edge_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained.
If constraints is “in-degree” (respectively “out-degree”) or
“degrees”, this can be “preserve_in” (respectively “preserve_out”),
in which case all attributes of a given edge are moved together to a
new incoming (respectively outgoing) edge of the same node.
Regardless of constraints, “together” can be used so that edges
attributes are randomized by groups (all attributes of a given edge are
sent to the same new edge). By default, attributes are completely and
separately randomized.

	
nngt.generation.random_scale_free(in_exp, out_exp, nodes=0, density=None, edges=None, avg_deg=None, reciprocity=0.0, weighted=True, directed=True, multigraph=False, name='RandomSF', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a free-scale graph of given reciprocity and otherwise
devoid of correlations.

	Parameters

	
	in_exp (float) – Absolute value of the in-degree exponent [image: \gamma_i], such that
[image: p(k_i) \propto k_i^{-\gamma_i}]

	out_exp (float) – Absolute value of the out-degree exponent [image: \gamma_o], such that
[image: p(k_o) \propto k_o^{-\gamma_o}]

	nodes (int, optional (default: 0)) – The number of nodes in the graph.

	density (double, optional) – Structural density given by edges / (nodes*nodes).

	edges (int optional) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes. can contain multiple edges between two

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network)

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_fs (Graph)

Note

As reciprocity increases, requested values of in_exp and out_exp
will be less and less respected as the distribution will converge to a
common exponent [image: \gamma = (\gamma_i + \gamma_o) / 2].
Parameter nodes is required unless from_graph or population is
provided.

	
nngt.generation.watts_strogatz(coord_nb, proba_shortcut=None, reciprocity_circular=1.0, reciprocity_choice_circular='random', shuffle='random', nodes=0, weighted=True, directed=True, multigraph=False, name='WS', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a (potentially small-world) graph using the Watts-Strogatz
algorithm.

For directed networks, the reciprocity of the initial circular network can
be chosen.

New in version 2.0.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for each existing
edge on the initial lattice.
If edges is provided, then will be computed automatically as
edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)

	reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the initial circular graph.

	reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges should be chosen in the initial circular graph.
This can be either “random” or “closest”. If the latter option
is used, then connections between first neighbours are rendered
reciprocal first, then between second neighbours, etc.

	shuffle (str, optional (default: ‘random’)) – Whether to shuffle only ‘targets’ (out-degree of all nodes remains
constant), ‘sources’ (in-degree remains constant), or randomly the
source or the target for each edge (‘random’) in the case of directed
graphs.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_nw (Graph or subclass)

Note

nodes is required unless from_graph or population is provided.

Geometry module

This module is a direct copy of the SENeC package
PyNCulture [https://github.com/SENeC-Initiative/PyNCulture].
Therefore, in the examples below, you will have to import nngt instead of
PyNCulture and replace pnc by nngt.geometry.

Overview

	nngt.geometry.Area(shell[, holes, unit, …])

	Specialized Shape that stores additional properties regarding the interactions with the neurons.

	nngt.geometry.Shape(shell[, holes, unit, …])

	Class containing the shape of the area where neurons will be distributed to form a network.

	nngt.geometry.culture_from_file(filename[, …])

	Generate a culture from an SVG, a DXF, or a WKT/WKB file.

	nngt.geometry.plot_shape(shape[, axis, m, …])

	Plot a shape (you should set the axis aspect to 1 to respect the proportions).

	nngt.geometry.pop_largest(shapes)

	Returns the largest shape, removing it from the list.

	nngt.geometry.shapes_from_file(filename[, …])

	Generate a set of Shape objects from an SVG, a DXF, or a WKT/WKB file.

Principle

Module dedicated to the description of the spatial boundaries of neuronal
cultures.
This allows for the generation of neuronal networks that are embedded in space.

The shapely [http://toblerity.org/shapely/index.html] library is used to
generate and deal with the spatial environment of the neurons.

Examples

Basic features

The module provides a backup Shape object, which can be used with only
the numpy and scipy libraries.
It allows for the generation of simple rectangle, disk and ellipse shapes.

import matplotlib.pyplot as plt

import PyNCulture as nc

fig, ax = plt.subplots()

''' Choose a shape (uncomment the desired line) '''
culture = nc.Shape.rectangle(15, 20, (5, 0))
culture = nc.Shape.disk(20, (5, 0))
culture = nc.Shape.ellipse((20, 5), (5, 0))

''' Generate the neurons inside '''
pos = culture.seed_neurons(neurons=1000, xmax=0., ymax=0.)

''' Plot '''
nc.plot_shape(culture, ax, show=False)
ax.scatter(pos[:, 0], pos[:, 1], s=2, zorder=2)

plt.show()

All these features are of course still available with the more advanced
Shape object which inherits from shapely.geometry.Polygon.

Complex shapes from files

import matplotlib.pyplot as plt

import PyNCulture as nc

''' Choose a file '''
culture_file = "culture_from_filled_polygons.svg"
culture_file = "culture_with_holes.svg"
culture_file = "culture.dxf"

shapes = nc.shapes_from_file(culture_file, min_x=-5000., max_x=5000.)

''' Plot the shapes '''
fig, ax = plt.subplots()
fig.suptitle("shapes")

for p in shapes:
 nc.plot_shape(p, ax, show=False)

plt.show()

''' Make a culture '''
fig2, ax2 = plt.subplots()
plt.title("culture")

culture = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)

nc.plot_shape(culture, ax2)

''' Add neurons '''
fig3, ax3 = plt.subplots()
plt.title("culture with neurons")

culture_bis = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)
pos = culture_bis.seed_neurons(neurons=1000, xmax=0)

nc.plot_shape(culture_bis, ax3, show=False)
ax3.scatter(pos[:, 0], pos[:, 1], s=2, zorder=3)

plt.show()

Content

	
class nngt.geometry.Area(shell, holes=None, unit='um', height=0.0, name='area', properties=None)

	Specialized Shape that stores additional properties regarding the
interactions with the neurons.

Each Area is characteristic of a given substrate and height. These two
properties are homogeneous over the whole area, meaning that the neurons
interact in the same manner with an Area reagardless of their position
inside.

The substrate is described through its modulation of the neuronal
properties compared to their default behavior.
Thus, a given area will modulate the speed, wall affinity, etc, of the
growth cones that are growing above it.

Initialize the Shape object and the underlying
shapely.geometry.Polygon.

	Parameters

	
	shell (array-like object of shape (N, 2)) – List of points defining the external border of the shape.

	holes (array-like, optional (default: None)) – List of array-like objects of shape (M, 2), defining empty regions
inside the shape.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	height (float, optional (default: 0.)) – Height of the area.

	name (str, optional (default: “area”)) – The name of the area.

	properties (dict, optional (default: default neuronal properties)) – Dictionary containing the list of the neuronal properties that
are modified by the substrate. Since this describes how the default
property is modulated, all values must be positive reals or NaN.

	
add_subshape(subshape, position, unit='um')

	

	
areas

	Returns the dictionary containing the Shape’s areas.

	
copy()

	Create a copy of the current Area.

	
classmethod from_shape(shape, height=0.0, name='area', properties=None, unit='um', min_x=None, max_x=None)

	Create an Area from a Shape object.

	Parameters

	shape (Shape) – Shape that should be converted to an Area.

	Returns

	Area object.

	
properties

	

	
class nngt.geometry.Shape(shell, holes=None, unit='um', parent=None, default_properties=None)

	Class containing the shape of the area where neurons will be distributed to
form a network.

	
area

	Area of the shape in the Shape’s
Shape.unit() squared ([image: \mu m^2],
[image: mm^2], [image: cm^2], [image: dm^2] or [image: m^2]).

	Type

	double

	
centroid

	Position of the center of mass of the current shape in unit.

	Type

	tuple of doubles

See also

Parent

Initialize the Shape object and the underlying
shapely.geometry.Polygon.

	Parameters

	
	exterior (array-like object of shape (N, 2)) – List of points defining the external border of the shape.

	interiors (array-like, optional (default: None)) – List of array-like objects of shape (M, 2), defining empty regions
inside the shape.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	parent (nngt.Graph or subclass) – The graph which is associated to this Shape.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
add_area(area, height=None, name=None, properties=None, override=False)

	Add a new area to the Shape.
If the new area has a part that is outside the main Shape,
it will be cut and only the intersection between the area and the
container will be kept.

	Parameters

	
	area (Area or Shape, or shapely.Polygon.) – Delimitation of the area. Only the intersection between the parent
Shape and this new area will be kept.

	name (str, optional, default (“areaX” where X is the number of areas)) – Name of the area, under which it can be retrieved using the
Shape.area() property of the Shape object.

	properties (dict, optional (default: None)) – Properties of the area. If area is a Area, then this is
not necessary.

	override (bool, optional (default: False)) – If True, the new area will be made over existing areas that will
be reduced in consequence.

	
add_hole(hole)

	Make a hole in the shape.

New in version 0.4.

	
areas

	Returns the dictionary containing the Shape’s areas.

	
contains_neurons(positions)

	Check whether the neurons are contained in the shape.

New in version 0.4.

	Parameters

	positions (point or 2D-array of shape (N, 2))

	Returns

	contained (bool or 1D boolean array of length N) – True if the neuron is contained, False otherwise.

	
copy()

	Create a copy of the current Shape.

	
default_areas

	Returns the dictionary containing only the default areas.

New in version 0.4.

	
static disk(radius, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a disk of given radius and center (centroid).

	Parameters

	
	radius (float) – Radius of the disk in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
static ellipse(radii, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a disk of given radius and center (centroid).

	Parameters

	
	radii (tuple of floats) – Couple (rx, ry) containing the radii of the two axes in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
static from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, default_properties=None)

	Create a shape from a DXF, an SVG, or a WTK/WKB file.

New in version 0.3.

	Parameters

	
	filename (str) – Path to the file that should be loaded.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit (default: ‘um’). If None, no rescaling
occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit. If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	interpolate_curve (int, optional (default: 50)) – Number of points that should be used to interpolate a curve.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
static from_polygon(polygon, min_x=None, max_x=None, unit='um', parent=None, default_properties=None)

	Create a shape from a shapely.geometry.Polygon.

	Parameters

	
	polygon (shapely.geometry.Polygon) – The initial polygon.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit If None, no rescaling occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
static from_wkt(wtk, min_x=None, max_x=None, unit='um', parent=None, default_properties=None)

	Create a shape from a WKT string.

New in version 0.2.

	Parameters

	
	wtk (str) – The WKT string.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit If None, no rescaling occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

See also

Shape.from_polygon()

	
non_default_areas

	Returns the dictionary containing all Shape’s areas except the
default ones.

New in version 0.4.

	
parent

	Return the parent of the Shape.

	
random_obstacles(n, form, params=None, heights=None, properties=None, etching=0, on_area=None)

	Place random obstacles inside the shape.

New in version 0.4.

	Parameters

	
	n (int or float) – Number of obstacles if n is an int [https://docs.python.org/3/library/functions.html#int], otherwise represents
the fraction of the shape’s bounding box that should be occupied by

the obstacles’ bounding boxes.

	form (str or Shape) – Form of the obstacles, among “disk”, “ellipse”, “rectangle”, or a
custom shape.

	params (dict, optional (default: None)) – Dictionnary containing the instructions to build a predefined form
(“disk”, “ellipse”, “rectangle”). See their creation methods for
details. Leave None when using a custom shape.

	heights (float or list, optional (default: None)) – Heights of the obstacles. If None, the obstacle will considered as
a “hole” in the structure, i.e. an uncrossable obstacle.

	properties (dict or list, optional (default: None)) – Properties of the obstacles if they constitue areas (only used if
heights is not None). If not provided and heights is not None,
will default to the “default_area” properties.

	etching (float, optional (default: 0)) – Etching of the obstacles’ corners (rounded corners). Valid only
for

	
static rectangle(height, width, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a rectangle of given height, width and center of mass.

	Parameters

	
	height (float) – Height of the rectangle in unit

	width (float) – Width of the rectangle in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
return_quantity

	Whether seed_neurons returns positions with units by default.

New in version 0.5.

	
seed_neurons(neurons=None, container=None, on_area=None, xmin=None, xmax=None, ymin=None, ymax=None, soma_radius=0, unit=None, return_quantity=None)

	Return the positions of the neurons inside the
Shape.

	Parameters

	
	neurons (int, optional (default: None)) – Number of neurons to seed. This argument is considered only if the
Shape has no parent, otherwise, a position is generated
for each neuron in parent.

	container (Shape, optional (default: None)) – Subshape acting like a mask, in which the neurons must be
contained. The resulting area where the neurons are generated is
the intersection() between of the current
shape and the container.

	on_area (str or list, optional (default: None)) – Area(s) where the seeded neurons should be.

	xmin (double, optional (default: lowest abscissa of the Shape)) – Limit the area where neurons will be seeded to the region on the
right of xmin.

	xmax (double, optional (default: highest abscissa of the Shape)) – Limit the area where neurons will be seeded to the region on the
left of xmax.

	ymin (double, optional (default: lowest ordinate of the Shape)) – Limit the area where neurons will be seeded to the region on the
upper side of ymin.

	ymax (double, optional (default: highest ordinate of the Shape)) – Limit the area where neurons will be seeded to the region on the
lower side of ymax.

	unit (string (default: None)) – Unit in which the positions of the neurons will be returned, among
‘um’, ‘mm’, ‘cm’, ‘dm’, ‘m’.

	return_quantity (bool, optional (default: False)) – Whether the positions should be returned as pint.Quantity
objects (requires Pint).

	.. versionchanged:: 0.5 – Accepts pint units and return_quantity argument.

Note

If both container and on_area are provided, the intersection of
the two is used.

	Returns

	positions (array of double with shape (N, 2) or pint.Quantity if) – return_quantity is True.

	
set_parent(parent)

	Set the parent nngt.Graph.

	
set_return_units(b)

	Set the default behavior for positions returned by seed_neurons.
If True, then the positions returned are quantities with units (from
the pint library), otherwise they are simply numpy arrays.

New in version 0.5.

Note

set_return_units(True) requires pint to be installed on the system,
otherwise an error will be raised.

	
unit

	Return the unit for the Shape coordinates.

	
nngt.geometry.culture_from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, internal_shapes_as='holes', default_properties=None, other_properties=None)

	Generate a culture from an SVG, a DXF, or a WKT/WKB file.

Valid file needs to contain only closed objects among:
rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

Changed in version 0.6: Added internal_shapes_as and other_properties keyword parameters.

	Parameters

	
	filename (str) – Path to the SVG, DXF, or WKT/WKB file.

	min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s exterior, in unit.

	max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s exterior, in
unit.

	unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’), milimeters (‘mm’),
centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

	parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if working with NNGT.

	interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should be interpolated into segments.

	internal_shapes_as (str, optional (default: “holes”)) – Defines how additional shapes contained in the main environment should
be processed. If “holes”, then these shapes are substracted from the
main environment; if “areas”, they are considered as areas.

	default_properties (dict, optional (default: None)) – Properties of the default area of the culture.

	other_properties (dict, optional (default: None)) – Properties of the non-default areas of the culture (internal shapes if
internal_shapes_as is set to “areas”).

	Returns

	culture (Shape object) – Shape, vertically centred around zero, such that
[image: min(y) + max(y) = 0].

	
nngt.geometry.pop_largest(shapes)

	Returns the largest shape, removing it from the list.
If shapes is a shapely.geometry.MultiPolygon, returns the
largest shapely.geometry.Polygon without modifying the object.

New in version 0.3.

	Parameters

	shapes (list of Shape objects or MultiPolygon.)

	
nngt.geometry.shapes_from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, default_properties=None, **kwargs)

	Generate a set of Shape objects from an SVG, a DXF, or a WKT/WKB
file.

Valid file needs to contain only closed objects among:
rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

New in version 0.3.

	Parameters

	
	filename (str) – Path to the SVG, DXF, or WKT/WKB file.

	min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s exterior, in unit.

	max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s exterior, in
unit.

	unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’), milimeters (‘mm’),
centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

	parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if working with NNGT.

	interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should be interpolated into segments.

	Returns

	culture (Shape object) – Shape, vertically centred around zero, such that
[image: min(y) + max(y) = 0].

	
nngt.geometry.plot_shape(shape, axis=None, m='', mc='#999999', fc='#8888ff', ec='#444444', alpha=0.5, brightness='height', show_contour=True, show=True, **kwargs)

	Plot a shape (you should set the axis aspect to 1 to respect the
proportions).

	Parameters

	
	shape (Shape) – Shape to plot.

	axis (matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] instance, optional (default: None)) – Axis on which the shape should be plotted. By default, a new figure
is created.

	m (str, optional (default: invisible)) – Marker to plot the shape’s vertices, matplotlib syntax.

	mc (str, optional (default: “#999999”)) – Color of the markers.

	fc (str, optional (default: “#8888ff”)) – Color of the shape’s interior.

	ec (str, optional (default: “#444444”)) – Color of the shape’s edges.

	alpha (float, optional (default: 0.5)) – Opacity of the shape’s interior.

	brightness (str, optional (default: height)) – Show how different other areas are from the ‘default_area’ (lower
values are darker, higher values are lighter).
Difference can concern the ‘height’, or any of the properties of the
Area objects.

	show_contour (bool, optional (default: True)) – Whether the shapes should be drawn with a contour.

	show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

	**kwargs (keywords arguments for matplotlib.patches.PathPatch [https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch])

Lib module

Tools for the other modules.

Warning

These tools have been designed primarily for internal use throughout the
library and often work only in very specific situations (e.g.
find_idx_nearest() works only on sorted arrays), so make
sure you read their doc carefully before using them.

Content

	nngt.lib.InvalidArgument

	Error raised when an argument is invalid.

	nngt.lib.delta_distrib([graph, elist, num, …])

	Delta distribution for edge attributes.

	nngt.lib.find_idx_nearest(array, values)

	Find the indices of the nearest elements of values in a sorted array.

	nngt.lib.gaussian_distrib(graph[, elist, …])

	Gaussian distribution for edge attributes.

	nngt.lib.is_integer(obj)

	Return whether the object is an integer

	nngt.lib.is_iterable(obj)

	Return whether the object is iterable

	nngt.lib.lin_correlated_distrib(graph[, …])

	

	nngt.lib.log_correlated_distrib(graph[, …])

	

	nngt.lib.lognormal_distrib(graph[, elist, …])

	Lognormal distribution for edge attributes.

	nngt.lib.nonstring_container(obj)

	Returns true for any iterable which is not a string or byte sequence.

	nngt.lib.uniform_distrib(graph[, elist, …])

	Uniform distribution for edge attributes.

Details

	
class nngt.lib.InvalidArgument

	Error raised when an argument is invalid.

	
nngt.lib.delta_distrib(graph=None, elist=None, num=None, value=1.0, **kwargs)

	Delta distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	value (float, optional (default: 1.)) – Value of the delta distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.find_idx_nearest(array, values)

	Find the indices of the nearest elements of values in a sorted array.

Warning

Both array and values should be numpy.array objects and
array MUST be sorted in increasing order.

	Parameters

	
	array (reference list or np.ndarray)

	values (double, list or array of values to find in array)

	Returns

	idx (int or array representing the index of the closest value in array)

	
nngt.lib.gaussian_distrib(graph, elist=None, num=None, avg=None, std=None, **kwargs)

	Gaussian distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	avg (float, optional (default: 0.)) – Average of the Gaussian distribution.

	std (float, optional (default: 1.5)) – Standard deviation of the Gaussian distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.is_integer(obj)

	Return whether the object is an integer

	
nngt.lib.is_iterable(obj)

	Return whether the object is iterable

	
nngt.lib.lin_correlated_distrib(graph, elist=None, correl_attribute='betweenness', noise_scale=None, lower=None, upper=None, slope=None, offset=0.0, last_edges=False, **kwargs)

	

	
nngt.lib.log_correlated_distrib(graph, elist=None, correl_attribute='betweenness', noise_scale=None, lower=0.0, upper=2.0, **kwargs)

	

	
nngt.lib.lognormal_distrib(graph, elist=None, num=None, position=None, scale=None, **kwargs)

	Lognormal distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	position (float, optional (default: 0.)) – Average of the normal distribution (i.e. log of the actual mean of the
lognormal distribution).

	scale (float, optional (default: 1.5)) – Standard deviation of the normal distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.nonstring_container(obj)

	Returns true for any iterable which is not a string or byte sequence.

	
nngt.lib.uniform_distrib(graph, elist=None, num=None, lower=None, upper=None, **kwargs)

	Uniform distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	lower (float, optional (default: 0.)) – Min value of the uniform distribution.

	upper (float, optional (default: 1.5)) – Max value of the uniform distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

Plot module

Functions for plotting graphs and graph properties.

The following features are provided:

	basic graph plotting

	plotting the distribution of some attribute over the graph

	animation of some recorded activity

Content

	nngt.plot.Animation2d(source, multimeter[, …])

	Class to plot the raster plot, firing-rate, and average trajectory in a 2D phase-space for a network activity.

	nngt.plot.AnimationNetwork(source, network)

	Class to plot the raster plot, firing-rate, and space-embedded spiking activity (neurons on the graph representation flash when spiking) in time.

	nngt.plot.betweenness_distribution(network)

	Plotting the betweenness distribution of a graph.

	nngt.plot.chord_diagram(network[, weights, …])

	Plot a chord diagram.

	nngt.plot.compare_population_attributes(…)

	Compare node attributes between two sets of nodes.

	nngt.plot.correlation_to_attribute(network, …)

	For each node plot the value of reference_attributes against each of the other_attributes to check for correlations.

	nngt.plot.degree_distribution(network[, …])

	Plotting the degree distribution of a graph.

	nngt.plot.draw_network(network[, nsize, …])

	Draw a given graph/network.

	nngt.plot.edge_attributes_distribution(…)

	Return node attributes for a set of nodes.

	nngt.plot.hive_plot(network, radial[, axes, …])

	Draw a hive plot of the graph.

	nngt.plot.library_draw(network[, nsize, …])

	Draw a given Graph using the underlying library’s drawing functions.

	nngt.plot.node_attributes_distribution(…)

	Return node attributes for a set of nodes.

	nngt.plot.palette_continuous([numbers])

	

	nngt.plot.palette_discrete([numbers])

	

Details

	
class nngt.plot.Animation2d(source, multimeter, start=0.0, timewindow=None, trace=5.0, x='time', y='V_m', sort_neurons=None, network=None, interval=50, vector_field=False, **kwargs)

	Class to plot the raster plot, firing-rate, and average trajectory in
a 2D phase-space for a network activity.

Generate a SubplotAnimation instance to plot a network activity.

	Parameters

	
	source (tuple) – NEST gid of the ``spike_detector``(s) which recorded the network.

	multimeter (tuple) – NEST gid of the ``multimeter``(s) which recorded the network.

	timewindow (double, optional (default: None)) – Time window which will be shown for the spikes and self.second.

	trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed in red.

	x (str, optional (default: “time”)) – Name of the x-axis variable (must be either “time” or the name
of a NEST recordable in the multimeter).

	y (str, optional (default: “V_m”)) – Name of the y-axis variable (must be either “time” or the name
of a NEST recordable in the multimeter).

	vector_field (bool, optional (default: False)) – Whether the [image: \dot{x}] and [image: \dot{y}] arrows should be
added to phase space. Requires additional ‘dotx’ and ‘doty’
arguments which are user defined functions to compute the
derivatives of x and x in time. These functions take 3
parameters, which are x, y, and time_dependent, where the
last parameter is a list of doubles associated to recordables
from the neuron model (see example for details). These recordables
must be declared in a time_dependent parameter.

	sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”,
“out-degree”, “total-degree” or “betweenness”), an activity-related
property (“firing_rate”, ‘B2’) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the
sort_neurons property from bottom to top inside each group.

	**kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’, ‘num_xarrows’,
‘num_yarrows’, ‘dotx’, ‘doty’, ‘time_dependent’, ‘recordables’,
‘arrow_scale’.

	
class nngt.plot.AnimationNetwork(source, network, resolution=1.0, start=0.0, timewindow=None, trace=5.0, show_spikes=False, sort_neurons=None, decimate_connections=False, interval=50, repeat=True, resting_size=None, active_size=None, **kwargs)

	Class to plot the raster plot, firing-rate, and space-embedded spiking
activity (neurons on the graph representation flash when spiking) in time.

Generate a SubplotAnimation instance to plot a network activity.

	Parameters

	
	source (tuple) – NEST gid of the ``spike_detector``(s) which recorded the network.

	network (SpatialNetwork) – Network embedded in space to plot the actvity of the neurons in
space.

	resolution (double, optional (default: None)) – Time resolution of the animation.

	timewindow (double, optional (default: None)) – Time window which will be shown for the spikes and self.second.

	trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed in red.

	show_spikes (bool, optional (default: True)) – Whether a spike trajectory should be displayed on the network.

	sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”,
“out-degree”, “total-degree” or “betweenness”), an activity-related
property (“firing_rate”, ‘B2’) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the
sort_neurons property from bottom to top inside each group.

	**kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’, or all arguments for the
nngt.plot.draw_network().

	
nngt.plot.betweenness_distribution(network, btype='both', weights=False, nodes=None, logx=False, logy=False, num_nbins=None, num_ebins=None, axes=None, colors=None, norm=False, legend_location='right', show=True, **kwargs)

	Plotting the betweenness distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	btype (string, optional (default: “both”)) – type of betweenness to display (“node”, “edge” or “both”)

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes (taken into account only
for the node attribute).

	logx (bool, optional (default: False)) – use log-spaced bins.

	logy (bool, optional (default: False)) – use logscale for the degree count.

	num_nbins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the node distribution. Defaults to
max(num_nodes / 50., 10).

	num_ebins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the edge distribution. Defaults to
max(num_edges / 500., 10) (‘auto’ method will be slow).

	axes (list of matplotlib.axis.Axis [https://matplotlib.org/api/axis_api.html#matplotlib.axis.Axis], optional (default: new ones)) – Axes which should be used to plot the histogram, if None, new ones are
created.

	legend_location (str, optional (default; ‘right’)) – Location of the legend.

	show (bool, optional (default: True)) – Show the Figure right away if True, else keep it warm for later use.

	
nngt.plot.chord_diagram(network, weights=True, names=None, order=None, width=0.1, pad=2.0, gap=0.03, chordwidth=0.7, axis=None, colors=None, cmap=None, alpha=0.7, use_gradient=False, show=False, **kwargs)

	Plot a chord diagram.

	Parameters

	
	network (a nngt.Graph object) – Network used to plot the chord diagram.

	weights (bool or str, optional (default: ‘weight’ attribute)) – Weights used to plot the connections.

	names (str or list of str, optional (default: no names)) – Names of the nodes that will be displayed, either a node attribute
or a custom list (must be ordered following the nodes’ indices).

	order (list, optional (default: order of the matrix entries)) – Order in which the arcs should be placed around the trigonometric
circle.

	width (float, optional (default: 0.1)) – Width/thickness of the ideogram arc.

	pad (float, optional (default: 2)) – Distance between two neighboring ideogram arcs. Unit: degree.

	gap (float, optional (default: 0.03)) – Distance between the arc and the beginning of the cord.

	chordwidth (float, optional (default: 0.7)) – Position of the control points for the chords, controlling their shape.

	axis (matplotlib axis, optional (default: new axis)) – Matplotlib axis where the plot should be drawn.

	colors (list, optional (default: from cmap)) – List of user defined colors or floats.

	cmap (str or colormap object (default: viridis)) – Colormap to use.

	alpha (float in [0, 1], optional (default: 0.7)) – Opacity of the chord diagram.

	use_gradient (bool, optional (default: False)) – Whether a gradient should be use so that chord extremities have the
same color as the arc they belong to.

	**kwargs (keyword arguments) – Available kwargs are “fontsize” and “sort” (either “size” or
“distance”), “zero_entry_size” (in degrees, default: 0.5),
“rotate_names” (a bool or list of bools) to rotate (some of) the
names by 90°.

	
nngt.plot.compare_population_attributes(network, attributes, nodes=None, reference_nodes=None, num_bins='auto', reference_color='gray', title=None, logx=False, logy=False, show=True, **kwargs)

	Compare node attributes between two sets of nodes. Since number of nodes
can vary, normalized distributions are used.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”
* “b2” (requires NEST)
* “firing_rate” (requires NEST)

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	reference_nodes (list, optional (default: all nodes)) – Reference nodes for which the attributes should be returned in order
to compare with nodes.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwize a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.correlation_to_attribute(network, reference_attribute, other_attributes, attribute_type='node', nodes=None, edges=None, fig=None, title=None, show=True)

	For each node plot the value of reference_attributes against each of the
other_attributes to check for correlations.

Changed in version 2.0: Added fig argument.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	reference_attribute (str or array-like) – Attribute which should serve as reference, among:

	“betweenness”

	“clustering”

	“in-degree”, “out-degree”, “total-degree”

	“in-strength”, “out-strength”, “total-strength”

	“subgraph_centrality”

	“b2” (requires NEST)

	“firing_rate” (requires NEST)

	a custom array of values, in which case one entry per node in nodes
is required.

	other_attributes (str or list) – Attributes that will be compared to the reference.

	attribute_type (str, optional (default: ‘node’)) – Whether we are dealing with ‘node’ or ‘edge’ attributes

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

	fig (matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure], optional (default: new Figure)) – Figure to which the plot should be added.

	title (str, optional (default: automatic).) – Custom title, use “” to remove the automatic title.

	show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

	
nngt.plot.degree_distribution(network, deg_type='total', nodes=None, num_bins='doane', weights=False, logx=False, logy=False, axis=None, axis_num=None, colors=None, norm=False, show=True, title=None, **kwargs)

	Plotting the degree distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – The graph to analyze.

	deg_type (string or N-tuple, optional (default: “total”)) – Type of degree to consider (“in”, “out”, or “total”)

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes.

	num_bins (str, int or N-tuple, optional (default: ‘doane’):) – Number of bins used to sample the distribution. Defaults to ‘doane’.
Use to ‘auto’ for numpy automatic selection or ‘bayes’ for unsupervised
Bayesian blocks method.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	logx (bool, optional (default: False)) – Use log-spaced bins.

	logy (bool, optional (default: False)) – Use logscale for the degree count.

	axis (matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] instance, optional (default: new one)) – Axis which should be used to plot the histogram, if None, a new one is
created.

	show (bool, optional (default: True)) – Show the Figure right away if True, else keep it warm for later use.

	**kwargs (keyword arguments for matplotlib.axes.Axes.bar().)

	
nngt.plot.draw_network(network, nsize='total-degree', ncolor='group', nshape='o', nborder_color='k', nborder_width=0.5, esize=1.0, ecolor='k', ealpha=0.5, max_nsize=None, max_esize=2.0, curved_edges=False, threshold=0.5, decimate_connections=None, spatial=True, restrict_sources=None, restrict_targets=None, restrict_nodes=None, restrict_edges=None, show_environment=True, fast=False, size=(600, 600), xlims=None, ylims=None, dpi=75, axis=None, colorbar=False, cb_label=None, layout=None, show=False, **kwargs)

	Draw a given graph/network.

	Parameters

	
	network (Graph or subclass) – The graph/network to plot.

	nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes as a percentage of the canvas length. Otherwise, it
can be a string that correlates the size to a node attribute among
“in/out/total-degree”, “in/out/total-strength”, or “betweenness”.

	ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a float in [0, 1], position of the color in the
current palette, otherwise a string that correlates the color to a node
attribute among “in/out/total-degree”, “betweenness” or “group”.

	nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see Matplotlib markers [http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers]).
When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

	nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border using predefined Matplotlib colors [http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors]).
or floats in [0, 1] defining the position in the palette.

	nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in percent of canvas size.

	esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of canvas length. Available string values
are “betweenness” and “weight”.

	ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”, edges color will depend on the source
and target groups, i.e. only edges from and toward same groups will
have the same color.

	max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this normalizes the edge
width between 0. and max_esize.

	threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

	decimate_connections (int, optional (default: keep all connections)) – Plot only one connection every decimate_connections.
Use -1 to hide all edges.

	spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

	restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from a restricted set of source nodes.

	restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a restricted set of target nodes.

	restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset of nodes.

	restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

	show_environment (bool, optional (default: True)) – Plot the environment if the graph is spatial.

	fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. Zooming on the drawing made
using this method leaves the size of the nodes and edges unchanged, it
is therefore not recommended when size consistency matters, e.g. for
some spatial representations.

	size (tuple of ints, optional (default: (600,600))) – (width, height) tuple for the canvas size (in px).

	dpi (int, optional (default: 75)) – Resolution (dot per inch).

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node colors or not.

	cb_label (str, optional (default: None)) – A label for the colorbar.

	layout (str, optional (default: random or spatial positions)) – Name of a standard layout to structure the network. Available layouts
are: “circular” or “random”. If no layout is provided and the network
is spatial, then node positions will be used by default.

	show (bool, optional (default: True)) – Display the plot immediately.

	**kwargs (dict) – Optional keyword arguments including node_cmap to set the
nodes colormap (default is “magma” for continuous variables and
“Set1” for groups) and “title” to add a title to the plot.

	
nngt.plot.edge_attributes_distribution(network, attributes, edges=None, num_bins='auto', logx=False, logy=False, norm=False, title=None, colors=None, show=True, **kwargs)

	Return node attributes for a set of nodes.

New in version 1.0.3.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned (e.g. “betweenness”, “delay”,
“weight”).

	edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.hive_plot(network, radial, axes=None, axes_bins=None, axes_range=None, axes_angles=None, axes_labels=None, axes_units=None, intra_connections=True, highlight_nodes=None, highlight_edges=None, nsize=None, esize=None, max_nsize=10, max_esize=1, axes_colors=None, edge_colors=None, edge_alpha=0.05, nborder_color='k', nborder_width=0.2, show_names=True, show_circles=False, axis=None, tight=True, show=False)

	Draw a hive plot of the graph.

Note

For directed networks, the direction of intra-axis connections is
counter-clockwise.
For inter-axes connections, the default edge color is closest to the color
of the source group (i.e. from a red group to a blue group, edge color will
be a reddish violet , while from blue to red, it will be a blueish violet).

	Parameters

	
	network (Graph) – Graph to plot.

	radial (str, list of str or array-like) – Values that will be used to place the nodes on the axes. Either one
identical property is used for all axes (traditional hive plot) or
one radial coordinate per axis is used (custom hive plot).
If radial is a string or a list of strings, then these must correspond
to the names of node attributes stored in the graph.

	axes (str, or list of str, optional (default: one per radial coordinate)) – Name of the attribute(s) that will be used to make each of the axes
(i.e. each group of nodes).
This can be either “groups” if the graph has a structure or is a
Network, a list of (Meta)Group names, or any (list of)
node attribute(s).
If a single node attribute is used, axes_bins must be provided to
make one axis for each range of values.
If there are multiple radial coordinates, then leaving axes blanck
will plot all nodes on each of the axes (one per radial coordinate).

	axes_bins (int or array-like, optional (default: all nodes on each axis)) – Required if there is a single radial coordinate and a single axis
entry: provides the bins that will be used to separate the nodes
into groups (one per axis). For N axes, there must therefore be N + 1
entries in axes_bins, or axis_bins must be equal to N, in which
case the nodes are separated into N evenly sized bins.

	axes_units (str, optional) – Units used to scale the axes. Either “native” to have them scaled
between the minimal and maximal radial coordinates among all axes,
“rank”, to use the min and max ranks of the nodes on all axes, or
“normed”, to have each axis go from zero (minimal local radial
coordinate) to one (maximal local radial coordinate).
“native” is the default if there is a single radial coordinate,
“normed” is the default for multiple coordinates.

	axes_angles (list of angles, optional (default: automatic)) – Angles for each of the axes, by increasing degree. If
intra_connections is True, then angles of duplicate axes must be
adjacent, e.g. [a1, a1bis, a2, a2bis, a3, a3bis].

	axes_labels (str or list of str, optional) – Label of each axis. For binned axes, it can be automatically formatted
via the three entries {name}, {start}, {stop}.
E.g. “{name} in [{start}, {stop}]” would give “CC in [0, 0.2]” for
a first axis and “CC in [0.2, 0.4]” for a second axis.

	intra_connections (bool, optional (default: True)) – Show connections between nodes belonging to the same axis. If true,
then each axis is duplicated to display intra-axis connections.

	highlight_nodes (list of nodes, optional (default: all nodes)) – Highlight a subset of nodes and their connections, all other nodes
and connections will be gray.

	highlight_edges (list of edges, optional (default: all edges)) – Highlight a subset of edges; all other connections will be gray.

	nsize (float, str, or array-like, optional (default: automatic)) – Size of the nodes on the axes. Either a fixed size, the name of a
node attribute, or a list of user-defined values.

	esize (float or str, optional (default: 1)) – Size of the edges. Either a fixed size or the name of an edge
attribute.

	max_nsize (float, optional (default: 10)) – Maximum node size if nsize is an attribute or a list of
user-defined values.

	max_esize (float, optional (default: 1)) – Maximum edge size if esize is an attribute.

	axes_colors (valid matplotlib color/colormap, optional (default: Set1)) – Color associated to each axis.

	nborder_color (matplotlib color, optional (default: “k”)) – Color of the node’s border.
or floats in [0, 1] defining the position in the palette.

	nborder_width (float, optional (default: 0.2)) – Width of the border.

	edge_colors (valid matplotlib color/colormap, optional (default: auto)) – Color of the edges. By default it is the intermediate color between
two axes colors. To provide custom colors, they must be provided as
a dictionnary of axes edges {(0, 0): "r", (0, 1): "g", (1, 0): "b"}
with default color being black.

	edge_alpha (float, optional (default: 0.05)) – Edge opacity.

	show_names (bool, optional (default: True)) – Show axes names and properties.

	show_circles (bool, optional (default: False)) – Show the circles associated to the maximum value of each axis.

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	tight (bool, optional (default: True)) – Set figure layout to tight (set to False if plotting multiple axes on
a single figure).

	show (bool, optional (default: True)) – Display the plot immediately.

	
nngt.plot.library_draw(network, nsize='total-degree', ncolor='group', nshape='o', nborder_color='k', nborder_width=0.5, esize=1.0, ecolor='k', ealpha=0.5, max_nsize=5.0, max_esize=2.0, curved_edges=False, threshold=0.5, decimate_connections=None, spatial=True, restrict_sources=None, restrict_targets=None, restrict_nodes=None, restrict_edges=None, show_environment=True, size=(600, 600), xlims=None, ylims=None, dpi=75, axis=None, colorbar=False, show_labels=False, layout=None, show=False, **kwargs)

	Draw a given Graph using the underlying library’s drawing
functions.

New in version 2.0.

Warning

When using igraph or graph-tool, if you want to use the axis
argument, then you must first switch the matplotlib backend to its
cairo version using e.g. plt.switch_backend("Qt5Cairo") if your
normal backend is Qt5 (“Qt5Agg”).

	Parameters

	
	network (Graph or subclass) – The graph/network to plot.

	nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes as a percentage of the canvas length. Otherwise, it
can be a string that correlates the size to a node attribute among
“in/out/total-degree”, or “betweenness”.

	ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a float in [0, 1], position of the color in the
current palette, otherwise a string that correlates the color to a node
attribute among “in/out/total-degree”, “betweenness” or “group”.

	nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see Matplotlib markers [http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers]).
When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

	nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border using predefined Matplotlib colors [http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors]).
or floats in [0, 1] defining the position in the palette.

	nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in percent of canvas size.

	esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of canvas length. Available string values
are “betweenness” and “weight”.

	ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”, edges color will depend on the source
and target groups, i.e. only edges from and toward same groups will
have the same color.

	max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this normalizes the edge
width between 0. and max_esize.

	threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

	decimate_connections (int, optional (default: keep all connections)) – Plot only one connection every decimate_connections.
Use -1 to hide all edges.

	spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

	restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from a restricted set of source nodes.

	restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a restricted set of target nodes.

	restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset of nodes.

	restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

	show_environment (bool, optional (default: True)) – Plot the environment if the graph is spatial.

	fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. This method leads to less
pretty plots and zooming on the graph will make the edges start or
ending in places that will differ more or less strongly from the actual
node positions.

	size (tuple of ints, optional (default: (600, 600))) – (width, height) tuple for the canvas size (in px).

	dpi (int, optional (default: 75)) – Resolution (dot per inch).

	colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node colors or not.

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	layout (str, optional (default: library-dependent or spatial positions)) – Name of a standard layout to structure the network. Available layouts
are: “circular”, “spring-block”, “random”. If no layout is
provided and the network is spatial, then node positions will be
used by default.

	show (bool, optional (default: True)) – Display the plot immediately.

	**kwargs (dict) – Optional keyword arguments including node_cmap to set the
nodes colormap (default is “magma” for continuous variables and
“Set1” for groups) and the boolean simple_nodes to make node
plotting faster.

	
nngt.plot.node_attributes_distribution(network, attributes, nodes=None, num_bins='auto', logx=False, logy=False, norm=False, title=None, colors=None, show=True, **kwargs)

	Return node attributes for a set of nodes.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “closeness”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”
* “b2” (requires NEST)
* “firing_rate” (requires NEST)

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.palette_continuous(numbers=None)

	

	
nngt.plot.palette_discrete(numbers=None)

	

Simulation module

Module to interact easily with the NEST simulator. It allows to:

	build a NEST network from Network or
SpatialNetwork objects,

	monitor the activity of the network (taking neural groups into account)

	plot the activity while separating the behaviours of predefined neural groups

Content

	nngt.simulation.ActivityRecord(spike_data, …)

	Class to record the properties of the simulated activity.

	nngt.simulation.activity_types(…[, …])

	Analyze the spiking pattern of a neural network.

	nngt.simulation.analyze_raster([raster, …])

	Return the activity types for a given raster.

	nngt.simulation.get_nest_adjacency([…])

	Get the adjacency matrix describing a NEST network.

	nngt.simulation.get_recording(network, record)

	Return the evolution of some recorded values for each neuron.

	nngt.simulation.make_nest_network(network[, …])

	Create a new network which will be filled with neurons and connector objects to reproduce the topology from the initial network.

	nngt.simulation.monitor_groups(group_names, …)

	Monitoring the activity of nodes in the network.

	nngt.simulation.monitor_nodes(gids[, …])

	Monitoring the activity of nodes in the network.

	nngt.simulation.plot_activity([…])

	Plot the monitored activity.

	nngt.simulation.randomize_neural_states(…)

	Randomize the neural states according to the instructions.

	nngt.simulation.raster_plot(times, senders)

	Plotting routine that constructs a raster plot along with an optional histogram.

	nngt.simulation.reproducible_weights(…[, …])

	Find the values of the connection weights that will give PSP responses of min_weight and max_weight in mV.

	nngt.simulation.save_spikes(filename[, …])

	Plot the monitored activity.

	nngt.simulation.set_minis(network, …[, …])

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or “minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs) synapses.

	nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	nngt.simulation.set_poisson_input(gids, rate)

	Submit neurons to a Poissonian rate of spikes.

	nngt.simulation.set_step_currents(gids, …)

	Set step-current excitations

Details

	
class nngt.simulation.ActivityRecord(spike_data, phases, properties, parameters=None)

	Class to record the properties of the simulated activity.

Initialize the instance using spike_data (store proxy to an optional
network) and compute the properties of provided data.

	Parameters

	
	spike_data (2D array) – Array of shape (num_spikes, 2), containing the senders on the 1st
row and the times on the 2nd row.

	phases (dict) – Limits of the different phases in the simulated period.

	properties (dict) – Values of the different properties of the activity (e.g.
“firing_rate”, “IBI”…).

	parameters (dict, optional (default: None)) – Parameters used to compute the phases.

Note

The firing rate is computed as num_spikes / total simulation time,
the period is the sum of an IBI and a bursting period.

	
data

	Returns the (N, 2) array of (senders, spike times).

	
phases

	
	“bursting” for periods of high activity where a large fraction
of the network is recruited.

	“quiescent” for periods of low activity

	“mixed” for firing rate in between “quiescent” and “bursting”.

	“localized” for periods of high activity but where only a small
fraction of the network is recruited.

Note

See parameters for details on the conditions used to
differenciate these phases.

	Type

	Return the phases detected

	
properties

	Returns the properties of the activity.
Contains the following entries:

	“firing_rate”: average value in Hz for 1 neuron in the network.

	“bursting”: True if there were bursts of activity detected.

	“burst_duration”, “IBI”, “ISI”, and “period” in ms, if
“bursting” is True.

	“SpB” (Spikes per Burst): average number of spikes per neuron
during a burst.

	
simplify()

	

	
nngt.simulation.activity_types(spike_detector, limits, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, simplify=False, fignums=[], show=False)

	Analyze the spiking pattern of a neural network.

	@todo:

	think about inserting t=0. and t=simtime at the beginning and at the
end of times.

	Parameters

	
	spike_detector (NEST node(s) (tuple or list of tuples)) – The recording device that monitored the network’s spikes.

	limits (tuple of floats) – Time limits of the simulation region which should be studied (in ms).

	network (Network, optional (default: None)) – Neural network that was analyzed

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	return_steps (bool, optional (default: False)) – If True, a second dictionary, phases_steps will also be returned.
@todo: not implemented yet

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the limits[0]
first milliseconds are ignored, then the skip_bursts first bursts of the
remaining activity are ignored.

	Returns

	phases (dict) – Dictionary containing the time intervals (in ms) for all four phases
(bursting’, `quiescent’, `mixed’, and `localized) as lists.
E.g: phases["bursting"] could give [[123.5,334.2],
[857.1,1000.6]].

	
nngt.simulation.analyze_raster(raster=None, limits=None, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, skip_ms=0.0, simplify=False, fignums=[], show=False)

	Return the activity types for a given raster.

	Parameters

	
	raster (array-like (N, 2) or str) – Either an array containing the ids of the spiking neurons on the first
column, then the corresponding times on the second column, or the path
to a NEST .gdf recording.

	limits (tuple of floats) – Time limits of the simulation regrion which should be studied (in ms).

	network (Network, optional (default: None)) – Network on which the recorded activity was simulated.

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the
limits[0] first milliseconds are ignored, then the skip_bursts
first bursts of the remaining activity are ignored.

	Returns

	activity (ActivityRecord) – Object containing the phases and the properties of the activity
from these phases.

	
nngt.simulation.get_nest_adjacency(id_converter=None)

	Get the adjacency matrix describing a NEST network.

	Parameters

	id_converter (dict, optional (default: None)) – A dictionary which maps NEST gids to the desired neurons ids.

	Returns

	mat_adj (lil_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix]) – Adjacency matrix of the network.

	
nngt.simulation.get_recording(network, record, recorder=None, nodes=None)

	Return the evolution of some recorded values for each neuron.

	Parameters

	
	network (nngt.Network) – Network for which the activity was simulated.

	record (str or list) – Name of the record(s) to obtain.

	recorder (tuple of ints, optional (default: all multimeters)) – GID of the “spike_detector” objects recording the network activity.

	nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the recording should be returned.

	Returns

	values (dict of dict of arrays) – Dictionary containing, for each record, an M array with the
recorded values for n-th neuron is stored under entry n (integer).
A times entry is also added; it should be the same size for all
records, otherwise an error will be raised.

Examples

After the creation of a Network called net, use the
following code:

import nest

rec, _ = monitor_nodes(
 net.nest_gids, "multimeter", {"record_from": ["V_m"]}, net)
nest.Simulate(100.)
recording = nngt.simulation.get_recording(net, "V_m")

access the membrane potential of first neuron + the times
V_m = recording["V_m"][0]
times = recording["times"]

	
nngt.simulation.make_nest_network(network, send_only=None, weights=True)

	Create a new network which will be filled with neurons and
connector objects to reproduce the topology from the initial network.

Changed in version 0.8: Added send_only parameter.

	Parameters

	
	network (nngt.Network or nngt.SpatialNetwork) – the network we want to reproduce in NEST.

	send_only (int, str, or list of str, optional (default: None)) – Restrict the nodes that are created in NEST to either inhibitory or
excitatory neurons send_only [image: \in \{ 1, -1\}] to a group or a
list of groups.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	Returns

	gids (tuple (nodes in NEST)) – GIDs of the neurons in the network.

	
nngt.simulation.monitor_groups(group_names, network, nest_recorder=None, params=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	group_name (list of strings) – Names of the groups that should be recorded.

	network (Network or subclass) – Network which population will be used to differentiate groups.

	nest_recorder (strings or list, optional (default: “spike_detector”0)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	Returns

	
	recorders (list or NodeCollection of the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.monitor_nodes(gids, nest_recorder=None, params=None, network=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	gids (tuple of ints or list of tuples) – GIDs of the neurons in the NEST subnetwork; either one list per
recorder if they should monitor different neurons or a unique list
which will be monitored by all devices.

	nest_recorder (strings or list, optional (default: “spike_detector”)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	network (Network or subclass, optional (default: None)) – Network which population will be used to differentiate groups.

	Returns

	
	recorders (list or NodeCollection containing the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.plot_activity(gid_recorder=None, record=None, network=None, gids=None, axis=None, show=False, limits=None, histogram=False, title=None, fignum=None, label=None, sort=None, average=False, normalize=1.0, decimate=None, transparent=True, kernel_center=0.0, kernel_std=None, resolution=None, cut_gaussian=5.0, **kwargs)

	Plot the monitored activity.

Changed in version 1.2: Switched hist to histogram and default value to False.

Changed in version 1.0.1: Added axis parameter, restored missing fignum parameter.

	Parameters

	
	gid_recorder (tuple or list of tuples, optional (default: None)) – The gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	record (tuple or list, optional (default: None)) – List of the monitored variables for each device. If gid_recorder is
None, record can also be None and only spikes are considered.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	gids (tuple, optional (default: None)) – NEST gids of the neurons which should be monitored.

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity. This takes precedence
over fignum.

	show (bool, optional (default: False)) – Whether to show the plot right away or to wait for the next plt.show().

	histogram (bool, optional (default: False)) – Whether to display the histogram when plotting spikes rasters.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike for raster plots).

	title (str, optional (default: None)) – Title of the plot.

	fignum (int, or dict, optional (default: None)) – Plot the activity on an existing figure (from figure.number). This
parameter is ignored if axis is provided.

	label (str or list, optional (default: None)) – Add labels to the plot (one per recorder).

	sort (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”, “out-degree”,
“total-degree” or “betweenness”), an activity-related property
(“firing_rate” or neuronal property) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the sort
property from bottom to top inside each group.

	normalize (float or list, optional (default: None)) – Normalize the recorded results by a given float. If a list is provided,
there should be one entry per voltmeter or multimeter in the recorders.
If the recording was done through monitor_groups, the population can
be passed to normalize the data by the nuber of nodes in each group.

	decimate (int or list of ints, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 5 will lead
to only 20% of the neurons being represented). If a list is provided,
it must have one entry per NeuralGroup in the population.

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms (for the histogram).

	kernel_std (float, optional (default: 0.5% of simulation time)) – Characteristic width of the Gaussian kernel (standard deviation) in ms
(for the histogram).

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed (for the histogram).

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	**kwargs (dict) – “color” and “alpha” values can be overriden here.

Warning

Sorting with “firing_rate” only works if NEST gids form a continuous
integer range.

	Returns

	lines (list of lists of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted, grouped by figure.

	
nngt.simulation.randomize_neural_states(network, instructions, groups=None, nodes=None, make_nest=False)

	Randomize the neural states according to the instructions.

Changed in version 0.8: Changed ids to nodes argument.

	Parameters

	
	network (Network subclass instance) – Network that will be simulated.

	instructions (dict) – Variables to initialize. Allowed keys are “V_m” and “w”. Values are
3-tuples of type ("distrib_name", double, double).

	groups (list of NeuralGroup, optional (default: None)) – If provided, only the neurons belonging to these groups will have their
properties randomized.

	nodes (array-like, optional (default: all neurons)) – NNGT ids of the neurons that will have their status randomized.

	make_nest (bool, optional (default: False)) – If True and network has not been converted to NEST, automatically
generate the network, else raises an exception.

Example

instructions = {
 "V_m": ("uniform", -80., -60.),
 "w": ("normal", 50., 5.)
}

	
nngt.simulation.raster_plot(times, senders, limits=None, title='Spike raster', histogram=False, num_bins=1000, color='b', decimate=None, axis=None, fignum=None, label=None, show=True, sort=None, sort_attribute=None, network=None, transparent=True, kernel_center=0.0, kernel_std=30.0, resolution=None, cut_gaussian=5.0, **kwargs)

	Plotting routine that constructs a raster plot along with
an optional histogram.

Changed in version 1.2: Switched hist to histogram.

Changed in version 1.0.1: Added axis parameter.

	Parameters

	
	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Spike times.

	senders (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Index for the spiking neuron for each time in times.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike).

	title (string, optional (default: ‘Spike raster’)) – Title of the raster plot.

	histogram (bool, optional (default: True)) – Whether to plot the raster’s histogram.

	num_bins (int, optional (default: 1000)) – Number of bins for the histogram.

	color (string or float, optional (default: ‘b’)) – Color of the plot lines and markers.

	decimate (int, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 10 will lead
to only 10% of the neurons being represented).

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity.

	fignum (int, optional (default: None)) – Id of another raster plot to which the new data should be added.

	label (str, optional (default: None)) – Label the current data.

	show (bool, optional (default: True)) – Whether to show the plot right away or to wait for the next plt.show().

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

	kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel (standard deviation) in ms.

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed.

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	Returns

	lines (list of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted.

	
nngt.simulation.reproducible_weights(weights, neuron_model, di_param={}, timestep=0.05, simtime=50.0, num_bins=1000, log=False)

	Find the values of the connection weights that will give PSP responses of
min_weight and max_weight in mV.

	Parameters

	
	weights (list of floats) – Exact desired synaptic weights.

	neuron_model (string) – Name of the model used.

	di_param (dict, optional (default: {})) – Parameters of the model, default parameters if not supplied.

	timestep (float, optional (default: 0.01)) – Timestep of the simulation in ms.

	simtime (float, optional (default: 10.)) – Simulation time in ms (default: 10).

	num_bins (int, optional (default: 10000)) – Number of bins used to discretize the exact synaptic weights.

	log (bool, optional (default: False)) – Whether bins should use a logarithmic scale.

Note

If the parameters used are not the default ones, they MUST be provided,
otherwise the resulting weights will likely be WRONG.

	
nngt.simulation.save_spikes(filename, recorder=None, network=None, save_positions=True, **kwargs)

	Plot the monitored activity.

New in version 0.7.

	Parameters

	
	filename (str) – Path to the file where the activity should be saved.

	recorder (tuple or list of tuples, optional (default: None)) – The NEST gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	save_positions (bool, optional (default: True)) – Whether to include the position of the neurons in the file; this
requires network to be provided.

	**kwargs (see numpy.savetxt() [https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt])

	
nngt.simulation.set_minis(network, base_rate, weight, syn_type=1, nodes=None, gids=None)

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or
“minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs)
synapses.
These minis consists in only a fraction of the usual strength of a spike-
triggered PSC and can be modeled by a Poisson process.
This Poisson process occurs independently at every synapse of a neuron, so
a neuron receiving [image: k] inputs will be subjected to these events with
a rate [image: k*\lambda], where [image: \lambda] is the base rate.

	Parameters

	
	network (Network object) – Network on which the minis should be simulated.

	base_rate (float) – Rate for the Poisson process on one synapse ([image: \lambda]), in Hz.

	weight (float or array of size N) – Amplitude of a minitature post-synaptic event.

	syn_type (int, optional (default: 1)) – Synaptic type of the noisy connections. By default, mEPSCs are
generated, by taking into account only the excitatory degrees and
synaptic weights. To setup mIPSCs, used syn_type=-1.

	nodes (array-like (size N), optional (default: all nodes)) – NNGT ids of the neurons that should be subjected to minis.

	gids (array-like (size N), optional (default: all neurons)) – NEST gids of the neurons that should be subjected to minis.

Note

nodes and gids are not compatible, only one one the two arguments can
be used in any given call to set_minis.

	
nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	mean (float) – Mean current value.

	std (float) – Standard deviation of the current

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

	
nngt.simulation.set_poisson_input(gids, rate, syn_spec=None, **kwargs)

	Submit neurons to a Poissonian rate of spikes.

Changed in version 2.0: Added kwargs.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	rate (float) – Rate of the spike train (in Hz).

	syn_spec (dict, optional (default: static synapse with weight 1)) – Properties of the connection between the poisson_generator object
and the target neurons.

	**kwargs (dict) – Other optional parameters for the poisson_generator.

	Returns

	poisson_input (tuple) – The NEST gid of the poisson_generator.

	
nngt.simulation.set_step_currents(gids, times, currents)

	Set step-current excitations

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the times where the current will change (by default the current
generator is initiated at I=0. for t=0.)

	currents (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the new current value after the associated time value in
times.

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

Analysis module

Tools to analyze neuronal networks, using either their topological properties,
their activity, or more importantly, taking both into account.

Content

	nngt.analysis.adjacency_matrix(graph[, …])

	Adjacency matrix of the graph.

	nngt.analysis.all_shortest_paths(g, source, …)

	Yields all shortest paths from source to target.

	nngt.analysis.assortativity(g, degree[, weights])

	Returns the assortativity of the graph.

	nngt.analysis.average_path_length(g[, …])

	Returns the average shortest path length between sources and targets.

	nngt.analysis.bayesian_blocks(t[, x, sigma, …])

	Bayesian Blocks Implementation

	nngt.analysis.betweenness(g[, btype, weights])

	Returns the normalized betweenness centrality of the nodes and edges.

	nngt.analysis.betweenness_distrib(graph[, …])

	Betweenness distribution of a graph.

	nngt.analysis.binning(x[, bins, log])

	Binning function providing automatic binning using Bayesian blocks in addition to standard linear and logarithmic uniform bins.

	nngt.analysis.closeness(g[, weights, nodes, …])

	Returns the closeness centrality of some nodes.

	nngt.analysis.connected_components(g[, ctype])

	Returns the connected component to which each node belongs.

	nngt.analysis.degree_distrib(graph[, …])

	Degree distribution of a graph.

	nngt.analysis.diameter(g[, directed, …])

	Returns the diameter of the graph.

	nngt.analysis.get_b2([network, …])

	Return the B2 coefficient for the neurons.

	nngt.analysis.get_firing_rate([network, …])

	Return the average firing rate for the neurons.

	nngt.analysis.get_spikes([recorder, …])

	Return a 2D sparse matrix, where:

	nngt.analysis.global_clustering(g[, …])

	Returns the global clustering coefficient.

	nngt.analysis.global_clustering_binary_undirected(g)

	Returns the undirected global clustering coefficient.

	nngt.analysis.local_closure(g[, directed, …])

	Compute the local closure for each node, as defined in [Yin2019] as the fraction of 2-walks that are closed.

	nngt.analysis.local_clustering(g[, nodes, …])

	Local (weighted directed) clustering coefficient of the nodes, ignoring self-loops.

	nngt.analysis.local_clustering_binary_undirected(g)

	Returns the undirected local clustering coefficient of some nodes.

	nngt.analysis.node_attributes(network, …)

	Return node attributes for a set of nodes.

	nngt.analysis.num_iedges(graph)

	Returns the number of inhibitory connections.

	nngt.analysis.reciprocity(g)

	Calculate the edge reciprocity of the graph.

	nngt.analysis.shortest_distance(g[, …])

	Returns the length of the shortest paths between sources`and `targets.

	nngt.analysis.shortest_path(g, source, target)

	Returns a shortest path between source`and `target.

	nngt.analysis.small_world_propensity(g[, …])

	Returns the small-world propensity of the graph as first defined in [Muldoon2016].

	nngt.analysis.spectral_radius(graph[, …])

	Spectral radius of the graph, defined as the eigenvalue of greatest module.

	nngt.analysis.subgraph_centrality(graph[, …])

	Returns the subgraph centrality for each node in the graph.

	nngt.analysis.total_firing_rate([network, …])

	Computes the total firing rate of the network from the spike times.

	nngt.analysis.transitivity(g[, directed, …])

	Same as global_clustering().

	nngt.analysis.triangle_count(g[, nodes, …])

	Returns the number or the strength (also called intensity) of triangles for each node.

	nngt.analysis.triplet_count(g[, nodes, …])

	Returns the number or the strength (also called intensity) of triplets for each node.

Details

	
nngt.analysis.adjacency_matrix(graph, types=False, weights=False)

	Adjacency matrix of the graph.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	types (bool, optional (default: False)) – Whether the excitatory/inhibitory type of the connnections should be
considered (only if the weighing factor is the synaptic strength).

	weights (bool or string, optional (default: False)) – Whether weights should be taken into account; if True, then connections
are weighed by their synaptic strength, if False, then a binary matrix
is returned, if weights is a string, then the ponderation is the
correponding value of the edge attribute (e.g. “distance” will return
an adjacency matrix where each connection is multiplied by its length).

	Returns

	a csr_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix].

References

	gt-adjacency

	graph-tool - spectral.adjacency [https://graph-tool.skewed.de/static/doc/spectral.html#graph_tool.spectral.adjacency]

	nx-adjacency

	networkx - convert_matrix.to_scipy_sparse_matrix [https://networkx.github.io/documentation/stable/reference/generated/networkx.convert_matrix.to_scipy_sparse_matrix.html]

	
nngt.analysis.all_shortest_paths(g, source, target, directed=None, weights=None, combine_weights='mean')

	Yields all shortest paths from source to target.
The algorithms returns an empty generator if there is no path between the
nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	source (int) – Node from which the paths starts.

	target (int, optional (default: all nodes)) – Node where the paths ends.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	all_paths (generator) – Generator yielding paths as lists of ints.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.all_shortest_paths [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.all_shortest_paths.html]

	
nngt.analysis.assortativity(g, degree, weights=None)

	Returns the assortativity of the graph.
This tells whether nodes are preferentially connected together depending
on their degree.

	Parameters

	
	g (Graph) – Graph to analyze.

	degree (str) – The type of degree that should be considered.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

References

	nx-assortativity

	networkx - algorithms.assortativity.degree_assortativity_coefficient [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.assortativity.degree_assortativity_coefficient.html]

	
nngt.analysis.average_path_length(g, sources=None, targets=None, directed=None, weights=None, combine_weights='mean', unconnected=False)

	Returns the average shortest path length between sources and targets.
The algorithms raises an error if all nodes are not connected unless
unconnected is set to True.

The average path length is defined as

[image: L = \frac{1}{N_p} \sum_{u,v} d(u, v),]

where [image: N_p] is the number of paths between sources and targets,
and [image: d(u, v)] is the shortest path distance from u to v.

If sources and targets are both None, then the total number of paths is
[image: N_p = N(N - 1)], with [image: N] the number of nodes in the graph.

	Parameters

	
	g (Graph) – Graph to analyze.

	sources (list of nodes, optional (default: all)) – Nodes from which the paths must be computed.

	targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	unconnected (bool, optional (default: False)) – If set to true, ignores unconnected nodes and returns the average path
length of the existing paths.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.average_shortest_path_length [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.average_shortest_path_length.html]

	
nngt.analysis.bayesian_blocks(t, x=None, sigma=None, fitness='events', **kwargs)

	Bayesian Blocks Implementation

This is a flexible implementation of the Bayesian Blocks algorithm
described in Scargle 2012 1

New in version 0.7.

	Parameters

	
	t (array_like) – data times (one dimensional, length N)

	x (array_like (optional)) – data values

	sigma (array_like or float (optional)) – data errors

	fitness (str or object) – the fitness function to use.
If a string, the following options are supported:

	
	‘events’binned or unbinned event data

	extra arguments are p0, which gives the false alarm probability
to compute the prior, or gamma which gives the slope of the
prior on the number of bins.

	
	‘regular_events’non-overlapping events measured at multiples

	of a fundamental tick rate, dt, which must be specified as an
additional argument. The prior can be specified through gamma,
which gives the slope of the prior on the number of bins.

	
	‘measures’fitness for a measured sequence with Gaussian errors

	The prior can be specified using gamma, which gives the slope
of the prior on the number of bins. If gamma is not specified,
then a simulation-derived prior will be used.

Alternatively, the fitness can be a user-specified object of
type derived from the FitnessFunc class.

	Returns

	edges (ndarray) – array containing the (N+1) bin edges

Examples

Event data:

>>> t = np.random.normal(size=100)
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Event data with repeats:

>>> t = np.random.normal(size=100)
>>> t[80:] = t[:20]
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Regular event data:

>>> dt = 0.01
>>> t = dt * np.arange(1000)
>>> x = np.zeros(len(t))
>>> x[np.random.randint(0, len(t), len(t) / 10)] = 1
>>> bins = bayesian_blocks(t, fitness='regular_events', dt=dt, gamma=0.9)

Measured point data with errors:

>>> t = 100 * np.random.random(100)
>>> x = np.exp(-0.5 * (t - 50) ** 2)
>>> sigma = 0.1
>>> x_obs = np.random.normal(x, sigma)
>>> bins = bayesian_blocks(t, fitness='measures')

References

	1

	Scargle, J et al. (2012)
http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

See also

	astroML.plotting.hist()

	histogram plotting function which can make use of bayesian blocks.

	
nngt.analysis.betweenness(g, btype='both', weights=None)

	Returns the normalized betweenness centrality of the nodes and edges.

	Parameters

	
	g (Graph) – Graph to analyze.

	btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’, ‘edge’, or
‘both’). By default, both betweenness centralities are computed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	Returns

	
	nb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The nodes’ betweenness if btype is ‘node’ or ‘both’

	eb (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The edges’ betweenness if btype is ‘edge’ or ‘both’

References

	nx-ebetw

	networkx - algorithms.centrality.edge_betweenness_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.edge_betweenness_centrality.html]

	nx-nbetw

	networkx - networkx.algorithms.centrality.betweenness_centrality [https://networkx.github.io/documentation/stable/reference/networkx/generated/networkx.networkx.algorithms.centrality.betweenness_centrality.html]

	
nngt.analysis.betweenness_distrib(graph, weights=None, nodes=None, num_nbins='bayes', num_ebins='bayes', log=False)

	Betweenness distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes (only impacts the node
attribute).

	log (bool, optional (default: False)) – use log-spaced bins.

	num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], or ‘bayes’
will provide automatic bin optimization. Otherwise, an int for the
number of bins can be provided, or the direct bins list.

	Returns

	
	ncounts (numpy.array) – number of nodes in each bin

	nbetw (numpy.array) – bins for node betweenness

	ecounts (numpy.array) – number of edges in each bin

	ebetw (numpy.array) – bins for edge betweenness

	
nngt.analysis.binning(x, bins='bayes', log=False)

	Binning function providing automatic binning using Bayesian blocks in
addition to standard linear and logarithmic uniform bins.

New in version 0.7.

	Parameters

	
	x (array-like) – Array of data to be histogrammed

	bins (int, list or ‘auto’, optional (default: ‘bayes’)) – If bins is ‘bayes’, in use bayesian blocks for dynamic bin widths; if
it is an int, the interval will be separated into

	log (bool, optional (default: False)) – Whether the bins should be evenly spaced on a logarithmic scale.

	
nngt.analysis.closeness(g, weights=None, nodes=None, mode='out', harmonic=False, default=nan)

	Returns the closeness centrality of some nodes.

Closeness centrality of a node u is defined, for the harmonic version,
as the sum of the reciprocal of the shortest path distance [image: d_{uv}]
from u to the N - 1 other nodes in the graph (if mode is “out”,
reciprocally [image: d_{vu}], the distance to u from another node v,
if mode is “in”):

[image: C(u) = \frac{1}{N - 1} \sum_{v \neq u} \frac{1}{d_{uv}},]

or, using the arithmetic definition, as the reciprocal of the
average shortest path distance to/from u over to all other nodes:

[image: C(u) = \frac{n - 1}{\sum_{v \neq u} d_{uv}},]

where d_{uv} is the shortest-path distance from u to v,
and n is the number of nodes in the component.

By definition, the distance is infinite when nodes are not connected by
a path in the harmonic case (such that [image: \frac{1}{d(v, u)} = 0]),
while the distance itself is taken as zero for unconnected nodes in the
first equation.

	Parameters

	
	g (Graph) – Graph to analyze.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list, optional (default: all nodes)) – The list of nodes for which the clutering will be returned

	mode (str, optional (default: “out”)) – For directed graphs, whether the distances are computed from (“out”) or
to (“in”) each of the nodes.

	harmonic (bool, optional (default: False)) – Whether the arithmetic (default) or the harmonic (recommended) version
of the closeness should be used.

	Returns

	
	c (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of closeness centralities, on per node.

	.. warning :: – For compatibility reasons (harmonic closeness is not implemented for
igraph), the arithmetic version is used by default; however, it is
recommended to use the harmonic version instead whenever possible.

References

	nx-harmonic

	networkx - algorithms.centrality.harmonic_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.harmonic_centrality.html]

	nx-closeness

	networkx - algorithms.centrality.closeness_centrality [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html]

	
nngt.analysis.connected_components(g, ctype=None)

	Returns the connected component to which each node belongs.

	Parameters

	
	g (Graph) – Graph to analyze.

	ctype (str, optional (default ‘scc’)) – Type of component that will be searched: either strongly connected
(‘scc’, by default) or weakly connected (‘wcc’).

	Returns

	cc, hist (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The component associated to each node (cc) and the number of nodes in
each of the component (hist).

References

	nx-ucc

	networkx - algorithms.components.connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.connected_components.html]

	nx-scc

	networkx - algorithms.components.strongly_connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.strongly_connected_components.html]

	nx-wcc

	networkx - algorithms.components.weakly_connected_components [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.weakly_connected_components.html]

	
nngt.analysis.degree_distrib(graph, deg_type='total', nodes=None, weights=None, log=False, num_bins='bayes')

	Degree distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	deg_type (string, optional (default: “total”)) – type of degree to consider (“in”, “out”, or “total”).

	nodes (list of ints, optional (default: None)) – Restrict the distribution to a set of nodes (default: all nodes).

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	log (bool, optional (default: False)) – use log-spaced bins.

	num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], or ‘bayes’
will provide automatic bin optimization. Otherwise, an int for the
number of bins can be provided, or the direct bins list.

See also

numpy.histogram() [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram], binning()

	Returns

	
	counts (numpy.array) – number of nodes in each bin

	deg (numpy.array) – bins

	
nngt.analysis.diameter(g, directed=None, weights=None, combine_weights='mean', is_connected=False)

	Returns the diameter of the graph.

Changed in version 2.3: Added combine_weights argument.

Changed in version 2.0: Added directed and is_connected arguments.

It returns infinity if the graph is not connected (strongly connected for
directed graphs) unless is_connected is True, in which case it returns
the longest existing shortest distance.

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: g.is_directed())) – Whether to compute the directed diameter if the graph is directed.
If False, then the graph is treated as undirected. The option switches
to False automatically if g is undirected.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	is_connected (bool, optional (default: False)) – If False, check whether the graph is connected or not and return
infinite diameter if graph is unconnected. If True, the graph is
assumed to be connected.

See also

nngt.analysis.shortest_distance()

References

	nx-diameter

	networkx - algorithms.distance_measures.diameter [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.distance_measures.diameter.html]

	nx-dijkstra

	networkx - algorithms.shortest_paths.weighted.all_pairs_dijkstra [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra.html]

	
nngt.analysis.get_b2(network=None, spike_detector=None, data=None, nodes=None)

	Return the B2 coefficient for the neurons.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (array-like of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	nodes (array-like, optional (default: all neurons)) – NNGT ids of the nodes for which the B2 should be computed.

	Returns

	b2 (array-like) – B2 coefficient for each neuron in nodes.

	
nngt.analysis.get_firing_rate(network=None, spike_detector=None, data=None, nodes=None)

	Return the average firing rate for the neurons.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the B2 should be computed.

	Returns

	fr (array-like) – Firing rate for each neuron in nodes.

	
nngt.analysis.get_spikes(recorder=None, spike_times=None, senders=None, astype='ssp')

	Return a 2D sparse matrix, where:

	each row i contains the spikes of neuron i (in NEST),

	each column j contains the times of the jth spike for all neurons.

Changed in version 1.0: Neurons are now located in the row corresponding to their NEST GID.

	Parameters

	
	recorder (tuple, optional (default: None)) – Tuple of NEST gids, where the first one should point to the
spike_detector which recorded the spikes.

	spike_times (array-like, optional (default: None)) – If recorder is not provided, the spikes’ data can be passed directly
through their spike_times and the associated senders.

	senders (array-like, optional (default: None)) – senders[i] corresponds to the neuron which fired at spike_times[i].

	astype (str, optional (default: “ssp”)) – Format of the returned data. Default is sparse lil_matrix (“ssp”)
with one row per neuron, otherwise “np” returns a (T, 2) array, with
T the number of spikes (the first row being the NEST gid, the second
the spike time).

Example

>>> get_spikes()

>>> get_spikes(recorder)

>>> times = [1.5, 2.68, 125.6]
>>> neuron_ids = [12, 0, 65]
>>> get_spikes(spike_times=times, senders=neuron_ids)

Note

If no arguments are passed to the function, the first spike_recorder
available in NEST will be used.
Neuron positions correspond to their GIDs in NEST.

	Returns

	
	CSR matrix containing the spikes sorted by neuron GIDs (rows) and time

	(columns).

	
nngt.analysis.global_clustering(g, directed=True, weights=None, method='continuous', mode='total', combine_weights='mean')

	Returns the global clustering coefficient.

This corresponds to the ratio of triangles to the number of triplets.
For directed and weighted cases, see definitions of generalized triangles
and triplets in the associated functions below.

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘barrat’
[Barrat2004], ‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’
[Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

References

	gt-global-clustering

	graph-tool - clustering.global_clustering [https://graph-tool.skewed.de/static/doc/clustering.html#graph_tool.clustering.global_clustering]

	ig-global-clustering

	igraph - transitivity_undirected [https://igraph.org/python/doc/igraph.GraphBase-class.html#transitivity_undirected]

	nx-global-clustering

	networkx - algorithms.cluster.transitivity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html]

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arxiv:cond-mat/0408629.

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76 (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

See also

triplet_count()
triangle_count()

	
nngt.analysis.global_clustering_binary_undirected(g)

	Returns the undirected global clustering coefficient.

This corresponds to the ratio of undirected triangles to the number of
undirected triads.

	Parameters

	g (Graph) – Graph to analyze.

References

	nx-global-clustering

	networkx - algorithms.cluster.transitivity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html]

	
nngt.analysis.local_closure(g, directed=True, weights=None, method=None, mode='cycle-out', combine_weights='mean')

	Compute the local closure for each node, as defined in [Yin2019] as the
fraction of 2-walks that are closed.

For undirected binary or weighted adjacency matrices
[image: W = \{ w_{ij} \}], the normal (or Zhang-like) definition is given
by:

[image: H_i^0 = \frac{\sum_{j\neq k} w_{ij} w_{jk} w_{ki}} {\sum_{j\neq k\neq i} w_{ij}w_{jk}} = \frac{W^3_{ii}}{\sum_{j \neq i} W^2_{ij}}]

While a continuous version of the local closure is also proposed as:

[image: H_i = \frac{\sum_{j\neq k} \sqrt[3]{w_{ij} w_{jk} w_{ki}}^2} {\sum_{j\neq k\neq i} \sqrt{w_{ij}w_{jk}}} = \frac{\left(W^{\left[\frac{2}{3} \right]} \right)_{ii}^3} {\sum_{j \neq i} \left(W^{\left[\frac{1}{2} \right]} \right)^2_{ij}}]

with [image: W^{[\alpha]} = \{ w^\alpha_{ij} \}].

Directed versions of the local closure where defined as follow for a node
[image: i] connected to nodes [image: j] and [image: k]:

	“cycle-out” is given by the pattern [(i, j), (j, k), (k, i)],

	“cycle-in” is given by the pattern [(k, j), (j, i), (i, k)],

	“fan-in” is given by the pattern [(k, j), (j, i), (k, i)],

	“fan-out” is given by the pattern [(i, j), (j, k), (i, k)].

	Parameters

	
	g (Graph) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘normal’/’zhang’
or ‘continuous’.

	mode (str, optional (default: “circle-out”)) – Type of clustering to use for directed graphs, among “circle-out”,
“circle-in”, “fan-in”, or “fan-out”.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

References

	Yin2019(1,2)

	Yin, Benson, and Leskovec. The Local Closure Coefficient: A
New Perspective On Network Clustering. Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining 2019, 303-311.
DOI: 10.1145/3289600.3290991 [https://dx.doi.org/10.1145/3289600.3290991], PDF [https://www.cs.cornell.edu/~arb/papers/closure-coefficients-WSDM-2019.pdf].

	
nngt.analysis.local_clustering(g, nodes=None, directed=True, weights=None, method='continuous', mode='total', combine_weights='mean')

	Local (weighted directed) clustering coefficient of the nodes, ignoring
self-loops.

If no weights are requested and the graph is undirected, returns the
undirected binary clustering.

For all weighted cases, the weights are assumed to be positive and they are
normalized to dimensionless values between 0 and 1 through a division by
the highest weight.

The default method for weighted networks is based on a modification of
the proposal in [Zhang2005] with:

[image: C_i = \frac{\sum_{jk} \sqrt[3]{w_{ij} w_{ik} w_{jk}}} {\sum_{j\neq k} \sqrt{w_{ij} w_{ik}}} = \frac{\left(W^{\left[\frac{2}{3}\right]}\right)^3_{ii}} {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - s_i}]

for undirected networks, with
[image: W = \{ w_{ij}\} = \tilde{W} / \max(\tilde{W})] the normalized
weight matrix, [image: s_i] the normalized strength of node [image: i], and
[image: s^{[\frac{1}{2}]}_i = \sum_k \sqrt{w_{ik}}] the strength associated
to the matrix [image: W^{[\frac{1}{2}]} = \{\sqrt{w_{ij}}\}].

For directed networks, we used the total clustering defined in
[Fagiolo2007] by default, hence the second equation becomes:

[image: C_i = \frac{\frac{1}{2}\left(W^{\left[\frac{2}{3}\right]} + W^{\left[\frac{2}{3}\right],T}\right)^3_{ii}} {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - 2s^{\leftrightarrow}_i - s_i}]

with [image: s^{\leftrightarrow} = \sum_k \sqrt{w_{ik}w_{ki}}] the
reciprocal strength (associated to reciprocal connections).

For the other modes, see the generalized definitions in [Fagiolo2007].

Contrary to ‘barrat’ and ‘onnela’ [Saramaki2007], this method displays
all following properties:

	fully continuous (no jump in clustering when weights go to zero),

	equivalent to binary clustering when all weights are 1,

	equivalence between no-edge and zero-weight edge cases,

	normalized (always between zero and 1).

Using either ‘continuous’ or ‘zhang’ is recommended for weighted graphs.

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering, either ‘barrat’
[Barrat2004]/[Clemente2018], ‘continuous’, ‘onnela’ [Onnela2005]/
[Fagiolo2007], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“sum”: equivalent to mean due to weight normalization.

	Returns

	lc (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of clustering coefficients, on per node.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Clemente2018

	Clemente, Grassi. Directed Clustering in Weighted
Networks: A New Perspective. Chaos, Solitons & Fractals 2018, 107,
26–38. DOI: 10.1016/j.chaos.2017.12.007 [https://dx.doi.org/10.1016/j.chaos.2017.12.007], arXiv: 1706.07322 [https://arxiv.org/abs/1706.07322].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arXiv: cond-mat/0408629 [https://arxiv.org/abs/cond-mat/0408629].

	Saramaki2007

	Saramäki, Kivelä, Onnela, Kaski, Kertész. Generalizations
of the Clustering Coefficient to Weighted Complex Networks.
Phys. Rev. E 2007, 75 (2), 027105. DOI: 10.1103/PhysRevE.75.027105 [https://dx.doi.org/10.1103/PhysRevE.75.027105],
arXiv: cond-mat/0608670 [https://arxiv.org/abs/cond-mat/0608670].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

See also

undirected_binary_clustering(), global_clustering()

	
nngt.analysis.local_clustering_binary_undirected(g, nodes=None)

	Returns the undirected local clustering coefficient of some nodes.

If g is directed, then it is converted to a simple undirected graph
(no parallel edges).

	Parameters

	
	g (Graph) – Graph to analyze.

	nodes (list, optional (default: all nodes)) – The list of nodes for which the clustering will be returned

	Returns

	lc (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The list of clustering coefficients, on per node.

References

	nx-local-clustering

	networkx - algorithms.cluster.clustering [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.clustering.html]

	
nngt.analysis.node_attributes(network, attributes, nodes=None, data=None)

	Return node attributes for a set of nodes.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “closeness”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	data (numpy.array of shape (N, 2), optional (default: None)) – Potential data on the spike events; if not None, it must contain the
sender ids on the first column and the spike times on the second.

	Returns

	values (array-like or dict) – Returns the attributes, either as an array if only one attribute is
required (attributes is a str [https://docs.python.org/3/library/stdtypes.html#str]) or as a dict [https://docs.python.org/3/library/stdtypes.html#dict] of arrays.

	
nngt.analysis.num_iedges(graph)

	Returns the number of inhibitory connections.

For Network objects, this corresponds to the number of edges
stemming from inhibitory nodes (given by
nngt.NeuralPop.inhibitory()).
Otherwise, counts the edges where the type attribute is -1.

	
nngt.analysis.reciprocity(g)

	Calculate the edge reciprocity of the graph.

The reciprocity is defined as the number of edges that have a reciprocal
edge (an edge between the same nodes but in the opposite direction)
divided by the total number of edges.
This is also the probability for any given edge, that its reciprocal edge
exists.
By definition, the reciprocity of undirected graphs is 1.

@todo: check whether we can get this for single nodes for all libraries.

	Parameters

	g (Graph) – Graph to analyze.

References

	nx-reciprocity

	networkx - algorithms.reciprocity.overall_reciprocity [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.reciprocity.overall_reciprocity.html]

	
nngt.analysis.shortest_distance(g, sources=None, targets=None, directed=None, weights=None, combine_weights='mean')

	Returns the length of the shortest paths between sources`and `targets.
The algorithms return infinity if there are no paths between nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	sources (list of nodes, optional (default: all)) – Nodes from which the paths must be computed.

	targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	distance (float, or 1d/2d numpy array of floats) – Distance (if single source and single target) or distance array.
For multiple sources and targets, the shape of the matrix is (S, T),
with S the number of sources and T the number of targets; for a single
source or target, return a 1d-array of length T or S.

References

	nx-sp

	networkx - algorithms.shortest_paths.weighted.multi_source_dijkstra [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra.html]

	
nngt.analysis.shortest_path(g, source, target, directed=None, weights=None, combine_weights='mean')

	Returns a shortest path between source`and `target.
The algorithms returns an empty list if there is no path between the nodes.

	Parameters

	
	g (Graph) – Graph to analyze.

	source (int) – Node from which the path starts.

	target (int) – Node where the path ends.

	directed (bool, optional (default: g.is_directed())) – Whether the edges should be considered as directed or not
(automatically set to False if g is undirected).

	weights (str or array, optional (default: binary)) – Whether to use weighted edges to compute the distances. By default,
all edges are considered to have distance 1.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	path (list of ints) – Order of the nodes making up the path from source to target.

References

	nx-sp

	networkx - algorithms.shortest_paths.generic.shortest_path [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html]

	
nngt.analysis.small_world_propensity(g, directed=None, use_global_clustering=False, use_diameter=False, weights=None, combine_weights='mean', clustering='continuous', lattice=None, random=None, return_deviations=False)

	Returns the small-world propensity of the graph as first defined in
[Muldoon2016].

[image: \phi = 1 - \sqrt{\frac{\Pi_{[0, 1]}(\Delta_C^2) + \Pi_{[0, 1]}(\Delta_L^2)}{2}}]

with [image: \Delta_C] the clustering deviation, i.e. the relative global or
average clustering of g compared to two reference graphs

[image: \Delta_C = \frac{C_{latt} - C_g}{C_{latt} - C_{rand}}]

and [image: Delta_L] the deviation of the average path length or diameter,
i.e. the relative average path length of g compared to that of the
reference graphs

[image: \Delta_L = \frac{L_g - L_{rand}}{L_{latt} - L_{rand}}.]

In both cases, latt and rand refer to the equivalent lattice and
Erdos-Renyi (ER) graphs obtained by rewiring g to obtain respectively the
highest and lowest combination of clustering and average path length.

Both deviations are clipped to the [0, 1] range in case some graphs have a
higher clustering than the lattice or a lower average path length than the
ER graph.

	Parameters

	
	g (Graph object) – Graph to analyze.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.
If False, then the graph is treated as undirected. The option switches
to False automatically if g is undirected.

	use_global_clustering (bool, optional (default: True)) – If False, then the average local clustering is used instead of the
global clustering.

	use_diameter (bool, optional (default: False)) – Use the diameter instead of the average path length to have more global
information. Ccan also be much faster in some cases, especially using
graph-tool as the backend.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	clustering (str, optional (default: ‘continuous’)) – Method used to compute the weighted clustering coefficients, either
‘barrat’ [Barrat2004], ‘continuous’ (recommended), or ‘onnela’
[Onnela2005].

	lattice (nngt.Graph, optional (default: generated from g)) – Lattice to use as reference (since its generation is deterministic,
enables to avoid multiple generations when running the algorithm
several times with the same graph)

	random (nngt.Graph, optional (default: generated from g)) – Random graph to use as reference. Can be useful for reproducibility or
for very sparse graphs where ER algorithm would statistically lead to
a disconnected graph.

	return_deviations (bool, optional (default: False)) – If True, the deviations are also returned, in addition to the
small-world propensity.

Note

If weights are provided, the distance calculation uses the inverse of
the weights.
This implementation differs slightly from the original implementation [https://github.com/KordingLab/nctpy] as it can also use the global
instead of the average clustering coefficient, the diameter instead of
the avreage path length, and it is generalized to directed networks.

References

	Muldoon2016(1,2)

	Muldoon, Bridgeford, Bassett. Small-World Propensity and
Weighted Brain Networks. Sci Rep 2016, 6 (1), 22057.
DOI: 10.1038/srep22057 [https://dx.doi.org/10.1038/srep22057], arXiv: 1505.02194 [https://arxiv.org/abs/1505.02194].

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arxiv:cond-mat/0408629.

	Returns

	
	phi (float in [0, 1]) – The small-world propensity.

	delta_l (float) – The average path-length deviation (if return_deviations is True).

	delta_c (float) – The clustering deviation (if return_deviations is True).

See also

nngt.analysis.average_path_length(), nngt.analysis.diameter(), nngt.analysis.global_clustering(), nngt.analysis.local_clustering(), nngt.generation.lattice_rewire(), nngt.generation.random_rewire()

	
nngt.analysis.spectral_radius(graph, typed=True, weights=True)

	Spectral radius of the graph, defined as the eigenvalue of greatest module.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	typed (bool, optional (default: True)) – Whether the excitatory/inhibitory type of the connnections should be
considered.

	weights (bool, optional (default: True)) – Whether weights should be taken into account, defaults to the “weight”
edge attribute if present.

	Returns

	the spectral radius as a float.

	
nngt.analysis.subgraph_centrality(graph, weights=True, nodes=None, normalize='max_centrality')

	Returns the subgraph centrality for each node in the graph.

Defined according to [Estrada2005] as:

[image: sc(i) = e^{W}_{ii}]

where [image: W] is the (potentially weighted and normalized) adjacency
matrix.

	Parameters

	
	graph (Graph or subclass) – Network to analyze.

	weights (bool or string, optional (default: True)) – Whether weights should be taken into account; if True, then connections
are weighed by their synaptic strength, if False, then a binary matrix
is returned, if weights is a string, then the ponderation is the
correponding value of the edge attribute (e.g. “distance” will return
an adjacency matrix where each connection is multiplied by its length).

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the subgraph centrality should be returned (all
centralities are computed anyway in the algorithm).

	normalize (str or False, optional (default: “max_centrality”)) – Whether the centrality should be normalized. Accepted normalizations
are “max_eigenvalue” (the matrix is divided by its largest eigenvalue),
“max_centrality” (the largest centrality is one), and False to get
the non-normalized centralities.

	Returns

	centralities (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The subgraph centrality of each node.

References

	Estrada2005

	Ernesto Estrada and Juan A. Rodríguez-Velázquez,
Subgraph centrality in complex networks, PHYSICAL REVIEW E 71, 056103
(2005), DOI: 10.1103/PhysRevE.71.056103 [https://dx.doi.org/10.1103/PhysRevE.71.056103], arXiv: cond-mat/0504730 [https://arxiv.org/abs/cond-mat/0504730].

	
nngt.analysis.total_firing_rate(network=None, spike_detector=None, nodes=None, data=None, kernel_center=0.0, kernel_std=30.0, resolution=None, cut_gaussian=5.0)

	Computes the total firing rate of the network from the spike times.
Firing rate is obtained as the convolution of the spikes with a Gaussian
kernel characterized by a standard deviation and a temporal shift.

New in version 0.7.

	Parameters

	
	network (nngt.Network, optional (default: None)) – Network for which the activity was simulated.

	spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the “spike_detector” objects recording the network activity.

	data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the spikes data (first line must contain the NEST GID
of the neuron that fired, second line must contain the associated spike
time).

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

	kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel (standard deviation) in ms.

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed.

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed. By default, we consider
the 5-sigma range. Decreasing this value will increase speed at the
cost of lower fidelity; increasing it with increase the fidelity at the
cost of speed.

	Returns

	
	fr (array-like) – The firing rate in Hz.

	times (array-like) – The times associated to the firing rate values.

	
nngt.analysis.transitivity(g, directed=True, weights=None)

	Same as global_clustering().

	
nngt.analysis.triangle_count(g, nodes=None, directed=True, weights=None, method='normal', mode='total', combine_weights='mean')

	Returns the number or the strength (also called intensity) of triangles
for each node.

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘normal’)) – Method used to compute the weighted triangles, either ‘normal’, where
the weights are directly used, or the definitions associated to the
weighted clustering: ‘barrat’ [Barrat2004], ‘continuous’, ‘onnela’
[Onnela2005], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	tr (array) – Number or weight of triangles to which each node belongs.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Onnela2005

	Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
065103. DOI: 10.1103/physreve.71.065103 [https://dx.doi.org/10.1103/physreve.71.065103], arXiv: cond-mat/0408629 [https://arxiv.org/abs/cond-mat/0408629].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

	
nngt.analysis.triplet_count(g, nodes=None, directed=True, weights=None, method='normal', mode='total', combine_weights='mean')

	Returns the number or the strength (also called intensity) of triplets for
each node.

For binary networks, the triplets of node [image: i] are defined as:

[image: T_i = \sum_{j,k} a_{ij}a_{ik}]

	Parameters

	
	g (Graph object) – Graph to analyze.

	nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which the local clustering coefficient should be computed.

	directed (bool, optional (default: True)) – Whether to compute the directed clustering if the graph is directed.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	method (str, optional (default: ‘continuous’)) – Method used to compute the weighted triplets, either ‘normal’, where
the edge weights are directly used, or the definitions used for
weighted clustering coefficients, ‘barrat’ [Barrat2004],
‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’ [Zhang2005].

	mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among “total”, “fan-in”,
“fan-out”, “middleman”, and “cycle” [Fagiolo2007].

	combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of reciprocal edges if the graph is directed
but directed is set to False. It can be:

	“sum”: the sum of the edge attribute values will be used for the new
edge.

	“mean”: the mean of the edge attribute values will be used for the
new edge.

	“min”: the minimum of the edge attribute values will be used for the
new edge.

	“max”: the maximum of the edge attribute values will be used for the
new edge.

	Returns

	tr (array) – Number or weight of triplets to which each node belongs.

References

	Barrat2004

	Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
DOI: 10.1073/pnas.0400087101 [https://dx.doi.org/10.1073/pnas.0400087101].

	Fagiolo2007

	Fagiolo. Clustering in Complex Directed Networks.
Phys. Rev. E 2007, 76, (2), 026107. DOI: 10.1103/PhysRevE.76.026107 [https://dx.doi.org/10.1103/PhysRevE.76.026107],
arXiv: physics/0612169 [https://arxiv.org/abs/physics/0612169].

	Zhang2005

	Zhang, Horvath. A General Framework for Weighted Gene
Co-Expression Network Analysis. Statistical Applications in Genetics
and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128 [https://dx.doi.org/10.2202/1544-6115.1128],
PDF [https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf].

Database module

NNGT provides a database to store NEST simulations.
This database requires peewee>3 to work and can be switched on using:

nngt.set_config("use_database", True)

The commands are then used by calling nngt.database to access the database
tools.

	Functions

	Recording a simulation

	Checking results in the database

Functions

	
nngt.database.get_results(table, column=None, value=None)

	Return the entries where the attribute column satisfies the required
equality.

	Parameters

	
	table (str) – Name of the table where the search should be performed (among
'simulation', 'computer', 'neuralnetwork',
'activity', 'synapse', 'neuron', or 'connection').

	column (str, optional (default: None)) – Name of the variable of interest (a column on the table). If None,
the whole table is returned.

	value (column corresponding type, optional (default: None)) – Specific value for the variable of interest. If None, the whole
column is returned.

	Returns

	peewee.SelectQuery with entries matching the request.

	
nngt.database.is_clear()

	Check that the logs are clear.

	
nngt.database.log_simulation_end(network=None, log_activity=True)

	Record the simulation completion and simulated times, save the data,
then reset.

	
nngt.database.log_simulation_start(network, simulator, save_network=True)

	Record the simulation start time, all nodes, connections, network, and
computer properties, as well as some of simulation’s.

	Parameters

	
	network (Network or subclass) – Network used for the current simulation.

	simulator (str) – Name of the simulator.

	save_network (bool, optional (default: True)) – Whether to save the network or not.

	
nngt.database.reset()

	Reset log status.

Recording a simulation

nngt.database.log_simulation_start(net, "nest-2.14")
nest.Simulate(1000.)
nngt.database.log_simulation_end()

Checking results in the database

The database contains the following tables, associated to their respective
fields:

	‘activity’: Activity,

	‘computer’: Computer,

	‘connection’: Connection,

	‘neuralnetwork’: NeuralNetwork,

	‘neuron’: Neuron,

	‘simulation’: Simulation,

	‘synapse’: Synapse.

These tables are the first keyword passed to get_results(),
you can find the existing columns for each of the tables in the following
classes descriptions:

Store results into a database

	
class nngt.database.db_generation.Activity(*args, **kwargs)[source]

	Class detailing the network’s simulated activity.

	
DoesNotExist

	alias of ActivityDoesNotExist

	
id = <IntegerField: Activity.id>

	

	
raster = <PickledField: Activity.raster>

	Raster of the simulated activity.

	
simulations

	

	
class nngt.database.db_generation.Computer(*args, **kwargs)[source]

	Class containing informations about the conputer.

	
DoesNotExist

	alias of ComputerDoesNotExist

	
cores = <IntegerField: Computer.cores>

	Number of cores returned by psutil.cpu_count() or -1

	
id = <IntegerField: Computer.id>

	

	
name = <TextField: Computer.name>

	Name from platform.node() or "unknown"

	
platform = <TextField: Computer.platform>

	System information from platform.platform()

	
python = <TextField: Computer.python>

	Python version given by platform.python_version()

	
ram = <IntegerField: Computer.ram>

	Total memory given by psutil.virtual_memory().total (long) or
-1

	
simulations

	

	
class nngt.database.db_generation.Connection(*args, **kwargs)[source]

	Class detailing the existing connections in the network: a couple of pre-
and post-synaptic neurons and a synapse.

	
DoesNotExist

	alias of ConnectionDoesNotExist

	
id = <IntegerField: Connection.id>

	

	
post = <ForeignKeyField: Connection.post>

	

	
post_id = <ForeignKeyField: Connection.post>

	

	
pre = <ForeignKeyField: Connection.pre>

	

	
pre_id = <ForeignKeyField: Connection.pre>

	

	
simulations

	

	
synapse = <ForeignKeyField: Connection.synapse>

	

	
synapse_id = <ForeignKeyField: Connection.synapse>

	

	
nngt.database.db_generation.migrate(*operations, **kwargs)[source]

	

	
class nngt.database.db_generation.NeuralNetwork(*args, **kwargs)[source]

	Class containing informations about the neural network.

	
DoesNotExist

	alias of NeuralNetworkDoesNotExist

	
compressed_file = <LongCompressedField: NeuralNetwork.compressed_file>

	Compressed (bz2) string of the graph from str(graph); once
uncompressed, can be loaded using Graph.from_file(name,
from_string=True).

	
directed = <IntegerField: NeuralNetwork.directed>

	Whether the graph is directed or not

	
edges = <IntegerField: NeuralNetwork.edges>

	Number of edges.

	
id = <IntegerField: NeuralNetwork.id>

	

	
network_type = <TextField: NeuralNetwork.network_type>

	Type of the network from Graph.type

	
nodes = <IntegerField: NeuralNetwork.nodes>

	Number of nodes.

	
simulations

	

	
weight_distribution = <TextField: NeuralNetwork.weight_distribution>

	Name of the weight_distribution used.

	
weighted = <IntegerField: NeuralNetwork.weighted>

	Whether the graph is weighted or not.

	
class nngt.database.db_generation.Neuron(*args, **kwargs)[source]

	Base class that will be modified to contain all the properties of the
neurons used during a simulation.

	
DoesNotExist

	alias of NeuronDoesNotExist

	
id = <IntegerField: Neuron.id>

	

	
int_connections

	

	
out_connections

	

	
class nngt.database.db_generation.Simulation(*args, **kwargs)[source]

	Class containing all informations about the simulation properties.

	
DoesNotExist

	alias of SimulationDoesNotExist

	
activity = <ForeignKeyField: Simulation.activity>

	Activity table entry where the simulated activity is described.

	
activity_id = <ForeignKeyField: Simulation.activity>

	

	
completion_time = <DateTimeField: Simulation.completion_time>

	Date and time at which the simulation ended.

	
computer = <ForeignKeyField: Simulation.computer>

	Computer table entry where the computer used is defined.

	
computer_id = <ForeignKeyField: Simulation.computer>

	

	
connections = <ForeignKeyField: Simulation.connections>

	Connection table entry where the connections are described.

	
connections_id = <ForeignKeyField: Simulation.connections>

	

	
grnd_seed = <IntegerField: Simulation.grnd_seed>

	Master seed of the simulation.

	
id = <IntegerField: Simulation.id>

	

	
local_seeds = <PickledField: Simulation.local_seeds>

	List of the local threads seeds.

	
network = <ForeignKeyField: Simulation.network>

	Network table entry where the simulated network is described.

	
network_id = <ForeignKeyField: Simulation.network>

	

	
pop_sizes = <PickledField: Simulation.pop_sizes>

	Pickled list containing the group sizes.

	
population = <PickledField: Simulation.population>

	Pickled list containing the neural group names.

	
resolution = <FloatField: Simulation.resolution>

	Timestep used to simulate the components of the neural network

	
simulated_time = <FloatField: Simulation.simulated_time>

	Virtual time that was simulated for the neural network.

	
simulator = <TextField: Simulation.simulator>

	Name of the neural simulator used (NEST, Brian…)

	
start_time = <DateTimeField: Simulation.start_time>

	Date and time at which the simulation started.

	
class nngt.database.db_generation.Synapse(*args, **kwargs)[source]

	Base class that will be modified to contain all the properties of the
synapses used during a simulation.

	
DoesNotExist

	alias of SynapseDoesNotExist

	
connections

	

	
id = <IntegerField: Synapse.id>

	

Generation module

Functions that generates the underlying connectivity of graphs, as well
as the connection properties (weight/strength and delay).

Content

Generation functions

	nngt.generation.all_to_all([nodes, …])

	Generate a graph where all nodes are connected.

	nngt.generation.circular(coord_nb[, …])

	Generate a circular graph.

	nngt.generation.distance_rule(scale[, rule, …])

	Create a graph using a 2D distance rule to create the connection between neurons.

	nngt.generation.erdos_renyi([density, …])

	Generate a random graph as defined by Erdos and Renyi but with a reciprocity that can be chosen.

	nngt.generation.fixed_degree(degree[, …])

	Generate a random graph with constant in- or out-degree.

	nngt.generation.from_degree_list(degrees[, …])

	Generate a random graph from a given list of degrees.

	nngt.generation.gaussian_degree(avg, std[, …])

	Generate a random graph with constant in- or out-degree.

	nngt.generation.newman_watts(coord_nb[, …])

	Generate a (potentially small-world) graph using the Newman-Watts algorithm.

	nngt.generation.price_scale_free(m[, c, …])

	Generate a Price graph model (Barabasi-Albert if undirected).

	nngt.generation.random_scale_free(in_exp, …)

	Generate a free-scale graph of given reciprocity and otherwise devoid of correlations.

	nngt.generation.watts_strogatz(coord_nb[, …])

	Generate a (potentially small-world) graph using the Watts-Strogatz algorithm.

Connectors

	nngt.generation.connect_nodes(network, …)

	Function to connect nodes with a given graph model.

	nngt.generation.connect_groups(network, …)

	Function to connect groups with a given graph model.

	nngt.generation.connect_neural_types(…[, …])

	Function to connect excitatory and inhibitory population with a given graph model.

Rewiring functions

	nngt.generation.random_rewire(g[, …])

	Generate a new rewired graph from g.

	nngt.generation.lattice_rewire(g[, …])

	Build a (generally irregular) lattice by rewiring the edges of a graph.

Details

	
nngt.generation.all_to_all(nodes=0, weighted=True, directed=True, multigraph=False, name='AllToAll', shape=None, positions=None, population=None, **kwargs)

	Generate a graph where all nodes are connected.

New in version 1.0.

	Parameters

	
	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirectional (only for directed graphs
– undirected graphs have a reciprocity of 1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

Note

nodes is required unless population is provided.

	Returns

	graph_all (Graph, or subclass) – A new generated graph.

	
nngt.generation.circular(coord_nb, reciprocity=1.0, reciprocity_choice='random', nodes=0, weighted=True, directed=True, multigraph=False, name='Circular', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a circular graph.

The nodes are placed on a circle and connected to their coord_nb closest
neighbours.
If the graph is directed, the number of connections depends on the value
of reciprocity: if reciprocity == 0., then only half of all possible
connections will be created, so that no bidirectional edges exist; on the
other hand, for reciprocity == 1., all possible edges are created; for
intermediate values of reciprocity, the number of edges increases
linearly as 0.5*(1 + reciprocity / (2 - reciprocity))*nodes*coord_nb.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	reciprocity (double, optional (default: 1.)) – Proportion of reciprocal edges in the graph.

	reciprocity_choice (str, optional (default: “random”)) – How reciprocal edges should be chosen, which can be either “random” or
“closest”. If the latter option is used, then connections
between first neighbours are rendered reciprocal first, then between
second neighbours, etc.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	density (double, optional (default: 0.1)) – Structural density given by edges / (nodes`*`nodes).

	edges (int (optional)) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_circ (Graph or subclass)

	
nngt.generation.connect_groups(network, source_groups, target_groups, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect groups with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	source_groups (str, NeuralGroup, or iterable) – Names of the source groups (which contain the pre-synaptic neurons) or
directly the group objects themselves.

	target_groups (str, NeuralGroup, or iterable) – Names of the target groups (which contain the post-synaptic neurons) or
directly the group objects themselves.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
groups which have their property sets are the source_groups.

	
nngt.generation.connect_neural_groups(*args, **kwargs)

	Deprecatd alias of connect_groups().

	
nngt.generation.connect_neural_types(network, source_type, target_type, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect excitatory and inhibitory population with a given graph
model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	source_type (int or list) – The type of source neurons (1 for excitatory, -1 for
inhibitory neurons).

	target_type (int or list) – The type of target neurons.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
nodes which have their property sets are the source_type.

	
nngt.generation.connect_nodes(network, sources, targets, graph_model, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, check_existing=True, ignore_invalid=False, **kwargs)

	Function to connect nodes with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

	Parameters

	
	network (Network or SpatialNetwork) – The network to connect.

	sources (list) – Ids of the source nodes.

	targets (list) – Ids of the target nodes.

	graph_model (string) – The name of the connectivity model (among “erdos_renyi”,
“random_scale_free”, “price_scale_free”, and “newman_watts”).

	check_existing (bool, optional (default: True)) – Check whether some of the edges that will be added already exist in the
graph.

	ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added to the graph and are
silently dropped. Unless this is set to true, an error is raised
if an existing edge is re-generated.

	**kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such as
weights or delays.

Note

For graph generation methods which set the properties of a
specific degree (e.g. gaussian_degree()), the
nodes which have their property sets are the sources.

	
nngt.generation.distance_rule(scale, rule='exp', shape=None, neuron_density=1000.0, max_proba=-1.0, nodes=0, density=None, edges=None, avg_deg=None, unit='um', weighted=True, directed=True, multigraph=False, name='DR', positions=None, population=None, from_graph=None, **kwargs)

	Create a graph using a 2D distance rule to create the connection between
neurons. Available rules are linear and exponential.

	Parameters

	
	scale (float) – Characteristic scale for the distance rule. E.g for linear distance-
rule, [image: P(i,j) \propto (1-d_{ij}/scale))], whereas for the
exponential distance-rule, [image: P(i,j) \propto e^{-d_{ij}/scale}].

	rule (string, optional (default: ‘exp’)) – Rule that will be apply to draw the connections between neurons.
Choose among “exp” (exponential), “gaussian” (Gaussian), or
“lin” (linear).

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment. If not specified, a square will be
created with the appropriate dimensions for the number of neurons and
the neuron spatial density.

	neuron_density (float, optional (default: 1000.)) – Density of neurons in space ([image: neurons \cdot mm^{-2}]).

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	p (float, optional) – Normalization factor for the distance rule; it is equal to the
probability of connection when testing a node at zero distance.

	density (double, optional) – Structural density given by edges / (nodes * nodes).

	edges (int, optional) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	unit (string (default: ‘um’)) – Unit for the length scale among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “DR”)) – Name of the created graph.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D (N, 2) or 3D (N, 3) shaped array containing the positions of the
neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	
nngt.generation.erdos_renyi(density=None, nodes=0, edges=None, avg_deg=None, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='ER', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph as defined by Erdos and Renyi but with a
reciprocity that can be chosen.

	Parameters

	
	density (double, optional (default: -1.)) – Structural density given by edges / nodes[image: ^2]. It is also the
probability for each possible edge in the graph to exist.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	edges (int (optional)) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirectional (only for
directed graphs – undirected graphs have a reciprocity of 1 by
definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_er (Graph, or subclass) – A new generated graph or the modified from_graph.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the
object will be deleted before the new connectivity is implemented.

	
nngt.generation.fixed_degree(degree, degree_type='in', nodes=0, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='FD', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph with constant in- or out-degree.

	Parameters

	
	degree (int) – The value of the constant degree.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in', 'out' or 'total'.

	@todo

	‘total’ not implemented yet.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet. Fraction of edges that are bidirectional
(only for directed graphs – undirected graphs have a reciprocity of
1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the
object will be deleted before the new connectivity is implemented.

	Returns

	graph_fd (Graph, or subclass) – A new generated graph or the modified from_graph.

	
nngt.generation.from_degree_list(degrees, degree_type='in', weighted=True, directed=True, multigraph=False, name='DL', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph from a given list of degrees.

	Parameters

	
	degrees (list) – The list of degrees for each node in the graph.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in', 'out' or 'total'.
@todo ‘total’ not implemented yet.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_dl (Graph, or subclass) – A new generated graph or the modified from_graph.

	
nngt.generation.gaussian_degree(avg, std, degree_type='in', nodes=0, reciprocity=-1.0, weighted=True, directed=True, multigraph=False, name='GD', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a random graph with constant in- or out-degree.

	Parameters

	
	avg (float) – The value of the average degree.

	std (float) – The standard deviation of the Gaussian distribution.

	degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among ‘in’, ‘out’ or ‘total’ (or the
full version: ‘in-degree’…)
@todo: Implement ‘total’ degree

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet. Fraction of edges that are bidirectional
(only for directed graphs – undirected graphs have a reciprocity of
1 by definition)

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – @todo: only for directed graphs for now. Whether the graph is directed
or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_gd (Graph, or subclass) – A new generated graph or the modified from_graph.

Note

nodes is required unless from_graph or population is provided.
If an from_graph is provided, all preexistant edges in the object
will be deleted before the new connectivity is implemented.

	
nngt.generation.lattice_rewire(g, target_reciprocity=1.0, node_attr_constraints=None, edge_attr_constraints=None, weight=None, weight_constraint='distance', distance_sort='inverse')

	Build a (generally irregular) lattice by rewiring the edges of a graph.

New in version 2.0.

The lattice is based on a circular graph, meaning that the nodes are placed
on a circle and connected based on the topological distance between them,
the distance being defined through the positive modulo:

[image: d_{ij} = (i - j) \% N]

with [image: N] the number of nodes in the graph.

	Parameters

	
	g (Graph) – Graph based on which the lattice will be generated.

	target_reciprocity (float, optional (default: 1.)) – Value of reciprocity that should be aimed at. Depending on the number
of edges, it may not be possible to reach this value exactly.

	node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained: either “preserve”,
where all nodes keep their attributes, or “together”, where attributes
are randomized by groups (all attributes of a given node are sent to
the same new node). By default, attributes are completely and
separately randomized.

	edge_attr_constraints (str, optional (default: randomize all but weight)) – Whether attribute randomization is constrained.
If “distance” is used, then all number attributes (float or int) are
sorted and are first associated to the shortest or longest edges
depending on the value of distance_sort. Note that, for directed
graphs, if a reciprocal edge exists, it is immediately assigned the
next highest (respectively lowest) attribute after that of its directed
couterpart.
If “together” is used, edges attributes are randomized by groups (all
attributes of a given edge are sent to the same new edge) either
randomly if weight is None, or following the constrained weight
attribute. By default, attributes are completely and separately
randomized (except for weight if it has been provided).

	weight (str, optional (default: None)) – Whether a specific edge attribute should play the role of weight and
have special constraints.

	weight_constraint (str, optional (default: “distance”)) – Same as edge_attr_constraints` but only applies to weight and can
only be “distance” or None since “together” was related to weight.

	distance_sort (str, optional (default: “inverse”)) – How attributes are sorted with edge distance: either “inverse”, with
the shortest edges being assigned the largest weights, or with a
“linear” sort, where shortest edges are assigned the lowest weights.

	
nngt.generation.newman_watts(coord_nb, proba_shortcut=None, reciprocity_circular=1.0, reciprocity_choice_circular='random', nodes=0, edges=None, weighted=True, directed=True, multigraph=False, name='NW', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a (potentially small-world) graph using the Newman-Watts
algorithm.

For directed networks, the reciprocity of the initial circular network can
be chosen.

Changed in version 2.0: Added the reciprocity_circular and reciprocity_choice_circular
options.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for each existing
edge on the initial lattice.
If edges is provided, then will be computed automatically as
edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)

	reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the initial circular graph.

	reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges should be chosen in the initial circular graph.
This can be either “random” or “closest”. If the latter option
is used, then connections between first neighbours are rendered
reciprocal first, then between second neighbours, etc.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	edges (int (optional)) – The number of edges between the nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_nw (Graph or subclass)

Note

nodes is required unless from_graph or population is provided.

	
nngt.generation.price_scale_free(m, c=None, gamma=1, nodes=0, reciprocity=0, weighted=True, directed=True, multigraph=False, name='PriceSF', shape=None, positions=None, population=None, **kwargs)

	Generate a Price graph model (Barabasi-Albert if undirected).

	Parameters

	
	m (int) – The number of edges each new node will make.

	c (double, optional (0 if undirected, else 1)) – Constant added to the probability of a vertex receiving an edge.

	gamma (double, optional (default: 1)) – Preferential attachment power.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	reciprocity (float, optional (default: 0)) – Reciprocity of the graph (between 0 and 1). For directed graphs, this
will be the probability of the target node connecting back to the
source node when a new edge is added.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	Returns

	graph_price (Graph or subclass.)

Note

nodes is required unless population is provided.

Notes

The (generalized) Price network is either a directed or undirected graph
(the latter is better known as the Barabási-Albert network).
It is generated via a growth process, adding a new node at each step and
connecting it to [image: m] previous nodes, chosen with probability:

[image: p \propto k^\gamma + c]

where [image: k] is the (in-)degree of the vertex.

We must therefore have [image: c \ge 0] for directed graphs and
[image: c > -1] for undirected graphs.

If the reciprocity [image: r] is non-zero, each targeted node reciprocates
the connection with probability [image: r].
Expected reciprocity of the final graph is [image: 2r / (1 + r)].

If [image: \gamma=1], and reciprocity is zero, the tail of resulting
in-degree distribution of the directed case is given by

[image: P_{k_{in}} \sim k_{in}^{-(2 + c/m)},]

or for the undirected case

[image: P_{k} \sim k^{-(3 + c/m)}.]

However, if [image: \gamma \ne 1], the in-degree distribution is not
scale-free.

	
nngt.generation.random_rewire(g, constraints=None, node_attr_constraints=None, edge_attr_constraints=None)

	Generate a new rewired graph from g.

New in version 2.0.

	Parameters

	
	g (Graph) – Base graph based on which a new rewired graph will be generated.

	constraints (str, optional (default: no constraints)) – Defines which properties of g will be maintained in the rewired
graph. By default, the graph is completely rewired into an Erdos-Renyi
model. Available constraints are “in-degree”, “out-degree”,
“total-degree”, “all-degrees”, and “clustering”.

	node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained: either “preserve”,
where all nodes keep their attributes, or “together”, where attributes
are randomized by groups (all attributes of a given node are sent to
the same new node). By default, attributes are completely and
separately randomized.

	edge_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute randomization is constrained.
If constraints is “in-degree” (respectively “out-degree”) or
“degrees”, this can be “preserve_in” (respectively “preserve_out”),
in which case all attributes of a given edge are moved together to a
new incoming (respectively outgoing) edge of the same node.
Regardless of constraints, “together” can be used so that edges
attributes are randomized by groups (all attributes of a given edge are
sent to the same new edge). By default, attributes are completely and
separately randomized.

	
nngt.generation.random_scale_free(in_exp, out_exp, nodes=0, density=None, edges=None, avg_deg=None, reciprocity=0.0, weighted=True, directed=True, multigraph=False, name='RandomSF', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a free-scale graph of given reciprocity and otherwise
devoid of correlations.

	Parameters

	
	in_exp (float) – Absolute value of the in-degree exponent [image: \gamma_i], such that
[image: p(k_i) \propto k_i^{-\gamma_i}]

	out_exp (float) – Absolute value of the out-degree exponent [image: \gamma_o], such that
[image: p(k_o) \propto k_o^{-\gamma_o}]

	nodes (int, optional (default: 0)) – The number of nodes in the graph.

	density (double, optional) – Structural density given by edges / (nodes*nodes).

	edges (int optional) – The number of edges between the nodes

	avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes. can contain multiple edges between two

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network)

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_fs (Graph)

Note

As reciprocity increases, requested values of in_exp and out_exp
will be less and less respected as the distribution will converge to a
common exponent [image: \gamma = (\gamma_i + \gamma_o) / 2].
Parameter nodes is required unless from_graph or population is
provided.

	
nngt.generation.watts_strogatz(coord_nb, proba_shortcut=None, reciprocity_circular=1.0, reciprocity_choice_circular='random', shuffle='random', nodes=0, weighted=True, directed=True, multigraph=False, name='WS', shape=None, positions=None, population=None, from_graph=None, **kwargs)

	Generate a (potentially small-world) graph using the Watts-Strogatz
algorithm.

For directed networks, the reciprocity of the initial circular network can
be chosen.

New in version 2.0.

	Parameters

	
	coord_nb (int) – The number of neighbours for each node on the initial topological
lattice (must be even).

	proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for each existing
edge on the initial lattice.
If edges is provided, then will be computed automatically as
edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)

	reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the initial circular graph.

	reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges should be chosen in the initial circular graph.
This can be either “random” or “closest”. If the latter option
is used, then connections between first neighbours are rendered
reciprocal first, then between second neighbours, etc.

	shuffle (str, optional (default: ‘random’)) – Whether to shuffle only ‘targets’ (out-degree of all nodes remains
constant), ‘sources’ (in-degree remains constant), or randomly the
source or the target for each edge (‘random’) in the case of directed
graphs.

	nodes (int, optional (default: None)) – The number of nodes in the graph.

	weighted (bool, optional (default: True)) – Whether the graph edges have weights.

	directed (bool, optional (default: True)) – Whether the graph is directed or not.

	multigraph (bool, optional (default: False)) – Whether the graph can contain multiple edges between two
nodes.

	name (string, optional (default: “ER”)) – Name of the created graph.

	shape (Shape, optional (default: None)) – Shape of the neurons’ environment

	positions (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional (default: None)) – A 2D or 3D array containing the positions of the neurons in space.

	population (NeuralPop, optional (default: None)) – Population of neurons defining their biological properties (to create a
Network).

	from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are to be connected.

	Returns

	graph_nw (Graph or subclass)

Note

nodes is required unless from_graph or population is provided.

Geometry module

This module is a direct copy of the SENeC package
PyNCulture [https://github.com/SENeC-Initiative/PyNCulture].
Therefore, in the examples below, you will have to import nngt instead of
PyNCulture and replace pnc by nngt.geometry.

Overview

	nngt.geometry.Area(shell[, holes, unit, …])

	Specialized Shape that stores additional properties regarding the interactions with the neurons.

	nngt.geometry.Shape(shell[, holes, unit, …])

	Class containing the shape of the area where neurons will be distributed to form a network.

	nngt.geometry.culture_from_file(filename[, …])

	Generate a culture from an SVG, a DXF, or a WKT/WKB file.

	nngt.geometry.plot_shape(shape[, axis, m, …])

	Plot a shape (you should set the axis aspect to 1 to respect the proportions).

	nngt.geometry.pop_largest(shapes)

	Returns the largest shape, removing it from the list.

	nngt.geometry.shapes_from_file(filename[, …])

	Generate a set of Shape objects from an SVG, a DXF, or a WKT/WKB file.

Principle

Module dedicated to the description of the spatial boundaries of neuronal
cultures.
This allows for the generation of neuronal networks that are embedded in space.

The shapely [http://toblerity.org/shapely/index.html] library is used to
generate and deal with the spatial environment of the neurons.

Examples

Basic features

The module provides a backup Shape object, which can be used with only
the numpy and scipy libraries.
It allows for the generation of simple rectangle, disk and ellipse shapes.

import matplotlib.pyplot as plt

import PyNCulture as nc

fig, ax = plt.subplots()

''' Choose a shape (uncomment the desired line) '''
culture = nc.Shape.rectangle(15, 20, (5, 0))
culture = nc.Shape.disk(20, (5, 0))
culture = nc.Shape.ellipse((20, 5), (5, 0))

''' Generate the neurons inside '''
pos = culture.seed_neurons(neurons=1000, xmax=0., ymax=0.)

''' Plot '''
nc.plot_shape(culture, ax, show=False)
ax.scatter(pos[:, 0], pos[:, 1], s=2, zorder=2)

plt.show()

All these features are of course still available with the more advanced
Shape object which inherits from shapely.geometry.Polygon.

Complex shapes from files

import matplotlib.pyplot as plt

import PyNCulture as nc

''' Choose a file '''
culture_file = "culture_from_filled_polygons.svg"
culture_file = "culture_with_holes.svg"
culture_file = "culture.dxf"

shapes = nc.shapes_from_file(culture_file, min_x=-5000., max_x=5000.)

''' Plot the shapes '''
fig, ax = plt.subplots()
fig.suptitle("shapes")

for p in shapes:
 nc.plot_shape(p, ax, show=False)

plt.show()

''' Make a culture '''
fig2, ax2 = plt.subplots()
plt.title("culture")

culture = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)

nc.plot_shape(culture, ax2)

''' Add neurons '''
fig3, ax3 = plt.subplots()
plt.title("culture with neurons")

culture_bis = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)
pos = culture_bis.seed_neurons(neurons=1000, xmax=0)

nc.plot_shape(culture_bis, ax3, show=False)
ax3.scatter(pos[:, 0], pos[:, 1], s=2, zorder=3)

plt.show()

Content

	
class nngt.geometry.Area(shell, holes=None, unit='um', height=0.0, name='area', properties=None)

	Specialized Shape that stores additional properties regarding the
interactions with the neurons.

Each Area is characteristic of a given substrate and height. These two
properties are homogeneous over the whole area, meaning that the neurons
interact in the same manner with an Area reagardless of their position
inside.

The substrate is described through its modulation of the neuronal
properties compared to their default behavior.
Thus, a given area will modulate the speed, wall affinity, etc, of the
growth cones that are growing above it.

Initialize the Shape object and the underlying
shapely.geometry.Polygon.

	Parameters

	
	shell (array-like object of shape (N, 2)) – List of points defining the external border of the shape.

	holes (array-like, optional (default: None)) – List of array-like objects of shape (M, 2), defining empty regions
inside the shape.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	height (float, optional (default: 0.)) – Height of the area.

	name (str, optional (default: “area”)) – The name of the area.

	properties (dict, optional (default: default neuronal properties)) – Dictionary containing the list of the neuronal properties that
are modified by the substrate. Since this describes how the default
property is modulated, all values must be positive reals or NaN.

	
add_subshape(subshape, position, unit='um')

	

	
areas

	Returns the dictionary containing the Shape’s areas.

	
copy()

	Create a copy of the current Area.

	
classmethod from_shape(shape, height=0.0, name='area', properties=None, unit='um', min_x=None, max_x=None)

	Create an Area from a Shape object.

	Parameters

	shape (Shape) – Shape that should be converted to an Area.

	Returns

	Area object.

	
properties

	

	
class nngt.geometry.Shape(shell, holes=None, unit='um', parent=None, default_properties=None)

	Class containing the shape of the area where neurons will be distributed to
form a network.

	
area

	Area of the shape in the Shape’s
Shape.unit() squared ([image: \mu m^2],
[image: mm^2], [image: cm^2], [image: dm^2] or [image: m^2]).

	Type

	double

	
centroid

	Position of the center of mass of the current shape in unit.

	Type

	tuple of doubles

See also

Parent

Initialize the Shape object and the underlying
shapely.geometry.Polygon.

	Parameters

	
	exterior (array-like object of shape (N, 2)) – List of points defining the external border of the shape.

	interiors (array-like, optional (default: None)) – List of array-like objects of shape (M, 2), defining empty regions
inside the shape.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	parent (nngt.Graph or subclass) – The graph which is associated to this Shape.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
add_area(area, height=None, name=None, properties=None, override=False)

	Add a new area to the Shape.
If the new area has a part that is outside the main Shape,
it will be cut and only the intersection between the area and the
container will be kept.

	Parameters

	
	area (Area or Shape, or shapely.Polygon.) – Delimitation of the area. Only the intersection between the parent
Shape and this new area will be kept.

	name (str, optional, default (“areaX” where X is the number of areas)) – Name of the area, under which it can be retrieved using the
Shape.area() property of the Shape object.

	properties (dict, optional (default: None)) – Properties of the area. If area is a Area, then this is
not necessary.

	override (bool, optional (default: False)) – If True, the new area will be made over existing areas that will
be reduced in consequence.

	
add_hole(hole)

	Make a hole in the shape.

New in version 0.4.

	
areas

	Returns the dictionary containing the Shape’s areas.

	
contains_neurons(positions)

	Check whether the neurons are contained in the shape.

New in version 0.4.

	Parameters

	positions (point or 2D-array of shape (N, 2))

	Returns

	contained (bool or 1D boolean array of length N) – True if the neuron is contained, False otherwise.

	
copy()

	Create a copy of the current Shape.

	
default_areas

	Returns the dictionary containing only the default areas.

New in version 0.4.

	
static disk(radius, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a disk of given radius and center (centroid).

	Parameters

	
	radius (float) – Radius of the disk in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
static ellipse(radii, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a disk of given radius and center (centroid).

	Parameters

	
	radii (tuple of floats) – Couple (rx, ry) containing the radii of the two axes in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
static from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, default_properties=None)

	Create a shape from a DXF, an SVG, or a WTK/WKB file.

New in version 0.3.

	Parameters

	
	filename (str) – Path to the file that should be loaded.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit (default: ‘um’). If None, no rescaling
occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit. If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’.

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	interpolate_curve (int, optional (default: 50)) – Number of points that should be used to interpolate a curve.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
static from_polygon(polygon, min_x=None, max_x=None, unit='um', parent=None, default_properties=None)

	Create a shape from a shapely.geometry.Polygon.

	Parameters

	
	polygon (shapely.geometry.Polygon) – The initial polygon.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit If None, no rescaling occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	
static from_wkt(wtk, min_x=None, max_x=None, unit='um', parent=None, default_properties=None)

	Create a shape from a WKT string.

New in version 0.2.

	Parameters

	
	wtk (str) – The WKT string.

	min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost point in the
environment in unit If None, no rescaling occurs.

	max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost point in the
environment in unit If None, no rescaling occurs.

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph object) – The parent which will become a nngt.SpatialGraph.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

See also

Shape.from_polygon()

	
non_default_areas

	Returns the dictionary containing all Shape’s areas except the
default ones.

New in version 0.4.

	
parent

	Return the parent of the Shape.

	
random_obstacles(n, form, params=None, heights=None, properties=None, etching=0, on_area=None)

	Place random obstacles inside the shape.

New in version 0.4.

	Parameters

	
	n (int or float) – Number of obstacles if n is an int [https://docs.python.org/3/library/functions.html#int], otherwise represents
the fraction of the shape’s bounding box that should be occupied by

the obstacles’ bounding boxes.

	form (str or Shape) – Form of the obstacles, among “disk”, “ellipse”, “rectangle”, or a
custom shape.

	params (dict, optional (default: None)) – Dictionnary containing the instructions to build a predefined form
(“disk”, “ellipse”, “rectangle”). See their creation methods for
details. Leave None when using a custom shape.

	heights (float or list, optional (default: None)) – Heights of the obstacles. If None, the obstacle will considered as
a “hole” in the structure, i.e. an uncrossable obstacle.

	properties (dict or list, optional (default: None)) – Properties of the obstacles if they constitue areas (only used if
heights is not None). If not provided and heights is not None,
will default to the “default_area” properties.

	etching (float, optional (default: 0)) – Etching of the obstacles’ corners (rounded corners). Valid only
for

	
static rectangle(height, width, centroid=(0.0, 0.0), unit='um', parent=None, default_properties=None)

	Generate a rectangle of given height, width and center of mass.

	Parameters

	
	height (float) – Height of the rectangle in unit

	width (float) – Width of the rectangle in unit

	centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of mass in unit

	unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ ([image: \mu m]), ‘mm’, ‘cm’,
‘dm’, ‘m’

	parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

	default_properties (dict, optional (default: None)) – Default properties of the environment.

	Returns

	shape (Shape) – Rectangle shape.

	
return_quantity

	Whether seed_neurons returns positions with units by default.

New in version 0.5.

	
seed_neurons(neurons=None, container=None, on_area=None, xmin=None, xmax=None, ymin=None, ymax=None, soma_radius=0, unit=None, return_quantity=None)

	Return the positions of the neurons inside the
Shape.

	Parameters

	
	neurons (int, optional (default: None)) – Number of neurons to seed. This argument is considered only if the
Shape has no parent, otherwise, a position is generated
for each neuron in parent.

	container (Shape, optional (default: None)) – Subshape acting like a mask, in which the neurons must be
contained. The resulting area where the neurons are generated is
the intersection() between of the current
shape and the container.

	on_area (str or list, optional (default: None)) – Area(s) where the seeded neurons should be.

	xmin (double, optional (default: lowest abscissa of the Shape)) – Limit the area where neurons will be seeded to the region on the
right of xmin.

	xmax (double, optional (default: highest abscissa of the Shape)) – Limit the area where neurons will be seeded to the region on the
left of xmax.

	ymin (double, optional (default: lowest ordinate of the Shape)) – Limit the area where neurons will be seeded to the region on the
upper side of ymin.

	ymax (double, optional (default: highest ordinate of the Shape)) – Limit the area where neurons will be seeded to the region on the
lower side of ymax.

	unit (string (default: None)) – Unit in which the positions of the neurons will be returned, among
‘um’, ‘mm’, ‘cm’, ‘dm’, ‘m’.

	return_quantity (bool, optional (default: False)) – Whether the positions should be returned as pint.Quantity
objects (requires Pint).

	.. versionchanged:: 0.5 – Accepts pint units and return_quantity argument.

Note

If both container and on_area are provided, the intersection of
the two is used.

	Returns

	positions (array of double with shape (N, 2) or pint.Quantity if) – return_quantity is True.

	
set_parent(parent)

	Set the parent nngt.Graph.

	
set_return_units(b)

	Set the default behavior for positions returned by seed_neurons.
If True, then the positions returned are quantities with units (from
the pint library), otherwise they are simply numpy arrays.

New in version 0.5.

Note

set_return_units(True) requires pint to be installed on the system,
otherwise an error will be raised.

	
unit

	Return the unit for the Shape coordinates.

	
nngt.geometry.culture_from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, internal_shapes_as='holes', default_properties=None, other_properties=None)

	Generate a culture from an SVG, a DXF, or a WKT/WKB file.

Valid file needs to contain only closed objects among:
rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

Changed in version 0.6: Added internal_shapes_as and other_properties keyword parameters.

	Parameters

	
	filename (str) – Path to the SVG, DXF, or WKT/WKB file.

	min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s exterior, in unit.

	max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s exterior, in
unit.

	unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’), milimeters (‘mm’),
centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

	parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if working with NNGT.

	interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should be interpolated into segments.

	internal_shapes_as (str, optional (default: “holes”)) – Defines how additional shapes contained in the main environment should
be processed. If “holes”, then these shapes are substracted from the
main environment; if “areas”, they are considered as areas.

	default_properties (dict, optional (default: None)) – Properties of the default area of the culture.

	other_properties (dict, optional (default: None)) – Properties of the non-default areas of the culture (internal shapes if
internal_shapes_as is set to “areas”).

	Returns

	culture (Shape object) – Shape, vertically centred around zero, such that
[image: min(y) + max(y) = 0].

	
nngt.geometry.pop_largest(shapes)

	Returns the largest shape, removing it from the list.
If shapes is a shapely.geometry.MultiPolygon, returns the
largest shapely.geometry.Polygon without modifying the object.

New in version 0.3.

	Parameters

	shapes (list of Shape objects or MultiPolygon.)

	
nngt.geometry.shapes_from_file(filename, min_x=None, max_x=None, unit='um', parent=None, interpolate_curve=50, default_properties=None, **kwargs)

	Generate a set of Shape objects from an SVG, a DXF, or a WKT/WKB
file.

Valid file needs to contain only closed objects among:
rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

New in version 0.3.

	Parameters

	
	filename (str) – Path to the SVG, DXF, or WKT/WKB file.

	min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s exterior, in unit.

	max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s exterior, in
unit.

	unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’), milimeters (‘mm’),
centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

	parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if working with NNGT.

	interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should be interpolated into segments.

	Returns

	culture (Shape object) – Shape, vertically centred around zero, such that
[image: min(y) + max(y) = 0].

	
nngt.geometry.plot_shape(shape, axis=None, m='', mc='#999999', fc='#8888ff', ec='#444444', alpha=0.5, brightness='height', show_contour=True, show=True, **kwargs)

	Plot a shape (you should set the axis aspect to 1 to respect the
proportions).

	Parameters

	
	shape (Shape) – Shape to plot.

	axis (matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] instance, optional (default: None)) – Axis on which the shape should be plotted. By default, a new figure
is created.

	m (str, optional (default: invisible)) – Marker to plot the shape’s vertices, matplotlib syntax.

	mc (str, optional (default: “#999999”)) – Color of the markers.

	fc (str, optional (default: “#8888ff”)) – Color of the shape’s interior.

	ec (str, optional (default: “#444444”)) – Color of the shape’s edges.

	alpha (float, optional (default: 0.5)) – Opacity of the shape’s interior.

	brightness (str, optional (default: height)) – Show how different other areas are from the ‘default_area’ (lower
values are darker, higher values are lighter).
Difference can concern the ‘height’, or any of the properties of the
Area objects.

	show_contour (bool, optional (default: True)) – Whether the shapes should be drawn with a contour.

	show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

	**kwargs (keywords arguments for matplotlib.patches.PathPatch [https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch])

Lib module

Tools for the other modules.

Warning

These tools have been designed primarily for internal use throughout the
library and often work only in very specific situations (e.g.
find_idx_nearest() works only on sorted arrays), so make
sure you read their doc carefully before using them.

Content

	nngt.lib.InvalidArgument

	Error raised when an argument is invalid.

	nngt.lib.delta_distrib([graph, elist, num, …])

	Delta distribution for edge attributes.

	nngt.lib.find_idx_nearest(array, values)

	Find the indices of the nearest elements of values in a sorted array.

	nngt.lib.gaussian_distrib(graph[, elist, …])

	Gaussian distribution for edge attributes.

	nngt.lib.is_integer(obj)

	Return whether the object is an integer

	nngt.lib.is_iterable(obj)

	Return whether the object is iterable

	nngt.lib.lin_correlated_distrib(graph[, …])

	

	nngt.lib.log_correlated_distrib(graph[, …])

	

	nngt.lib.lognormal_distrib(graph[, elist, …])

	Lognormal distribution for edge attributes.

	nngt.lib.nonstring_container(obj)

	Returns true for any iterable which is not a string or byte sequence.

	nngt.lib.uniform_distrib(graph[, elist, …])

	Uniform distribution for edge attributes.

Details

	
class nngt.lib.InvalidArgument

	Error raised when an argument is invalid.

	
nngt.lib.delta_distrib(graph=None, elist=None, num=None, value=1.0, **kwargs)

	Delta distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	value (float, optional (default: 1.)) – Value of the delta distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.find_idx_nearest(array, values)

	Find the indices of the nearest elements of values in a sorted array.

Warning

Both array and values should be numpy.array objects and
array MUST be sorted in increasing order.

	Parameters

	
	array (reference list or np.ndarray)

	values (double, list or array of values to find in array)

	Returns

	idx (int or array representing the index of the closest value in array)

	
nngt.lib.gaussian_distrib(graph, elist=None, num=None, avg=None, std=None, **kwargs)

	Gaussian distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	avg (float, optional (default: 0.)) – Average of the Gaussian distribution.

	std (float, optional (default: 1.5)) – Standard deviation of the Gaussian distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.is_integer(obj)

	Return whether the object is an integer

	
nngt.lib.is_iterable(obj)

	Return whether the object is iterable

	
nngt.lib.lin_correlated_distrib(graph, elist=None, correl_attribute='betweenness', noise_scale=None, lower=None, upper=None, slope=None, offset=0.0, last_edges=False, **kwargs)

	

	
nngt.lib.log_correlated_distrib(graph, elist=None, correl_attribute='betweenness', noise_scale=None, lower=0.0, upper=2.0, **kwargs)

	

	
nngt.lib.lognormal_distrib(graph, elist=None, num=None, position=None, scale=None, **kwargs)

	Lognormal distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	position (float, optional (default: 0.)) – Average of the normal distribution (i.e. log of the actual mean of the
lognormal distribution).

	scale (float, optional (default: 1.5)) – Standard deviation of the normal distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

	
nngt.lib.nonstring_container(obj)

	Returns true for any iterable which is not a string or byte sequence.

	
nngt.lib.uniform_distrib(graph, elist=None, num=None, lower=None, upper=None, **kwargs)

	Uniform distribution for edge attributes.

	Parameters

	
	graph (Graph or subclass) – Graph for which an edge attribute will be generated.

	elist (list of edges, optional (default: all edges)) – Generate values for only a subset of edges.

	lower (float, optional (default: 0.)) – Min value of the uniform distribution.

	upper (float, optional (default: 1.5)) – Max value of the uniform distribution.

	Returns (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Attribute value for each edge in graph.

Plot module

Functions for plotting graphs and graph properties.

The following features are provided:

	basic graph plotting

	plotting the distribution of some attribute over the graph

	animation of some recorded activity

Content

	nngt.plot.Animation2d(source, multimeter[, …])

	Class to plot the raster plot, firing-rate, and average trajectory in a 2D phase-space for a network activity.

	nngt.plot.AnimationNetwork(source, network)

	Class to plot the raster plot, firing-rate, and space-embedded spiking activity (neurons on the graph representation flash when spiking) in time.

	nngt.plot.betweenness_distribution(network)

	Plotting the betweenness distribution of a graph.

	nngt.plot.chord_diagram(network[, weights, …])

	Plot a chord diagram.

	nngt.plot.compare_population_attributes(…)

	Compare node attributes between two sets of nodes.

	nngt.plot.correlation_to_attribute(network, …)

	For each node plot the value of reference_attributes against each of the other_attributes to check for correlations.

	nngt.plot.degree_distribution(network[, …])

	Plotting the degree distribution of a graph.

	nngt.plot.draw_network(network[, nsize, …])

	Draw a given graph/network.

	nngt.plot.edge_attributes_distribution(…)

	Return node attributes for a set of nodes.

	nngt.plot.hive_plot(network, radial[, axes, …])

	Draw a hive plot of the graph.

	nngt.plot.library_draw(network[, nsize, …])

	Draw a given Graph using the underlying library’s drawing functions.

	nngt.plot.node_attributes_distribution(…)

	Return node attributes for a set of nodes.

	nngt.plot.palette_continuous([numbers])

	

	nngt.plot.palette_discrete([numbers])

	

Details

	
class nngt.plot.Animation2d(source, multimeter, start=0.0, timewindow=None, trace=5.0, x='time', y='V_m', sort_neurons=None, network=None, interval=50, vector_field=False, **kwargs)

	Class to plot the raster plot, firing-rate, and average trajectory in
a 2D phase-space for a network activity.

Generate a SubplotAnimation instance to plot a network activity.

	Parameters

	
	source (tuple) – NEST gid of the ``spike_detector``(s) which recorded the network.

	multimeter (tuple) – NEST gid of the ``multimeter``(s) which recorded the network.

	timewindow (double, optional (default: None)) – Time window which will be shown for the spikes and self.second.

	trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed in red.

	x (str, optional (default: “time”)) – Name of the x-axis variable (must be either “time” or the name
of a NEST recordable in the multimeter).

	y (str, optional (default: “V_m”)) – Name of the y-axis variable (must be either “time” or the name
of a NEST recordable in the multimeter).

	vector_field (bool, optional (default: False)) – Whether the [image: \dot{x}] and [image: \dot{y}] arrows should be
added to phase space. Requires additional ‘dotx’ and ‘doty’
arguments which are user defined functions to compute the
derivatives of x and x in time. These functions take 3
parameters, which are x, y, and time_dependent, where the
last parameter is a list of doubles associated to recordables
from the neuron model (see example for details). These recordables
must be declared in a time_dependent parameter.

	sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”,
“out-degree”, “total-degree” or “betweenness”), an activity-related
property (“firing_rate”, ‘B2’) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the
sort_neurons property from bottom to top inside each group.

	**kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’, ‘num_xarrows’,
‘num_yarrows’, ‘dotx’, ‘doty’, ‘time_dependent’, ‘recordables’,
‘arrow_scale’.

	
class nngt.plot.AnimationNetwork(source, network, resolution=1.0, start=0.0, timewindow=None, trace=5.0, show_spikes=False, sort_neurons=None, decimate_connections=False, interval=50, repeat=True, resting_size=None, active_size=None, **kwargs)

	Class to plot the raster plot, firing-rate, and space-embedded spiking
activity (neurons on the graph representation flash when spiking) in time.

Generate a SubplotAnimation instance to plot a network activity.

	Parameters

	
	source (tuple) – NEST gid of the ``spike_detector``(s) which recorded the network.

	network (SpatialNetwork) – Network embedded in space to plot the actvity of the neurons in
space.

	resolution (double, optional (default: None)) – Time resolution of the animation.

	timewindow (double, optional (default: None)) – Time window which will be shown for the spikes and self.second.

	trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed in red.

	show_spikes (bool, optional (default: True)) – Whether a spike trajectory should be displayed on the network.

	sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”,
“out-degree”, “total-degree” or “betweenness”), an activity-related
property (“firing_rate”, ‘B2’) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the
sort_neurons property from bottom to top inside each group.

	**kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’, or all arguments for the
nngt.plot.draw_network().

	
nngt.plot.betweenness_distribution(network, btype='both', weights=False, nodes=None, logx=False, logy=False, num_nbins=None, num_ebins=None, axes=None, colors=None, norm=False, legend_location='right', show=True, **kwargs)

	Plotting the betweenness distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – the graph to analyze.

	btype (string, optional (default: “both”)) – type of betweenness to display (“node”, “edge” or “both”)

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes (taken into account only
for the node attribute).

	logx (bool, optional (default: False)) – use log-spaced bins.

	logy (bool, optional (default: False)) – use logscale for the degree count.

	num_nbins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the node distribution. Defaults to
max(num_nodes / 50., 10).

	num_ebins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the edge distribution. Defaults to
max(num_edges / 500., 10) (‘auto’ method will be slow).

	axes (list of matplotlib.axis.Axis [https://matplotlib.org/api/axis_api.html#matplotlib.axis.Axis], optional (default: new ones)) – Axes which should be used to plot the histogram, if None, new ones are
created.

	legend_location (str, optional (default; ‘right’)) – Location of the legend.

	show (bool, optional (default: True)) – Show the Figure right away if True, else keep it warm for later use.

	
nngt.plot.chord_diagram(network, weights=True, names=None, order=None, width=0.1, pad=2.0, gap=0.03, chordwidth=0.7, axis=None, colors=None, cmap=None, alpha=0.7, use_gradient=False, show=False, **kwargs)

	Plot a chord diagram.

	Parameters

	
	network (a nngt.Graph object) – Network used to plot the chord diagram.

	weights (bool or str, optional (default: ‘weight’ attribute)) – Weights used to plot the connections.

	names (str or list of str, optional (default: no names)) – Names of the nodes that will be displayed, either a node attribute
or a custom list (must be ordered following the nodes’ indices).

	order (list, optional (default: order of the matrix entries)) – Order in which the arcs should be placed around the trigonometric
circle.

	width (float, optional (default: 0.1)) – Width/thickness of the ideogram arc.

	pad (float, optional (default: 2)) – Distance between two neighboring ideogram arcs. Unit: degree.

	gap (float, optional (default: 0.03)) – Distance between the arc and the beginning of the cord.

	chordwidth (float, optional (default: 0.7)) – Position of the control points for the chords, controlling their shape.

	axis (matplotlib axis, optional (default: new axis)) – Matplotlib axis where the plot should be drawn.

	colors (list, optional (default: from cmap)) – List of user defined colors or floats.

	cmap (str or colormap object (default: viridis)) – Colormap to use.

	alpha (float in [0, 1], optional (default: 0.7)) – Opacity of the chord diagram.

	use_gradient (bool, optional (default: False)) – Whether a gradient should be use so that chord extremities have the
same color as the arc they belong to.

	**kwargs (keyword arguments) – Available kwargs are “fontsize” and “sort” (either “size” or
“distance”), “zero_entry_size” (in degrees, default: 0.5),
“rotate_names” (a bool or list of bools) to rotate (some of) the
names by 90°.

	
nngt.plot.compare_population_attributes(network, attributes, nodes=None, reference_nodes=None, num_bins='auto', reference_color='gray', title=None, logx=False, logy=False, show=True, **kwargs)

	Compare node attributes between two sets of nodes. Since number of nodes
can vary, normalized distributions are used.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”
* “b2” (requires NEST)
* “firing_rate” (requires NEST)

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	reference_nodes (list, optional (default: all nodes)) – Reference nodes for which the attributes should be returned in order
to compare with nodes.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwize a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.correlation_to_attribute(network, reference_attribute, other_attributes, attribute_type='node', nodes=None, edges=None, fig=None, title=None, show=True)

	For each node plot the value of reference_attributes against each of the
other_attributes to check for correlations.

Changed in version 2.0: Added fig argument.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	reference_attribute (str or array-like) – Attribute which should serve as reference, among:

	“betweenness”

	“clustering”

	“in-degree”, “out-degree”, “total-degree”

	“in-strength”, “out-strength”, “total-strength”

	“subgraph_centrality”

	“b2” (requires NEST)

	“firing_rate” (requires NEST)

	a custom array of values, in which case one entry per node in nodes
is required.

	other_attributes (str or list) – Attributes that will be compared to the reference.

	attribute_type (str, optional (default: ‘node’)) – Whether we are dealing with ‘node’ or ‘edge’ attributes

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

	fig (matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure], optional (default: new Figure)) – Figure to which the plot should be added.

	title (str, optional (default: automatic).) – Custom title, use “” to remove the automatic title.

	show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

	
nngt.plot.degree_distribution(network, deg_type='total', nodes=None, num_bins='doane', weights=False, logx=False, logy=False, axis=None, axis_num=None, colors=None, norm=False, show=True, title=None, **kwargs)

	Plotting the degree distribution of a graph.

	Parameters

	
	graph (Graph or subclass) – The graph to analyze.

	deg_type (string or N-tuple, optional (default: “total”)) – Type of degree to consider (“in”, “out”, or “total”)

	nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution to a set of nodes.

	num_bins (str, int or N-tuple, optional (default: ‘doane’):) – Number of bins used to sample the distribution. Defaults to ‘doane’.
Use to ‘auto’ for numpy automatic selection or ‘bayes’ for unsupervised
Bayesian blocks method.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	logx (bool, optional (default: False)) – Use log-spaced bins.

	logy (bool, optional (default: False)) – Use logscale for the degree count.

	axis (matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] instance, optional (default: new one)) – Axis which should be used to plot the histogram, if None, a new one is
created.

	show (bool, optional (default: True)) – Show the Figure right away if True, else keep it warm for later use.

	**kwargs (keyword arguments for matplotlib.axes.Axes.bar().)

	
nngt.plot.draw_network(network, nsize='total-degree', ncolor='group', nshape='o', nborder_color='k', nborder_width=0.5, esize=1.0, ecolor='k', ealpha=0.5, max_nsize=None, max_esize=2.0, curved_edges=False, threshold=0.5, decimate_connections=None, spatial=True, restrict_sources=None, restrict_targets=None, restrict_nodes=None, restrict_edges=None, show_environment=True, fast=False, size=(600, 600), xlims=None, ylims=None, dpi=75, axis=None, colorbar=False, cb_label=None, layout=None, show=False, **kwargs)

	Draw a given graph/network.

	Parameters

	
	network (Graph or subclass) – The graph/network to plot.

	nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes as a percentage of the canvas length. Otherwise, it
can be a string that correlates the size to a node attribute among
“in/out/total-degree”, “in/out/total-strength”, or “betweenness”.

	ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a float in [0, 1], position of the color in the
current palette, otherwise a string that correlates the color to a node
attribute among “in/out/total-degree”, “betweenness” or “group”.

	nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see Matplotlib markers [http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers]).
When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

	nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border using predefined Matplotlib colors [http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors]).
or floats in [0, 1] defining the position in the palette.

	nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in percent of canvas size.

	esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of canvas length. Available string values
are “betweenness” and “weight”.

	ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”, edges color will depend on the source
and target groups, i.e. only edges from and toward same groups will
have the same color.

	max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this normalizes the edge
width between 0. and max_esize.

	threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

	decimate_connections (int, optional (default: keep all connections)) – Plot only one connection every decimate_connections.
Use -1 to hide all edges.

	spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

	restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from a restricted set of source nodes.

	restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a restricted set of target nodes.

	restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset of nodes.

	restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

	show_environment (bool, optional (default: True)) – Plot the environment if the graph is spatial.

	fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. Zooming on the drawing made
using this method leaves the size of the nodes and edges unchanged, it
is therefore not recommended when size consistency matters, e.g. for
some spatial representations.

	size (tuple of ints, optional (default: (600,600))) – (width, height) tuple for the canvas size (in px).

	dpi (int, optional (default: 75)) – Resolution (dot per inch).

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node colors or not.

	cb_label (str, optional (default: None)) – A label for the colorbar.

	layout (str, optional (default: random or spatial positions)) – Name of a standard layout to structure the network. Available layouts
are: “circular” or “random”. If no layout is provided and the network
is spatial, then node positions will be used by default.

	show (bool, optional (default: True)) – Display the plot immediately.

	**kwargs (dict) – Optional keyword arguments including node_cmap to set the
nodes colormap (default is “magma” for continuous variables and
“Set1” for groups) and “title” to add a title to the plot.

	
nngt.plot.edge_attributes_distribution(network, attributes, edges=None, num_bins='auto', logx=False, logy=False, norm=False, title=None, colors=None, show=True, **kwargs)

	Return node attributes for a set of nodes.

New in version 1.0.3.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned (e.g. “betweenness”, “delay”,
“weight”).

	edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.hive_plot(network, radial, axes=None, axes_bins=None, axes_range=None, axes_angles=None, axes_labels=None, axes_units=None, intra_connections=True, highlight_nodes=None, highlight_edges=None, nsize=None, esize=None, max_nsize=10, max_esize=1, axes_colors=None, edge_colors=None, edge_alpha=0.05, nborder_color='k', nborder_width=0.2, show_names=True, show_circles=False, axis=None, tight=True, show=False)

	Draw a hive plot of the graph.

Note

For directed networks, the direction of intra-axis connections is
counter-clockwise.
For inter-axes connections, the default edge color is closest to the color
of the source group (i.e. from a red group to a blue group, edge color will
be a reddish violet , while from blue to red, it will be a blueish violet).

	Parameters

	
	network (Graph) – Graph to plot.

	radial (str, list of str or array-like) – Values that will be used to place the nodes on the axes. Either one
identical property is used for all axes (traditional hive plot) or
one radial coordinate per axis is used (custom hive plot).
If radial is a string or a list of strings, then these must correspond
to the names of node attributes stored in the graph.

	axes (str, or list of str, optional (default: one per radial coordinate)) – Name of the attribute(s) that will be used to make each of the axes
(i.e. each group of nodes).
This can be either “groups” if the graph has a structure or is a
Network, a list of (Meta)Group names, or any (list of)
node attribute(s).
If a single node attribute is used, axes_bins must be provided to
make one axis for each range of values.
If there are multiple radial coordinates, then leaving axes blanck
will plot all nodes on each of the axes (one per radial coordinate).

	axes_bins (int or array-like, optional (default: all nodes on each axis)) – Required if there is a single radial coordinate and a single axis
entry: provides the bins that will be used to separate the nodes
into groups (one per axis). For N axes, there must therefore be N + 1
entries in axes_bins, or axis_bins must be equal to N, in which
case the nodes are separated into N evenly sized bins.

	axes_units (str, optional) – Units used to scale the axes. Either “native” to have them scaled
between the minimal and maximal radial coordinates among all axes,
“rank”, to use the min and max ranks of the nodes on all axes, or
“normed”, to have each axis go from zero (minimal local radial
coordinate) to one (maximal local radial coordinate).
“native” is the default if there is a single radial coordinate,
“normed” is the default for multiple coordinates.

	axes_angles (list of angles, optional (default: automatic)) – Angles for each of the axes, by increasing degree. If
intra_connections is True, then angles of duplicate axes must be
adjacent, e.g. [a1, a1bis, a2, a2bis, a3, a3bis].

	axes_labels (str or list of str, optional) – Label of each axis. For binned axes, it can be automatically formatted
via the three entries {name}, {start}, {stop}.
E.g. “{name} in [{start}, {stop}]” would give “CC in [0, 0.2]” for
a first axis and “CC in [0.2, 0.4]” for a second axis.

	intra_connections (bool, optional (default: True)) – Show connections between nodes belonging to the same axis. If true,
then each axis is duplicated to display intra-axis connections.

	highlight_nodes (list of nodes, optional (default: all nodes)) – Highlight a subset of nodes and their connections, all other nodes
and connections will be gray.

	highlight_edges (list of edges, optional (default: all edges)) – Highlight a subset of edges; all other connections will be gray.

	nsize (float, str, or array-like, optional (default: automatic)) – Size of the nodes on the axes. Either a fixed size, the name of a
node attribute, or a list of user-defined values.

	esize (float or str, optional (default: 1)) – Size of the edges. Either a fixed size or the name of an edge
attribute.

	max_nsize (float, optional (default: 10)) – Maximum node size if nsize is an attribute or a list of
user-defined values.

	max_esize (float, optional (default: 1)) – Maximum edge size if esize is an attribute.

	axes_colors (valid matplotlib color/colormap, optional (default: Set1)) – Color associated to each axis.

	nborder_color (matplotlib color, optional (default: “k”)) – Color of the node’s border.
or floats in [0, 1] defining the position in the palette.

	nborder_width (float, optional (default: 0.2)) – Width of the border.

	edge_colors (valid matplotlib color/colormap, optional (default: auto)) – Color of the edges. By default it is the intermediate color between
two axes colors. To provide custom colors, they must be provided as
a dictionnary of axes edges {(0, 0): "r", (0, 1): "g", (1, 0): "b"}
with default color being black.

	edge_alpha (float, optional (default: 0.05)) – Edge opacity.

	show_names (bool, optional (default: True)) – Show axes names and properties.

	show_circles (bool, optional (default: False)) – Show the circles associated to the maximum value of each axis.

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	tight (bool, optional (default: True)) – Set figure layout to tight (set to False if plotting multiple axes on
a single figure).

	show (bool, optional (default: True)) – Display the plot immediately.

	
nngt.plot.library_draw(network, nsize='total-degree', ncolor='group', nshape='o', nborder_color='k', nborder_width=0.5, esize=1.0, ecolor='k', ealpha=0.5, max_nsize=5.0, max_esize=2.0, curved_edges=False, threshold=0.5, decimate_connections=None, spatial=True, restrict_sources=None, restrict_targets=None, restrict_nodes=None, restrict_edges=None, show_environment=True, size=(600, 600), xlims=None, ylims=None, dpi=75, axis=None, colorbar=False, show_labels=False, layout=None, show=False, **kwargs)

	Draw a given Graph using the underlying library’s drawing
functions.

New in version 2.0.

Warning

When using igraph or graph-tool, if you want to use the axis
argument, then you must first switch the matplotlib backend to its
cairo version using e.g. plt.switch_backend("Qt5Cairo") if your
normal backend is Qt5 (“Qt5Agg”).

	Parameters

	
	network (Graph or subclass) – The graph/network to plot.

	nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes as a percentage of the canvas length. Otherwise, it
can be a string that correlates the size to a node attribute among
“in/out/total-degree”, or “betweenness”.

	ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a float in [0, 1], position of the color in the
current palette, otherwise a string that correlates the color to a node
attribute among “in/out/total-degree”, “betweenness” or “group”.

	nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see Matplotlib markers [http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers]).
When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

	nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border using predefined Matplotlib colors [http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors]).
or floats in [0, 1] defining the position in the palette.

	nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in percent of canvas size.

	esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of canvas length. Available string values
are “betweenness” and “weight”.

	ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”, edges color will depend on the source
and target groups, i.e. only edges from and toward same groups will
have the same color.

	max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this normalizes the edge
width between 0. and max_esize.

	threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

	decimate_connections (int, optional (default: keep all connections)) – Plot only one connection every decimate_connections.
Use -1 to hide all edges.

	spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

	restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from a restricted set of source nodes.

	restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a restricted set of target nodes.

	restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset of nodes.

	restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

	show_environment (bool, optional (default: True)) – Plot the environment if the graph is spatial.

	fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. This method leads to less
pretty plots and zooming on the graph will make the edges start or
ending in places that will differ more or less strongly from the actual
node positions.

	size (tuple of ints, optional (default: (600, 600))) – (width, height) tuple for the canvas size (in px).

	dpi (int, optional (default: 75)) – Resolution (dot per inch).

	colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node colors or not.

	axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will be plotted.

	layout (str, optional (default: library-dependent or spatial positions)) – Name of a standard layout to structure the network. Available layouts
are: “circular”, “spring-block”, “random”. If no layout is
provided and the network is spatial, then node positions will be
used by default.

	show (bool, optional (default: True)) – Display the plot immediately.

	**kwargs (dict) – Optional keyword arguments including node_cmap to set the
nodes colormap (default is “magma” for continuous variables and
“Set1” for groups) and the boolean simple_nodes to make node
plotting faster.

	
nngt.plot.node_attributes_distribution(network, attributes, nodes=None, num_bins='auto', logx=False, logy=False, norm=False, title=None, colors=None, show=True, **kwargs)

	Return node attributes for a set of nodes.

	Parameters

	
	network (Graph) – The graph where the nodes belong.

	attributes (str or list) – Attributes which should be returned, among:
* “betweenness”
* “clustering”
* “closeness”
* “in-degree”, “out-degree”, “total-degree”
* “subgraph_centrality”
* “b2” (requires NEST)
* “firing_rate” (requires NEST)

	nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be returned.

	num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions. If only one int is provided,
it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised
Bayesian blocks method.

	logx (bool or list, optional (default: False)) – Use log-spaced bins.

	logy (bool or list, optional (default: False)) – use logscale for the node count.

	
nngt.plot.palette_continuous(numbers=None)

	

	
nngt.plot.palette_discrete(numbers=None)

	

Simulation module

Module to interact easily with the NEST simulator. It allows to:

	build a NEST network from Network or
SpatialNetwork objects,

	monitor the activity of the network (taking neural groups into account)

	plot the activity while separating the behaviours of predefined neural groups

Content

	nngt.simulation.ActivityRecord(spike_data, …)

	Class to record the properties of the simulated activity.

	nngt.simulation.activity_types(…[, …])

	Analyze the spiking pattern of a neural network.

	nngt.simulation.analyze_raster([raster, …])

	Return the activity types for a given raster.

	nngt.simulation.get_nest_adjacency([…])

	Get the adjacency matrix describing a NEST network.

	nngt.simulation.get_recording(network, record)

	Return the evolution of some recorded values for each neuron.

	nngt.simulation.make_nest_network(network[, …])

	Create a new network which will be filled with neurons and connector objects to reproduce the topology from the initial network.

	nngt.simulation.monitor_groups(group_names, …)

	Monitoring the activity of nodes in the network.

	nngt.simulation.monitor_nodes(gids[, …])

	Monitoring the activity of nodes in the network.

	nngt.simulation.plot_activity([…])

	Plot the monitored activity.

	nngt.simulation.randomize_neural_states(…)

	Randomize the neural states according to the instructions.

	nngt.simulation.raster_plot(times, senders)

	Plotting routine that constructs a raster plot along with an optional histogram.

	nngt.simulation.reproducible_weights(…[, …])

	Find the values of the connection weights that will give PSP responses of min_weight and max_weight in mV.

	nngt.simulation.save_spikes(filename[, …])

	Plot the monitored activity.

	nngt.simulation.set_minis(network, …[, …])

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or “minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs) synapses.

	nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	nngt.simulation.set_poisson_input(gids, rate)

	Submit neurons to a Poissonian rate of spikes.

	nngt.simulation.set_step_currents(gids, …)

	Set step-current excitations

Details

	
class nngt.simulation.ActivityRecord(spike_data, phases, properties, parameters=None)

	Class to record the properties of the simulated activity.

Initialize the instance using spike_data (store proxy to an optional
network) and compute the properties of provided data.

	Parameters

	
	spike_data (2D array) – Array of shape (num_spikes, 2), containing the senders on the 1st
row and the times on the 2nd row.

	phases (dict) – Limits of the different phases in the simulated period.

	properties (dict) – Values of the different properties of the activity (e.g.
“firing_rate”, “IBI”…).

	parameters (dict, optional (default: None)) – Parameters used to compute the phases.

Note

The firing rate is computed as num_spikes / total simulation time,
the period is the sum of an IBI and a bursting period.

	
data

	Returns the (N, 2) array of (senders, spike times).

	
phases

	
	“bursting” for periods of high activity where a large fraction
of the network is recruited.

	“quiescent” for periods of low activity

	“mixed” for firing rate in between “quiescent” and “bursting”.

	“localized” for periods of high activity but where only a small
fraction of the network is recruited.

Note

See parameters for details on the conditions used to
differenciate these phases.

	Type

	Return the phases detected

	
properties

	Returns the properties of the activity.
Contains the following entries:

	“firing_rate”: average value in Hz for 1 neuron in the network.

	“bursting”: True if there were bursts of activity detected.

	“burst_duration”, “IBI”, “ISI”, and “period” in ms, if
“bursting” is True.

	“SpB” (Spikes per Burst): average number of spikes per neuron
during a burst.

	
simplify()

	

	
nngt.simulation.activity_types(spike_detector, limits, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, simplify=False, fignums=[], show=False)

	Analyze the spiking pattern of a neural network.

	@todo:

	think about inserting t=0. and t=simtime at the beginning and at the
end of times.

	Parameters

	
	spike_detector (NEST node(s) (tuple or list of tuples)) – The recording device that monitored the network’s spikes.

	limits (tuple of floats) – Time limits of the simulation region which should be studied (in ms).

	network (Network, optional (default: None)) – Neural network that was analyzed

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	return_steps (bool, optional (default: False)) – If True, a second dictionary, phases_steps will also be returned.
@todo: not implemented yet

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the limits[0]
first milliseconds are ignored, then the skip_bursts first bursts of the
remaining activity are ignored.

	Returns

	phases (dict) – Dictionary containing the time intervals (in ms) for all four phases
(bursting’, `quiescent’, `mixed’, and `localized) as lists.
E.g: phases["bursting"] could give [[123.5,334.2],
[857.1,1000.6]].

	
nngt.simulation.analyze_raster(raster=None, limits=None, network=None, phase_coeff=(0.5, 10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, skip_ms=0.0, simplify=False, fignums=[], show=False)

	Return the activity types for a given raster.

	Parameters

	
	raster (array-like (N, 2) or str) – Either an array containing the ids of the spiking neurons on the first
column, then the corresponding times on the second column, or the path
to a NEST .gdf recording.

	limits (tuple of floats) – Time limits of the simulation regrion which should be studied (in ms).

	network (Network, optional (default: None)) – Network on which the recorded activity was simulated.

	phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’ when the interspike between all spikes
that compose it is smaller than phase_coeff[0] / avg_rate (where
avg_rate is the average firing rate), ‘quiescent’ when it is
greater that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

	mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes to be considered in
the same burst (in ms).

	mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate for a burst to
be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be
considered as ‘localized’).

	mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should participate for a local
burst to be validated (i.e. if the interspike is smaller that the limit
BUT the number of participating neurons is too small, the phase will be
considered as ‘mixed’).

	skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only the permanent
regime.

	simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to a burst are
incorporated to it.

	fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

	show (bool, optional (default: False)) – Whether the figures should be displayed.

Note

Effects of skip_bursts and limits[0] are cumulative: the
limits[0] first milliseconds are ignored, then the skip_bursts
first bursts of the remaining activity are ignored.

	Returns

	activity (ActivityRecord) – Object containing the phases and the properties of the activity
from these phases.

	
nngt.simulation.get_nest_adjacency(id_converter=None)

	Get the adjacency matrix describing a NEST network.

	Parameters

	id_converter (dict, optional (default: None)) – A dictionary which maps NEST gids to the desired neurons ids.

	Returns

	mat_adj (lil_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix]) – Adjacency matrix of the network.

	
nngt.simulation.get_recording(network, record, recorder=None, nodes=None)

	Return the evolution of some recorded values for each neuron.

	Parameters

	
	network (nngt.Network) – Network for which the activity was simulated.

	record (str or list) – Name of the record(s) to obtain.

	recorder (tuple of ints, optional (default: all multimeters)) – GID of the “spike_detector” objects recording the network activity.

	nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the recording should be returned.

	Returns

	values (dict of dict of arrays) – Dictionary containing, for each record, an M array with the
recorded values for n-th neuron is stored under entry n (integer).
A times entry is also added; it should be the same size for all
records, otherwise an error will be raised.

Examples

After the creation of a Network called net, use the
following code:

import nest

rec, _ = monitor_nodes(
 net.nest_gids, "multimeter", {"record_from": ["V_m"]}, net)
nest.Simulate(100.)
recording = nngt.simulation.get_recording(net, "V_m")

access the membrane potential of first neuron + the times
V_m = recording["V_m"][0]
times = recording["times"]

	
nngt.simulation.make_nest_network(network, send_only=None, weights=True)

	Create a new network which will be filled with neurons and
connector objects to reproduce the topology from the initial network.

Changed in version 0.8: Added send_only parameter.

	Parameters

	
	network (nngt.Network or nngt.SpatialNetwork) – the network we want to reproduce in NEST.

	send_only (int, str, or list of str, optional (default: None)) – Restrict the nodes that are created in NEST to either inhibitory or
excitatory neurons send_only [image: \in \{ 1, -1\}] to a group or a
list of groups.

	weights (bool or str, optional (default: binary edges)) – Whether edge weights should be considered; if None or False
then use binary edges; if True, uses the ‘weight’ edge attribute,
otherwise uses any valid edge attribute required.

	Returns

	gids (tuple (nodes in NEST)) – GIDs of the neurons in the network.

	
nngt.simulation.monitor_groups(group_names, network, nest_recorder=None, params=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	group_name (list of strings) – Names of the groups that should be recorded.

	network (Network or subclass) – Network which population will be used to differentiate groups.

	nest_recorder (strings or list, optional (default: “spike_detector”0)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	Returns

	
	recorders (list or NodeCollection of the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.monitor_nodes(gids, nest_recorder=None, params=None, network=None)

	Monitoring the activity of nodes in the network.

	Parameters

	
	gids (tuple of ints or list of tuples) – GIDs of the neurons in the NEST subnetwork; either one list per
recorder if they should monitor different neurons or a unique list
which will be monitored by all devices.

	nest_recorder (strings or list, optional (default: “spike_detector”)) – Device(s) to monitor the network.

	params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for each recorder (see
NEST documentation [http://www.nest-simulator.org/quickref/#nodes]
for details).

	network (Network or subclass, optional (default: None)) – Network which population will be used to differentiate groups.

	Returns

	
	recorders (list or NodeCollection containing the recorders’ gids)

	recordables (list of the recordables’ names.)

	
nngt.simulation.plot_activity(gid_recorder=None, record=None, network=None, gids=None, axis=None, show=False, limits=None, histogram=False, title=None, fignum=None, label=None, sort=None, average=False, normalize=1.0, decimate=None, transparent=True, kernel_center=0.0, kernel_std=None, resolution=None, cut_gaussian=5.0, **kwargs)

	Plot the monitored activity.

Changed in version 1.2: Switched hist to histogram and default value to False.

Changed in version 1.0.1: Added axis parameter, restored missing fignum parameter.

	Parameters

	
	gid_recorder (tuple or list of tuples, optional (default: None)) – The gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	record (tuple or list, optional (default: None)) – List of the monitored variables for each device. If gid_recorder is
None, record can also be None and only spikes are considered.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	gids (tuple, optional (default: None)) – NEST gids of the neurons which should be monitored.

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity. This takes precedence
over fignum.

	show (bool, optional (default: False)) – Whether to show the plot right away or to wait for the next plt.show().

	histogram (bool, optional (default: False)) – Whether to display the histogram when plotting spikes rasters.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike for raster plots).

	title (str, optional (default: None)) – Title of the plot.

	fignum (int, or dict, optional (default: None)) – Plot the activity on an existing figure (from figure.number). This
parameter is ignored if axis is provided.

	label (str or list, optional (default: None)) – Add labels to the plot (one per recorder).

	sort (str or list, optional (default: None)) – Sort neurons using a topological property (“in-degree”, “out-degree”,
“total-degree” or “betweenness”), an activity-related property
(“firing_rate” or neuronal property) or a user-defined list of sorted
neuron ids. Sorting is performed by increasing value of the sort
property from bottom to top inside each group.

	normalize (float or list, optional (default: None)) – Normalize the recorded results by a given float. If a list is provided,
there should be one entry per voltmeter or multimeter in the recorders.
If the recording was done through monitor_groups, the population can
be passed to normalize the data by the nuber of nodes in each group.

	decimate (int or list of ints, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 5 will lead
to only 20% of the neurons being represented). If a list is provided,
it must have one entry per NeuralGroup in the population.

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms (for the histogram).

	kernel_std (float, optional (default: 0.5% of simulation time)) – Characteristic width of the Gaussian kernel (standard deviation) in ms
(for the histogram).

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed (for the histogram).

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	**kwargs (dict) – “color” and “alpha” values can be overriden here.

Warning

Sorting with “firing_rate” only works if NEST gids form a continuous
integer range.

	Returns

	lines (list of lists of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted, grouped by figure.

	
nngt.simulation.randomize_neural_states(network, instructions, groups=None, nodes=None, make_nest=False)

	Randomize the neural states according to the instructions.

Changed in version 0.8: Changed ids to nodes argument.

	Parameters

	
	network (Network subclass instance) – Network that will be simulated.

	instructions (dict) – Variables to initialize. Allowed keys are “V_m” and “w”. Values are
3-tuples of type ("distrib_name", double, double).

	groups (list of NeuralGroup, optional (default: None)) – If provided, only the neurons belonging to these groups will have their
properties randomized.

	nodes (array-like, optional (default: all neurons)) – NNGT ids of the neurons that will have their status randomized.

	make_nest (bool, optional (default: False)) – If True and network has not been converted to NEST, automatically
generate the network, else raises an exception.

Example

instructions = {
 "V_m": ("uniform", -80., -60.),
 "w": ("normal", 50., 5.)
}

	
nngt.simulation.raster_plot(times, senders, limits=None, title='Spike raster', histogram=False, num_bins=1000, color='b', decimate=None, axis=None, fignum=None, label=None, show=True, sort=None, sort_attribute=None, network=None, transparent=True, kernel_center=0.0, kernel_std=30.0, resolution=None, cut_gaussian=5.0, **kwargs)

	Plotting routine that constructs a raster plot along with
an optional histogram.

Changed in version 1.2: Switched hist to histogram.

Changed in version 1.0.1: Added axis parameter.

	Parameters

	
	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Spike times.

	senders (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Index for the spiking neuron for each time in times.

	limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of first and last
spike).

	title (string, optional (default: ‘Spike raster’)) – Title of the raster plot.

	histogram (bool, optional (default: True)) – Whether to plot the raster’s histogram.

	num_bins (int, optional (default: 1000)) – Number of bins for the histogram.

	color (string or float, optional (default: ‘b’)) – Color of the plot lines and markers.

	decimate (int, optional (default: None)) – Represent only a fraction of the spiking neurons; only one neuron in
decimate will be represented (e.g. setting decimate to 10 will lead
to only 10% of the neurons being represented).

	axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot the activity.

	fignum (int, optional (default: None)) – Id of another raster plot to which the new data should be added.

	label (str, optional (default: None)) – Label the current data.

	show (bool, optional (default: True)) – Whether to show the plot right away or to wait for the next plt.show().

	kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

	kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel (standard deviation) in ms.

	resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the firing rate values will be computed.
Choosing a value smaller than kernel_std is strongly advised.
If resolution is an array, it will be considered as the times were the
firing rate should be computed.

	cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be computed (for the histogram).
By default, we consider the 5-sigma range. Decreasing this value will
increase speed at the cost of lower fidelity; increasing it with
increase the fidelity at the cost of speed.

	Returns

	lines (list of matplotlib.lines.Line2D [https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]) – Lines containing the data that was plotted.

	
nngt.simulation.reproducible_weights(weights, neuron_model, di_param={}, timestep=0.05, simtime=50.0, num_bins=1000, log=False)

	Find the values of the connection weights that will give PSP responses of
min_weight and max_weight in mV.

	Parameters

	
	weights (list of floats) – Exact desired synaptic weights.

	neuron_model (string) – Name of the model used.

	di_param (dict, optional (default: {})) – Parameters of the model, default parameters if not supplied.

	timestep (float, optional (default: 0.01)) – Timestep of the simulation in ms.

	simtime (float, optional (default: 10.)) – Simulation time in ms (default: 10).

	num_bins (int, optional (default: 10000)) – Number of bins used to discretize the exact synaptic weights.

	log (bool, optional (default: False)) – Whether bins should use a logarithmic scale.

Note

If the parameters used are not the default ones, they MUST be provided,
otherwise the resulting weights will likely be WRONG.

	
nngt.simulation.save_spikes(filename, recorder=None, network=None, save_positions=True, **kwargs)

	Plot the monitored activity.

New in version 0.7.

	Parameters

	
	filename (str) – Path to the file where the activity should be saved.

	recorder (tuple or list of tuples, optional (default: None)) – The NEST gids of the recording devices. If None, then all existing
“spike_detector”s are used.

	network (Network or subclass, optional (default: None)) – Network which activity will be monitored.

	save_positions (bool, optional (default: True)) – Whether to include the position of the neurons in the file; this
requires network to be provided.

	**kwargs (see numpy.savetxt() [https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt])

	
nngt.simulation.set_minis(network, base_rate, weight, syn_type=1, nodes=None, gids=None)

	Mimick spontaneous release of neurotransmitters, called miniature PSCs or
“minis” that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs)
synapses.
These minis consists in only a fraction of the usual strength of a spike-
triggered PSC and can be modeled by a Poisson process.
This Poisson process occurs independently at every synapse of a neuron, so
a neuron receiving [image: k] inputs will be subjected to these events with
a rate [image: k*\lambda], where [image: \lambda] is the base rate.

	Parameters

	
	network (Network object) – Network on which the minis should be simulated.

	base_rate (float) – Rate for the Poisson process on one synapse ([image: \lambda]), in Hz.

	weight (float or array of size N) – Amplitude of a minitature post-synaptic event.

	syn_type (int, optional (default: 1)) – Synaptic type of the noisy connections. By default, mEPSCs are
generated, by taking into account only the excitatory degrees and
synaptic weights. To setup mIPSCs, used syn_type=-1.

	nodes (array-like (size N), optional (default: all nodes)) – NNGT ids of the neurons that should be subjected to minis.

	gids (array-like (size N), optional (default: all neurons)) – NEST gids of the neurons that should be subjected to minis.

Note

nodes and gids are not compatible, only one one the two arguments can
be used in any given call to set_minis.

	
nngt.simulation.set_noise(gids, mean, std)

	Submit neurons to a current white noise.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	mean (float) – Mean current value.

	std (float) – Standard deviation of the current

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

	
nngt.simulation.set_poisson_input(gids, rate, syn_spec=None, **kwargs)

	Submit neurons to a Poissonian rate of spikes.

Changed in version 2.0: Added kwargs.

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	rate (float) – Rate of the spike train (in Hz).

	syn_spec (dict, optional (default: static synapse with weight 1)) – Properties of the connection between the poisson_generator object
and the target neurons.

	**kwargs (dict) – Other optional parameters for the poisson_generator.

	Returns

	poisson_input (tuple) – The NEST gid of the poisson_generator.

	
nngt.simulation.set_step_currents(gids, times, currents)

	Set step-current excitations

	Parameters

	
	gids (tuple) – NEST gids of the target neurons.

	times (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the times where the current will change (by default the current
generator is initiated at I=0. for t=0.)

	currents (list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – List of the new current value after the associated time value in
times.

	Returns

	noise (tuple) – The NEST gid of the noise_generator.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nngt	

 	
 	
 nngt.analysis	

 	
 	
 nngt.core	

 	
 	
 nngt.database.db_generation	

 	
 	
 nngt.generation	

 	
 	
 nngt.geometry	

 	
 	
 nngt.lib	

 	
 	
 nngt.plot	

 	
 	
 nngt.simulation	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	Activity (class in nngt.database.db_generation)

 	activity (nngt.database.db_generation.Simulation attribute)

 	activity_id (nngt.database.db_generation.Simulation attribute)

 	activity_types() (in module nngt.simulation)

 	ActivityRecord (class in nngt.simulation)

 	add_area() (nngt.geometry.Shape method)

 	add_hole() (nngt.geometry.Shape method)

 	add_meta_group() (nngt.Structure method), [1]

 	add_nodes() (nngt.Group method), [1]

 	add_subshape() (nngt.geometry.Area method)

 	add_to_group() (nngt.NeuralPop method), [1]

 	(nngt.Structure method), [1]

 	
 	adjacency_matrix() (in module nngt.analysis)

 	(nngt.Graph method), [1]

 	all_shortest_paths() (in module nngt.analysis)

 	all_to_all() (in module nngt.generation)

 	analyze_raster() (in module nngt.simulation)

 	Animation2d (class in nngt.plot)

 	AnimationNetwork (class in nngt.plot)

 	Area (class in nngt.geometry)

 	area (nngt.geometry.Shape attribute)

 	areas (nngt.geometry.Area attribute)

 	(nngt.geometry.Shape attribute)

 	assortativity() (in module nngt.analysis)

 	average_path_length() (in module nngt.analysis)

B

 	
 	bayesian_blocks() (in module nngt.analysis)

 	betweenness() (in module nngt.analysis)

 	
 	betweenness_distrib() (in module nngt.analysis)

 	betweenness_distribution() (in module nngt.plot)

 	binning() (in module nngt.analysis)

C

 	
 	centroid (nngt.geometry.Shape attribute)

 	chord_diagram() (in module nngt.plot)

 	circular() (in module nngt.generation)

 	clear_all_edges() (nngt.Graph method)

 	closeness() (in module nngt.analysis)

 	compare_population_attributes() (in module nngt.plot)

 	completion_time (nngt.database.db_generation.Simulation attribute)

 	compressed_file (nngt.database.db_generation.NeuralNetwork attribute)

 	Computer (class in nngt.database.db_generation)

 	computer (nngt.database.db_generation.Simulation attribute)

 	computer_id (nngt.database.db_generation.Simulation attribute)

 	connect_groups() (in module nngt.generation)

 	connect_neural_groups() (in module nngt.generation)

 	connect_neural_types() (in module nngt.generation)

 	connect_nodes() (in module nngt.generation)

 	connected_components() (in module nngt.analysis)

 	Connection (class in nngt.database.db_generation)

 	
 	connections (nngt.database.db_generation.Simulation attribute)

 	(nngt.database.db_generation.Synapse attribute)

 	connections_id (nngt.database.db_generation.Simulation attribute)

 	contains_neurons() (nngt.geometry.Shape method)

 	copy() (nngt.geometry.Area method)

 	(nngt.Graph method), [1]

 	(nngt.Group method), [1]

 	(nngt.NeuralGroup method), [1]

 	(nngt.NeuralPop method), [1]

 	(nngt.Structure method), [1]

 	(nngt.geometry.Shape method)

 	cores (nngt.database.db_generation.Computer attribute)

 	correlation_to_attribute() (in module nngt.plot)

 	create_group() (nngt.NeuralPop method), [1]

 	(nngt.Structure method), [1]

 	create_meta_group() (nngt.NeuralPop method), [1]

 	(nngt.Structure method), [1]

 	culture_from_file() (in module nngt.geometry)

D

 	
 	data (nngt.simulation.ActivityRecord attribute)

 	default_areas (nngt.geometry.Shape attribute)

 	degree_distrib() (in module nngt.analysis)

 	degree_distribution() (in module nngt.plot)

 	delete_edges() (nngt.Graph method)

 	delete_nodes() (nngt.Graph method)

 	delta_distrib() (in module nngt.lib)

 	diameter() (in module nngt.analysis)

 	directed (nngt.database.db_generation.NeuralNetwork attribute)

 	
 	disk() (nngt.geometry.Shape static method)

 	distance_rule() (in module nngt.generation)

 	DoesNotExist (nngt.database.db_generation.Activity attribute)

 	(nngt.database.db_generation.Computer attribute)

 	(nngt.database.db_generation.Connection attribute)

 	(nngt.database.db_generation.NeuralNetwork attribute)

 	(nngt.database.db_generation.Neuron attribute)

 	(nngt.database.db_generation.Simulation attribute)

 	(nngt.database.db_generation.Synapse attribute)

 	draw_network() (in module nngt.plot)

E

 	
 	edge_attributes (nngt.Graph attribute), [1]

 	edge_attributes_distribution() (in module nngt.plot)

 	edge_id() (nngt.Graph method)

 	edge_nb() (nngt.Graph method)

 	edges (nngt.database.db_generation.NeuralNetwork attribute)

 	edges_array (nngt.Graph attribute)

 	
 	ellipse() (nngt.geometry.Shape static method)

 	erdos_renyi() (in module nngt.generation)

 	exc_and_inhib() (nngt.Network class method), [1]

 	(nngt.NeuralPop class method), [1]

 	excitatory (nngt.MetaNeuralGroup attribute), [1]

 	(nngt.NeuralPop attribute), [1]

F

 	
 	find_idx_nearest() (in module nngt.lib)

 	fixed_degree() (in module nngt.generation)

 	from_degree_list() (in module nngt.generation)

 	from_file() (nngt.geometry.Shape static method)

 	(nngt.Graph static method), [1]

 	from_gids() (nngt.Network class method), [1]

 	from_groups() (nngt.NeuralPop class method), [1]

 	(nngt.Structure class method), [1]

 	
 	from_library() (nngt.Graph class method), [1]

 	from_matrix() (nngt.Graph class method), [1]

 	from_network() (nngt.NeuralPop class method), [1]

 	from_polygon() (nngt.geometry.Shape static method)

 	from_shape() (nngt.geometry.Area class method)

 	from_wkt() (nngt.geometry.Shape static method)

G

 	
 	gaussian_degree() (in module nngt.generation)

 	gaussian_distrib() (in module nngt.lib)

 	generate() (in module nngt), [1]

 	get_attribute_type() (nngt.Graph method), [1]

 	get_b2() (in module nngt.analysis)

 	get_betweenness() (nngt.Graph method), [1]

 	get_config() (in module nngt), [1]

 	get_degrees() (nngt.Graph method), [1]

 	get_delays() (nngt.Graph method), [1]

 	get_density() (nngt.Graph method), [1]

 	get_edge_attributes() (nngt.Graph method), [1]

 	get_edge_types() (nngt.Graph method), [1]

 	(nngt.Network method), [1]

 	get_edges() (nngt.Graph method), [1]

 	get_firing_rate() (in module nngt.analysis)

 	get_group() (nngt.Structure method), [1]

 	get_nest_adjacency() (in module nngt.simulation)

 	get_neuron_type() (nngt.Network method), [1]

 	
 	get_node_attributes() (nngt.Graph method), [1]

 	get_nodes() (nngt.Graph method), [1]

 	get_param() (nngt.NeuralPop method), [1]

 	get_positions() (nngt.SpatialGraph method), [1]

 	get_properties() (nngt.Structure method), [1]

 	get_recording() (in module nngt.simulation)

 	get_results() (in module nngt.database)

 	get_spikes() (in module nngt.analysis)

 	get_structure_graph() (nngt.Graph method), [1]

 	get_weights() (nngt.Graph method), [1]

 	global_clustering() (in module nngt.analysis)

 	global_clustering_binary_undirected() (in module nngt.analysis)

 	Graph (class in nngt), [1]

 	graph (nngt.Graph attribute), [1]

 	graph_id (nngt.Graph attribute), [1]

 	GraphObject (in module nngt.core)

 	grnd_seed (nngt.database.db_generation.Simulation attribute)

 	Group (class in nngt), [1]

 	GroupProperty (class in nngt), [1]

H

 	
 	has_model (nngt.NeuralGroup attribute), [1]

 	
 	has_models (nngt.NeuralPop attribute), [1]

 	hive_plot() (in module nngt.plot)

I

 	
 	id (nngt.database.db_generation.Activity attribute)

 	(nngt.database.db_generation.Computer attribute)

 	(nngt.database.db_generation.Connection attribute)

 	(nngt.database.db_generation.NeuralNetwork attribute)

 	(nngt.database.db_generation.Neuron attribute)

 	(nngt.database.db_generation.Simulation attribute)

 	(nngt.database.db_generation.Synapse attribute)

 	id_from_nest_gid() (nngt.Network method), [1]

 	ids (nngt.Group attribute), [1]

 	(nngt.NeuralGroup attribute), [1]

 	(nngt.Structure attribute), [1]

 	inhibitory (nngt.MetaNeuralGroup attribute), [1]

 	(nngt.NeuralPop attribute), [1]

 	
 	int_connections (nngt.database.db_generation.Neuron attribute)

 	InvalidArgument (class in nngt.lib)

 	is_clear() (in module nngt.database)

 	is_connected() (nngt.Graph method), [1]

 	is_directed() (nngt.Graph method), [1]

 	is_integer() (in module nngt.lib)

 	is_iterable() (in module nngt.lib)

 	is_metagroup (nngt.Group attribute), [1]

 	is_network() (nngt.Graph method), [1]

 	is_spatial() (nngt.Graph method), [1]

 	is_valid (nngt.Group attribute), [1]

 	(nngt.Structure attribute), [1]

 	is_weighted() (nngt.Graph method), [1]

L

 	
 	lattice_rewire() (in module nngt.generation)

 	library_draw() (in module nngt.plot)

 	lin_correlated_distrib() (in module nngt.lib)

 	load_from_file() (in module nngt), [1]

 	local_closure() (in module nngt.analysis)

 	local_clustering() (in module nngt.analysis)

 	
 	local_clustering_binary_undirected() (in module nngt.analysis)

 	local_seeds (nngt.database.db_generation.Simulation attribute)

 	log_correlated_distrib() (in module nngt.lib)

 	log_simulation_end() (in module nngt.database)

 	log_simulation_start() (in module nngt.database)

 	lognormal_distrib() (in module nngt.lib)

M

 	
 	make_nest_network() (in module nngt.simulation)

 	make_network() (nngt.Graph static method), [1]

 	make_spatial() (nngt.Graph static method), [1]

 	meta_groups (nngt.Structure attribute), [1]

 	
 	MetaGroup (class in nngt), [1]

 	MetaNeuralGroup (class in nngt), [1]

 	migrate() (in module nngt.database.db_generation)

 	monitor_groups() (in module nngt.simulation)

 	monitor_nodes() (in module nngt.simulation)

N

 	
 	name (nngt.database.db_generation.Computer attribute)

 	(nngt.Graph attribute), [1]

 	(nngt.Group attribute), [1]

 	neighbours() (nngt.Graph method), [1]

 	nest_gids (nngt.Network attribute), [1]

 	(nngt.NeuralGroup attribute), [1]

 	(nngt.NeuralPop attribute), [1]

 	Network (class in nngt), [1]

 	network (nngt.database.db_generation.Simulation attribute)

 	network_id (nngt.database.db_generation.Simulation attribute)

 	network_type (nngt.database.db_generation.NeuralNetwork attribute)

 	NeuralGroup (class in nngt), [1]

 	NeuralNetwork (class in nngt.database.db_generation)

 	NeuralPop (class in nngt), [1]

 	Neuron (class in nngt.database.db_generation)

 	neuron_model (nngt.NeuralGroup attribute), [1]

 	neuron_param (nngt.NeuralGroup attribute), [1]

 	neuron_properties() (nngt.Network method), [1]

 	neuron_type (nngt.NeuralGroup attribute), [1]

 	new_edge() (nngt.Graph method)

 	new_edge_attribute() (nngt.Graph method), [1]

 	new_edges() (nngt.Graph method)

 	
 	new_node() (nngt.Graph method)

 	new_node_attribute() (nngt.Graph method), [1]

 	newman_watts() (in module nngt.generation)

 	nngt (module)

 	nngt.analysis (module)

 	nngt.core (module)

 	nngt.database.db_generation (module)

 	nngt.generation (module)

 	nngt.geometry (module)

 	nngt.lib (module)

 	nngt.plot (module), [1]

 	nngt.simulation (module), [1]

 	node_attributes (nngt.Graph attribute), [1]

 	node_attributes() (in module nngt.analysis)

 	node_attributes_distribution() (in module nngt.plot)

 	node_nb() (nngt.Graph method)

 	nodes (nngt.database.db_generation.NeuralNetwork attribute)

 	non_default_areas (nngt.geometry.Shape attribute)

 	nonstring_container() (in module nngt.lib)

 	num_graphs() (nngt.Graph class method), [1]

 	num_iedges() (in module nngt.analysis)

 	num_mpi_processes() (in module nngt), [1]

 	num_networks() (nngt.Network class method), [1]

O

 	
 	on_master_process() (in module nngt), [1]

 	
 	out_connections (nngt.database.db_generation.Neuron attribute)

P

 	
 	palette_continuous() (in module nngt.plot)

 	palette_discrete() (in module nngt.plot)

 	parent (nngt.geometry.Shape attribute)

 	(nngt.Group attribute), [1]

 	(nngt.Structure attribute), [1]

 	phases (nngt.simulation.ActivityRecord attribute)

 	platform (nngt.database.db_generation.Computer attribute)

 	plot_activity() (in module nngt.simulation)

 	plot_shape() (in module nngt.geometry)

 	pop_largest() (in module nngt.geometry)

 	pop_sizes (nngt.database.db_generation.Simulation attribute)

 	population (nngt.database.db_generation.Simulation attribute)

 	(nngt.Network attribute), [1]

 	
 	post (nngt.database.db_generation.Connection attribute)

 	post_id (nngt.database.db_generation.Connection attribute)

 	pre (nngt.database.db_generation.Connection attribute)

 	pre_id (nngt.database.db_generation.Connection attribute)

 	price_scale_free() (in module nngt.generation)

 	properties (nngt.geometry.Area attribute)

 	(nngt.Group attribute), [1]

 	(nngt.MetaNeuralGroup attribute), [1]

 	(nngt.NeuralGroup attribute), [1]

 	(nngt.simulation.ActivityRecord attribute)

 	python (nngt.database.db_generation.Computer attribute)

R

 	
 	ram (nngt.database.db_generation.Computer attribute)

 	random_obstacles() (nngt.geometry.Shape method)

 	random_rewire() (in module nngt.generation)

 	random_scale_free() (in module nngt.generation)

 	randomize_neural_states() (in module nngt.simulation)

 	raster (nngt.database.db_generation.Activity attribute)

 	
 	raster_plot() (in module nngt.simulation)

 	reciprocity() (in module nngt.analysis)

 	rectangle() (nngt.geometry.Shape static method)

 	reproducible_weights() (in module nngt.simulation)

 	reset() (in module nngt.database)

 	resolution (nngt.database.db_generation.Simulation attribute)

 	return_quantity (nngt.geometry.Shape attribute)

S

 	
 	save_spikes() (in module nngt.simulation)

 	save_to_file() (in module nngt), [1]

 	seed() (in module nngt), [1]

 	seed_neurons() (nngt.geometry.Shape method)

 	set_config() (in module nngt), [1]

 	set_delays() (nngt.Graph method), [1]

 	set_edge_attribute() (nngt.Graph method), [1]

 	set_minis() (in module nngt.simulation)

 	set_model() (nngt.NeuralPop method), [1]

 	set_name() (nngt.Graph method), [1]

 	set_neuron_param() (nngt.NeuralPop method), [1]

 	set_node_attribute() (nngt.Graph method), [1]

 	set_noise() (in module nngt.simulation)

 	set_parent() (nngt.geometry.Shape method)

 	set_poisson_input() (in module nngt.simulation)

 	set_positions() (nngt.SpatialGraph method), [1]

 	set_properties() (nngt.Structure method), [1]

 	set_return_units() (nngt.geometry.Shape method)

 	set_step_currents() (in module nngt.simulation)

 	set_types() (nngt.Graph method), [1]

 	(nngt.Network method), [1]

 	(nngt.SpatialNetwork method), [1]

 	set_weights() (nngt.Graph method), [1]

 	Shape (class in nngt.geometry)

 	shape (nngt.SpatialGraph attribute), [1]

 	
 	shapes_from_file() (in module nngt.geometry)

 	shortest_distance() (in module nngt.analysis)

 	shortest_path() (in module nngt.analysis)

 	simplify() (nngt.simulation.ActivityRecord method)

 	simulated_time (nngt.database.db_generation.Simulation attribute)

 	Simulation (class in nngt.database.db_generation)

 	simulations (nngt.database.db_generation.Activity attribute)

 	(nngt.database.db_generation.Computer attribute)

 	(nngt.database.db_generation.Connection attribute)

 	(nngt.database.db_generation.NeuralNetwork attribute)

 	simulator (nngt.database.db_generation.Simulation attribute)

 	size (nngt.Group attribute), [1]

 	(nngt.Structure attribute), [1]

 	small_world_propensity() (in module nngt.analysis)

 	SpatialGraph (class in nngt), [1]

 	SpatialNetwork (class in nngt), [1]

 	spectral_radius() (in module nngt.analysis)

 	start_time (nngt.database.db_generation.Simulation attribute)

 	Structure (class in nngt), [1]

 	structure (nngt.Graph attribute), [1]

 	subgraph_centrality() (in module nngt.analysis)

 	syn_spec (nngt.NeuralPop attribute), [1]

 	Synapse (class in nngt.database.db_generation)

 	synapse (nngt.database.db_generation.Connection attribute)

 	synapse_id (nngt.database.db_generation.Connection attribute)

T

 	
 	to_file() (nngt.Graph method), [1]

 	to_nest() (nngt.Network method), [1]

 	to_undirected() (nngt.Graph method)

 	total_firing_rate() (in module nngt.analysis)

 	
 	transitivity() (in module nngt.analysis)

 	triangle_count() (in module nngt.analysis)

 	triplet_count() (in module nngt.analysis)

 	type (nngt.Graph attribute), [1]

U

 	
 	uniform() (nngt.Network class method), [1]

 	(nngt.NeuralPop class method), [1]

 	
 	uniform_distrib() (in module nngt.lib)

 	unit (nngt.geometry.Shape attribute)

 	use_backend() (in module nngt), [1]

W

 	
 	watts_strogatz() (in module nngt.generation)

 	
 	weight_distribution (nngt.database.db_generation.NeuralNetwork attribute)

 	weighted (nngt.database.db_generation.NeuralNetwork attribute)

 All modules for which code is available

	nngt.analysis.activity_analysis

	nngt.analysis.bayesian_blocks

	nngt.analysis.clustering

	nngt.analysis.graph_analysis

	nngt.analysis.nx_functions

	nngt.core.graph

	nngt.core.group_structure

	nngt.core.networks

	nngt.core.neural_pop_group

	nngt.core.nx_graph

	nngt.core.spatial_graph

	nngt.database.db_generation

	nngt.database.db_main

	nngt.database.pickle_field

	nngt.generation.connectors

	nngt.generation.graph_connectivity

	nngt.generation.rewiring

	nngt.geometry.plot

	nngt.geometry.shape

	nngt.geometry.shape_io

	nngt.geometry.tools

	nngt.io.graph_loading

	nngt.io.graph_saving

	nngt.lib.errors

	nngt.lib.graph_backends

	nngt.lib.nngt_config

	nngt.lib.rng_tools

	nngt.lib.sorting

	nngt.lib.test_functions

	nngt.plot.animations

	nngt.plot.custom_plt

	nngt.plot.plt_networks

	nngt.plot.plt_properties

	nngt.simulation.nest_activity

	nngt.simulation.nest_graph

	nngt.simulation.nest_plot

	nngt.simulation.nest_utils

	peewee

	playhouse.migrate

 Source code for peewee

from bisect import bisect_left
from bisect import bisect_right
from contextlib import contextmanager
from copy import deepcopy
from functools import wraps
from inspect import isclass
import calendar
import collections
import datetime
import decimal
import hashlib
import itertools
import logging
import operator
import re
import socket
import struct
import sys
import threading
import time
import uuid
import warnings
try:
 from collections.abc import Mapping
except ImportError:
 from collections import Mapping

try:
 from pysqlite3 import dbapi2 as pysq3
except ImportError:
 try:
 from pysqlite2 import dbapi2 as pysq3
 except ImportError:
 pysq3 = None
try:
 import sqlite3
except ImportError:
 sqlite3 = pysq3
else:
 if pysq3 and pysq3.sqlite_version_info >= sqlite3.sqlite_version_info:
 sqlite3 = pysq3
try:
 from psycopg2cffi import compat
 compat.register()
except ImportError:
 pass
try:
 import psycopg2
 from psycopg2 import extensions as pg_extensions
 try:
 from psycopg2 import errors as pg_errors
 except ImportError:
 pg_errors = None
except ImportError:
 psycopg2 = pg_errors = None

mysql_passwd = False
try:
 import pymysql as mysql
except ImportError:
 try:
 import MySQLdb as mysql
 mysql_passwd = True
 except ImportError:
 mysql = None

__version__ = '3.14.1'
__all__ = [
 'AsIs',
 'AutoField',
 'BareField',
 'BigAutoField',
 'BigBitField',
 'BigIntegerField',
 'BinaryUUIDField',
 'BitField',
 'BlobField',
 'BooleanField',
 'Case',
 'Cast',
 'CharField',
 'Check',
 'chunked',
 'Column',
 'CompositeKey',
 'Context',
 'Database',
 'DatabaseError',
 'DatabaseProxy',
 'DataError',
 'DateField',
 'DateTimeField',
 'DecimalField',
 'DeferredForeignKey',
 'DeferredThroughModel',
 'DJANGO_MAP',
 'DoesNotExist',
 'DoubleField',
 'DQ',
 'EXCLUDED',
 'Field',
 'FixedCharField',
 'FloatField',
 'fn',
 'ForeignKeyField',
 'IdentityField',
 'ImproperlyConfigured',
 'Index',
 'IntegerField',
 'IntegrityError',
 'InterfaceError',
 'InternalError',
 'IPField',
 'JOIN',
 'ManyToManyField',
 'Model',
 'ModelIndex',
 'MySQLDatabase',
 'NotSupportedError',
 'OP',
 'OperationalError',
 'PostgresqlDatabase',
 'PrimaryKeyField', # XXX: Deprecated, change to AutoField.
 'prefetch',
 'ProgrammingError',
 'Proxy',
 'QualifiedNames',
 'SchemaManager',
 'SmallIntegerField',
 'Select',
 'SQL',
 'SqliteDatabase',
 'Table',
 'TextField',
 'TimeField',
 'TimestampField',
 'Tuple',
 'UUIDField',
 'Value',
 'ValuesList',
 'Window',
]

try: # Python 2.7+
 from logging import NullHandler
except ImportError:
 class NullHandler(logging.Handler):
 def emit(self, record):
 pass

logger = logging.getLogger('peewee')
logger.addHandler(NullHandler())

if sys.version_info[0] == 2:
 text_type = unicode
 bytes_type = str
 buffer_type = buffer
 izip_longest = itertools.izip_longest
 callable_ = callable
 multi_types = (list, tuple, frozenset, set)
 exec('def reraise(tp, value, tb=None): raise tp, value, tb')
 def print_(s):
 sys.stdout.write(s)
 sys.stdout.write('\n')
else:
 import builtins
 try:
 from collections.abc import Callable
 except ImportError:
 from collections import Callable
 from functools import reduce
 callable_ = lambda c: isinstance(c, Callable)
 text_type = str
 bytes_type = bytes
 buffer_type = memoryview
 basestring = str
 long = int
 multi_types = (list, tuple, frozenset, set, range)
 print_ = getattr(builtins, 'print')
 izip_longest = itertools.zip_longest
 def reraise(tp, value, tb=None):
 if value.__traceback__ is not tb:
 raise value.with_traceback(tb)
 raise value

if sqlite3:
 sqlite3.register_adapter(decimal.Decimal, str)
 sqlite3.register_adapter(datetime.date, str)
 sqlite3.register_adapter(datetime.time, str)
 __sqlite_version__ = sqlite3.sqlite_version_info
else:
 __sqlite_version__ = (0, 0, 0)

__date_parts__ = set(('year', 'month', 'day', 'hour', 'minute', 'second'))

Sqlite does not support the `date_part` SQL function, so we will define an
implementation in python.
__sqlite_datetime_formats__ = (
 '%Y-%m-%d %H:%M:%S',
 '%Y-%m-%d %H:%M:%S.%f',
 '%Y-%m-%d',
 '%H:%M:%S',
 '%H:%M:%S.%f',
 '%H:%M')

__sqlite_date_trunc__ = {
 'year': '%Y-01-01 00:00:00',
 'month': '%Y-%m-01 00:00:00',
 'day': '%Y-%m-%d 00:00:00',
 'hour': '%Y-%m-%d %H:00:00',
 'minute': '%Y-%m-%d %H:%M:00',
 'second': '%Y-%m-%d %H:%M:%S'}

__mysql_date_trunc__ = __sqlite_date_trunc__.copy()
__mysql_date_trunc__['minute'] = '%Y-%m-%d %H:%i:00'
__mysql_date_trunc__['second'] = '%Y-%m-%d %H:%i:%S'

def _sqlite_date_part(lookup_type, datetime_string):
 assert lookup_type in __date_parts__
 if not datetime_string:
 return
 dt = format_date_time(datetime_string, __sqlite_datetime_formats__)
 return getattr(dt, lookup_type)

def _sqlite_date_trunc(lookup_type, datetime_string):
 assert lookup_type in __sqlite_date_trunc__
 if not datetime_string:
 return
 dt = format_date_time(datetime_string, __sqlite_datetime_formats__)
 return dt.strftime(__sqlite_date_trunc__[lookup_type])

def __deprecated__(s):
 warnings.warn(s, DeprecationWarning)

class attrdict(dict):
 def __getattr__(self, attr):
 try:
 return self[attr]
 except KeyError:
 raise AttributeError(attr)
 def __setattr__(self, attr, value): self[attr] = value
 def __iadd__(self, rhs): self.update(rhs); return self
 def __add__(self, rhs): d = attrdict(self); d.update(rhs); return d

SENTINEL = object()

#: Operations for use in SQL expressions.
OP = attrdict(
 AND='AND',
 OR='OR',
 ADD='+',
 SUB='-',
 MUL='*',
 DIV='/',
 BIN_AND='&',
 BIN_OR='|',
 XOR='#',
 MOD='%',
 EQ='=',
 LT='<',
 LTE='<=',
 GT='>',
 GTE='>=',
 NE='!=',
 IN='IN',
 NOT_IN='NOT IN',
 IS='IS',
 IS_NOT='IS NOT',
 LIKE='LIKE',
 ILIKE='ILIKE',
 BETWEEN='BETWEEN',
 REGEXP='REGEXP',
 IREGEXP='IREGEXP',
 CONCAT='||',
 BITWISE_NEGATION='~')

To support "django-style" double-underscore filters, create a mapping between
operation name and operation code, e.g. "__eq" == OP.EQ.
DJANGO_MAP = attrdict({
 'eq': operator.eq,
 'lt': operator.lt,
 'lte': operator.le,
 'gt': operator.gt,
 'gte': operator.ge,
 'ne': operator.ne,
 'in': operator.lshift,
 'is': lambda l, r: Expression(l, OP.IS, r),
 'like': lambda l, r: Expression(l, OP.LIKE, r),
 'ilike': lambda l, r: Expression(l, OP.ILIKE, r),
 'regexp': lambda l, r: Expression(l, OP.REGEXP, r),
})

#: Mapping of field type to the data-type supported by the database. Databases
#: may override or add to this list.
FIELD = attrdict(
 AUTO='INTEGER',
 BIGAUTO='BIGINT',
 BIGINT='BIGINT',
 BLOB='BLOB',
 BOOL='SMALLINT',
 CHAR='CHAR',
 DATE='DATE',
 DATETIME='DATETIME',
 DECIMAL='DECIMAL',
 DEFAULT='',
 DOUBLE='REAL',
 FLOAT='REAL',
 INT='INTEGER',
 SMALLINT='SMALLINT',
 TEXT='TEXT',
 TIME='TIME',
 UUID='TEXT',
 UUIDB='BLOB',
 VARCHAR='VARCHAR')

#: Join helpers (for convenience) -- all join types are supported, this object
#: is just to help avoid introducing errors by using strings everywhere.
JOIN = attrdict(
 INNER='INNER JOIN',
 LEFT_OUTER='LEFT OUTER JOIN',
 RIGHT_OUTER='RIGHT OUTER JOIN',
 FULL='FULL JOIN',
 FULL_OUTER='FULL OUTER JOIN',
 CROSS='CROSS JOIN',
 NATURAL='NATURAL JOIN',
 LATERAL='LATERAL',
 LEFT_LATERAL='LEFT JOIN LATERAL')

Row representations.
ROW = attrdict(
 TUPLE=1,
 DICT=2,
 NAMED_TUPLE=3,
 CONSTRUCTOR=4,
 MODEL=5)

SCOPE_NORMAL = 1
SCOPE_SOURCE = 2
SCOPE_VALUES = 4
SCOPE_CTE = 8
SCOPE_COLUMN = 16

Rules for parentheses around subqueries in compound select.
CSQ_PARENTHESES_NEVER = 0
CSQ_PARENTHESES_ALWAYS = 1
CSQ_PARENTHESES_UNNESTED = 2

Regular expressions used to convert class names to snake-case table names.
First regex handles acronym followed by word or initial lower-word followed
by a capitalized word. e.g. APIResponse -> API_Response / fooBar -> foo_Bar.
Second regex handles the normal case of two title-cased words.
SNAKE_CASE_STEP1 = re.compile('(.)_*([A-Z][a-z]+)')
SNAKE_CASE_STEP2 = re.compile('([a-z0-9])_*([A-Z])')

Helper functions that are used in various parts of the codebase.
MODEL_BASE = '_metaclass_helper_'

def with_metaclass(meta, base=object):
 return meta(MODEL_BASE, (base,), {})

def merge_dict(source, overrides):
 merged = source.copy()
 if overrides:
 merged.update(overrides)
 return merged

def quote(path, quote_chars):
 if len(path) == 1:
 return path[0].join(quote_chars)
 return '.'.join([part.join(quote_chars) for part in path])

is_model = lambda o: isclass(o) and issubclass(o, Model)

def ensure_tuple(value):
 if value is not None:
 return value if isinstance(value, (list, tuple)) else (value,)

def ensure_entity(value):
 if value is not None:
 return value if isinstance(value, Node) else Entity(value)

def make_snake_case(s):
 first = SNAKE_CASE_STEP1.sub(r'\1_\2', s)
 return SNAKE_CASE_STEP2.sub(r'\1_\2', first).lower()

def chunked(it, n):
 marker = object()
 for group in (list(g) for g in izip_longest(*[iter(it)] * n,
 fillvalue=marker)):
 if group[-1] is marker:
 del group[group.index(marker):]
 yield group

class _callable_context_manager(object):
 def __call__(self, fn):
 @wraps(fn)
 def inner(*args, **kwargs):
 with self:
 return fn(*args, **kwargs)
 return inner

class Proxy(object):
 """
 Create a proxy or placeholder for another object.
 """
 __slots__ = ('obj', '_callbacks')

 def __init__(self):
 self._callbacks = []
 self.initialize(None)

 def initialize(self, obj):
 self.obj = obj
 for callback in self._callbacks:
 callback(obj)

 def attach_callback(self, callback):
 self._callbacks.append(callback)
 return callback

 def passthrough(method):
 def inner(self, *args, **kwargs):
 if self.obj is None:
 raise AttributeError('Cannot use uninitialized Proxy.')
 return getattr(self.obj, method)(*args, **kwargs)
 return inner

 # Allow proxy to be used as a context-manager.
 __enter__ = passthrough('__enter__')
 __exit__ = passthrough('__exit__')

 def __getattr__(self, attr):
 if self.obj is None:
 raise AttributeError('Cannot use uninitialized Proxy.')
 return getattr(self.obj, attr)

 def __setattr__(self, attr, value):
 if attr not in self.__slots__:
 raise AttributeError('Cannot set attribute on proxy.')
 return super(Proxy, self).__setattr__(attr, value)

class DatabaseProxy(Proxy):
 """
 Proxy implementation specifically for proxying `Database` objects.
 """
 def connection_context(self):
 return ConnectionContext(self)
 def atomic(self, *args, **kwargs):
 return _atomic(self, *args, **kwargs)
 def manual_commit(self):
 return _manual(self)
 def transaction(self, *args, **kwargs):
 return _transaction(self, *args, **kwargs)
 def savepoint(self):
 return _savepoint(self)

class ModelDescriptor(object): pass

SQL Generation.

class AliasManager(object):
 __slots__ = ('_counter', '_current_index', '_mapping')

 def __init__(self):
 # A list of dictionaries containing mappings at various depths.
 self._counter = 0
 self._current_index = 0
 self._mapping = []
 self.push()

 @property
 def mapping(self):
 return self._mapping[self._current_index - 1]

 def add(self, source):
 if source not in self.mapping:
 self._counter += 1
 self[source] = 't%d' % self._counter
 return self.mapping[source]

 def get(self, source, any_depth=False):
 if any_depth:
 for idx in reversed(range(self._current_index)):
 if source in self._mapping[idx]:
 return self._mapping[idx][source]
 return self.add(source)

 def __getitem__(self, source):
 return self.get(source)

 def __setitem__(self, source, alias):
 self.mapping[source] = alias

 def push(self):
 self._current_index += 1
 if self._current_index > len(self._mapping):
 self._mapping.append({})

 def pop(self):
 if self._current_index == 1:
 raise ValueError('Cannot pop() from empty alias manager.')
 self._current_index -= 1

class State(collections.namedtuple('_State', ('scope', 'parentheses',
 'settings'))):
 def __new__(cls, scope=SCOPE_NORMAL, parentheses=False, **kwargs):
 return super(State, cls).__new__(cls, scope, parentheses, kwargs)

 def __call__(self, scope=None, parentheses=None, **kwargs):
 # Scope and settings are "inherited" (parentheses is not, however).
 scope = self.scope if scope is None else scope

 # Try to avoid unnecessary dict copying.
 if kwargs and self.settings:
 settings = self.settings.copy() # Copy original settings dict.
 settings.update(kwargs) # Update copy with overrides.
 elif kwargs:
 settings = kwargs
 else:
 settings = self.settings
 return State(scope, parentheses, **settings)

 def __getattr__(self, attr_name):
 return self.settings.get(attr_name)

def __scope_context__(scope):
 @contextmanager
 def inner(self, **kwargs):
 with self(scope=scope, **kwargs):
 yield self
 return inner

class Context(object):
 __slots__ = ('stack', '_sql', '_values', 'alias_manager', 'state')

 def __init__(self, **settings):
 self.stack = []
 self._sql = []
 self._values = []
 self.alias_manager = AliasManager()
 self.state = State(**settings)

 def as_new(self):
 return Context(**self.state.settings)

 def column_sort_key(self, item):
 return item[0].get_sort_key(self)

 @property
 def scope(self):
 return self.state.scope

 @property
 def parentheses(self):
 return self.state.parentheses

 @property
 def subquery(self):
 return self.state.subquery

 def __call__(self, **overrides):
 if overrides and overrides.get('scope') == self.scope:
 del overrides['scope']

 self.stack.append(self.state)
 self.state = self.state(**overrides)
 return self

 scope_normal = __scope_context__(SCOPE_NORMAL)
 scope_source = __scope_context__(SCOPE_SOURCE)
 scope_values = __scope_context__(SCOPE_VALUES)
 scope_cte = __scope_context__(SCOPE_CTE)
 scope_column = __scope_context__(SCOPE_COLUMN)

 def __enter__(self):
 if self.parentheses:
 self.literal('(')
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 if self.parentheses:
 self.literal(')')
 self.state = self.stack.pop()

 @contextmanager
 def push_alias(self):
 self.alias_manager.push()
 yield
 self.alias_manager.pop()

 def sql(self, obj):
 if isinstance(obj, (Node, Context)):
 return obj.__sql__(self)
 elif is_model(obj):
 return obj._meta.table.__sql__(self)
 else:
 return self.sql(Value(obj))

 def literal(self, keyword):
 self._sql.append(keyword)
 return self

 def value(self, value, converter=None, add_param=True):
 if converter:
 value = converter(value)
 elif converter is None and self.state.converter:
 # Explicitly check for None so that "False" can be used to signify
 # that no conversion should be applied.
 value = self.state.converter(value)

 if isinstance(value, Node):
 with self(converter=None):
 return self.sql(value)
 elif is_model(value):
 # Under certain circumstances, we could end-up treating a model-
 # class itself as a value. This check ensures that we drop the
 # table alias into the query instead of trying to parameterize a
 # model (for instance, passing a model as a function argument).
 with self.scope_column():
 return self.sql(value)

 self._values.append(value)
 return self.literal(self.state.param or '?') if add_param else self

 def __sql__(self, ctx):
 ctx._sql.extend(self._sql)
 ctx._values.extend(self._values)
 return ctx

 def parse(self, node):
 return self.sql(node).query()

 def query(self):
 return ''.join(self._sql), self._values

def query_to_string(query):
 # NOTE: this function is not exported by default as it might be misused --
 # and this misuse could lead to sql injection vulnerabilities. This
 # function is intended for debugging or logging purposes ONLY.
 db = getattr(query, '_database', None)
 if db is not None:
 ctx = db.get_sql_context()
 else:
 ctx = Context()

 sql, params = ctx.sql(query).query()
 if not params:
 return sql

 param = ctx.state.param or '?'
 if param == '?':
 sql = sql.replace('?', '%s')

 return sql % tuple(map(_query_val_transform, params))

def _query_val_transform(v):
 # Interpolate parameters.
 if isinstance(v, (text_type, datetime.datetime, datetime.date,
 datetime.time)):
 v = "'%s'" % v
 elif isinstance(v, bytes_type):
 try:
 v = v.decode('utf8')
 except UnicodeDecodeError:
 v = v.decode('raw_unicode_escape')
 v = "'%s'" % v
 elif isinstance(v, int):
 v = '%s' % int(v) # Also handles booleans -> 1 or 0.
 elif v is None:
 v = 'NULL'
 else:
 v = str(v)
 return v

AST.

class Node(object):
 _coerce = True

 def clone(self):
 obj = self.__class__.__new__(self.__class__)
 obj.__dict__ = self.__dict__.copy()
 return obj

 def __sql__(self, ctx):
 raise NotImplementedError

 @staticmethod
 def copy(method):
 def inner(self, *args, **kwargs):
 clone = self.clone()
 method(clone, *args, **kwargs)
 return clone
 return inner

 def coerce(self, _coerce=True):
 if _coerce != self._coerce:
 clone = self.clone()
 clone._coerce = _coerce
 return clone
 return self

 def is_alias(self):
 return False

 def unwrap(self):
 return self

class ColumnFactory(object):
 __slots__ = ('node',)

 def __init__(self, node):
 self.node = node

 def __getattr__(self, attr):
 return Column(self.node, attr)

class _DynamicColumn(object):
 __slots__ = ()

 def __get__(self, instance, instance_type=None):
 if instance is not None:
 return ColumnFactory(instance) # Implements __getattr__().
 return self

class _ExplicitColumn(object):
 __slots__ = ()

 def __get__(self, instance, instance_type=None):
 if instance is not None:
 raise AttributeError(
 '%s specifies columns explicitly, and does not support '
 'dynamic column lookups.' % instance)
 return self

class Source(Node):
 c = _DynamicColumn()

 def __init__(self, alias=None):
 super(Source, self).__init__()
 self._alias = alias

 @Node.copy
 def alias(self, name):
 self._alias = name

 def select(self, *columns):
 if not columns:
 columns = (SQL('*'),)
 return Select((self,), columns)

 def join(self, dest, join_type=JOIN.INNER, on=None):
 return Join(self, dest, join_type, on)

 def left_outer_join(self, dest, on=None):
 return Join(self, dest, JOIN.LEFT_OUTER, on)

 def cte(self, name, recursive=False, columns=None, materialized=None):
 return CTE(name, self, recursive=recursive, columns=columns,
 materialized=materialized)

 def get_sort_key(self, ctx):
 if self._alias:
 return (self._alias,)
 return (ctx.alias_manager[self],)

 def apply_alias(self, ctx):
 # If we are defining the source, include the "AS alias" declaration. An
 # alias is created for the source if one is not already defined.
 if ctx.scope == SCOPE_SOURCE:
 if self._alias:
 ctx.alias_manager[self] = self._alias
 ctx.literal(' AS ').sql(Entity(ctx.alias_manager[self]))
 return ctx

 def apply_column(self, ctx):
 if self._alias:
 ctx.alias_manager[self] = self._alias
 return ctx.sql(Entity(ctx.alias_manager[self]))

class _HashableSource(object):
 def __init__(self, *args, **kwargs):
 super(_HashableSource, self).__init__(*args, **kwargs)
 self._update_hash()

 @Node.copy
 def alias(self, name):
 self._alias = name
 self._update_hash()

 def _update_hash(self):
 self._hash = self._get_hash()

 def _get_hash(self):
 return hash((self.__class__, self._path, self._alias))

 def __hash__(self):
 return self._hash

 def __eq__(self, other):
 if isinstance(other, _HashableSource):
 return self._hash == other._hash
 return Expression(self, OP.EQ, other)

 def __ne__(self, other):
 if isinstance(other, _HashableSource):
 return self._hash != other._hash
 return Expression(self, OP.NE, other)

 def _e(op):
 def inner(self, rhs):
 return Expression(self, op, rhs)
 return inner
 __lt__ = _e(OP.LT)
 __le__ = _e(OP.LTE)
 __gt__ = _e(OP.GT)
 __ge__ = _e(OP.GTE)

def __bind_database__(meth):
 @wraps(meth)
 def inner(self, *args, **kwargs):
 result = meth(self, *args, **kwargs)
 if self._database:
 return result.bind(self._database)
 return result
 return inner

def __join__(join_type=JOIN.INNER, inverted=False):
 def method(self, other):
 if inverted:
 self, other = other, self
 return Join(self, other, join_type=join_type)
 return method

class BaseTable(Source):
 __and__ = __join__(JOIN.INNER)
 __add__ = __join__(JOIN.LEFT_OUTER)
 __sub__ = __join__(JOIN.RIGHT_OUTER)
 __or__ = __join__(JOIN.FULL_OUTER)
 __mul__ = __join__(JOIN.CROSS)
 __rand__ = __join__(JOIN.INNER, inverted=True)
 __radd__ = __join__(JOIN.LEFT_OUTER, inverted=True)
 __rsub__ = __join__(JOIN.RIGHT_OUTER, inverted=True)
 __ror__ = __join__(JOIN.FULL_OUTER, inverted=True)
 __rmul__ = __join__(JOIN.CROSS, inverted=True)

class _BoundTableContext(_callable_context_manager):
 def __init__(self, table, database):
 self.table = table
 self.database = database

 def __enter__(self):
 self._orig_database = self.table._database
 self.table.bind(self.database)
 if self.table._model is not None:
 self.table._model.bind(self.database)
 return self.table

 def __exit__(self, exc_type, exc_val, exc_tb):
 self.table.bind(self._orig_database)
 if self.table._model is not None:
 self.table._model.bind(self._orig_database)

class Table(_HashableSource, BaseTable):
 def __init__(self, name, columns=None, primary_key=None, schema=None,
 alias=None, _model=None, _database=None):
 self.__name__ = name
 self._columns = columns
 self._primary_key = primary_key
 self._schema = schema
 self._path = (schema, name) if schema else (name,)
 self._model = _model
 self._database = _database
 super(Table, self).__init__(alias=alias)

 # Allow tables to restrict what columns are available.
 if columns is not None:
 self.c = _ExplicitColumn()
 for column in columns:
 setattr(self, column, Column(self, column))

 if primary_key:
 col_src = self if self._columns else self.c
 self.primary_key = getattr(col_src, primary_key)
 else:
 self.primary_key = None

 def clone(self):
 # Ensure a deep copy of the column instances.
 return Table(
 self.__name__,
 columns=self._columns,
 primary_key=self._primary_key,
 schema=self._schema,
 alias=self._alias,
 _model=self._model,
 _database=self._database)

 def bind(self, database=None):
 self._database = database
 return self

 def bind_ctx(self, database=None):
 return _BoundTableContext(self, database)

 def _get_hash(self):
 return hash((self.__class__, self._path, self._alias, self._model))

 @__bind_database__
 def select(self, *columns):
 if not columns and self._columns:
 columns = [Column(self, column) for column in self._columns]
 return Select((self,), columns)

 @__bind_database__
 def insert(self, insert=None, columns=None, **kwargs):
 if kwargs:
 insert = {} if insert is None else insert
 src = self if self._columns else self.c
 for key, value in kwargs.items():
 insert[getattr(src, key)] = value
 return Insert(self, insert=insert, columns=columns)

 @__bind_database__
 def replace(self, insert=None, columns=None, **kwargs):
 return (self
 .insert(insert=insert, columns=columns)
 .on_conflict('REPLACE'))

 @__bind_database__
 def update(self, update=None, **kwargs):
 if kwargs:
 update = {} if update is None else update
 for key, value in kwargs.items():
 src = self if self._columns else self.c
 update[getattr(src, key)] = value
 return Update(self, update=update)

 @__bind_database__
 def delete(self):
 return Delete(self)

 def __sql__(self, ctx):
 if ctx.scope == SCOPE_VALUES:
 # Return the quoted table name.
 return ctx.sql(Entity(*self._path))

 if self._alias:
 ctx.alias_manager[self] = self._alias

 if ctx.scope == SCOPE_SOURCE:
 # Define the table and its alias.
 return self.apply_alias(ctx.sql(Entity(*self._path)))
 else:
 # Refer to the table using the alias.
 return self.apply_column(ctx)

class Join(BaseTable):
 def __init__(self, lhs, rhs, join_type=JOIN.INNER, on=None, alias=None):
 super(Join, self).__init__(alias=alias)
 self.lhs = lhs
 self.rhs = rhs
 self.join_type = join_type
 self._on = on

 def on(self, predicate):
 self._on = predicate
 return self

 def __sql__(self, ctx):
 (ctx
 .sql(self.lhs)
 .literal(' %s ' % self.join_type)
 .sql(self.rhs))
 if self._on is not None:
 ctx.literal(' ON ').sql(self._on)
 return ctx

class ValuesList(_HashableSource, BaseTable):
 def __init__(self, values, columns=None, alias=None):
 self._values = values
 self._columns = columns
 super(ValuesList, self).__init__(alias=alias)

 def _get_hash(self):
 return hash((self.__class__, id(self._values), self._alias))

 @Node.copy
 def columns(self, *names):
 self._columns = names

 def __sql__(self, ctx):
 if self._alias:
 ctx.alias_manager[self] = self._alias

 if ctx.scope == SCOPE_SOURCE or ctx.scope == SCOPE_NORMAL:
 with ctx(parentheses=not ctx.parentheses):
 ctx = (ctx
 .literal('VALUES ')
 .sql(CommaNodeList([
 EnclosedNodeList(row) for row in self._values])))

 if ctx.scope == SCOPE_SOURCE:
 ctx.literal(' AS ').sql(Entity(ctx.alias_manager[self]))
 if self._columns:
 entities = [Entity(c) for c in self._columns]
 ctx.sql(EnclosedNodeList(entities))
 else:
 ctx.sql(Entity(ctx.alias_manager[self]))

 return ctx

class CTE(_HashableSource, Source):
 def __init__(self, name, query, recursive=False, columns=None,
 materialized=None):
 self._alias = name
 self._query = query
 self._recursive = recursive
 self._materialized = materialized
 if columns is not None:
 columns = [Entity(c) if isinstance(c, basestring) else c
 for c in columns]
 self._columns = columns
 query._cte_list = ()
 super(CTE, self).__init__(alias=name)

 def select_from(self, *columns):
 if not columns:
 raise ValueError('select_from() must specify one or more columns '
 'from the CTE to select.')

 query = (Select((self,), columns)
 .with_cte(self)
 .bind(self._query._database))
 try:
 query = query.objects(self._query.model)
 except AttributeError:
 pass
 return query

 def _get_hash(self):
 return hash((self.__class__, self._alias, id(self._query)))

 def union_all(self, rhs):
 clone = self._query.clone()
 return CTE(self._alias, clone + rhs, self._recursive, self._columns)
 __add__ = union_all

 def union(self, rhs):
 clone = self._query.clone()
 return CTE(self._alias, clone | rhs, self._recursive, self._columns)
 __or__ = union

 def __sql__(self, ctx):
 if ctx.scope != SCOPE_CTE:
 return ctx.sql(Entity(self._alias))

 with ctx.push_alias():
 ctx.alias_manager[self] = self._alias
 ctx.sql(Entity(self._alias))

 if self._columns:
 ctx.literal(' ').sql(EnclosedNodeList(self._columns))
 ctx.literal(' AS ')

 if self._materialized:
 ctx.literal('MATERIALIZED ')
 elif self._materialized is False:
 ctx.literal('NOT MATERIALIZED ')

 with ctx.scope_normal(parentheses=True):
 ctx.sql(self._query)
 return ctx

class ColumnBase(Node):
 _converter = None

 @Node.copy
 def converter(self, converter=None):
 self._converter = converter

 def alias(self, alias):
 if alias:
 return Alias(self, alias)
 return self

 def unalias(self):
 return self

 def cast(self, as_type):
 return Cast(self, as_type)

 def asc(self, collation=None, nulls=None):
 return Asc(self, collation=collation, nulls=nulls)
 __pos__ = asc

 def desc(self, collation=None, nulls=None):
 return Desc(self, collation=collation, nulls=nulls)
 __neg__ = desc

 def __invert__(self):
 return Negated(self)

 def _e(op, inv=False):
 """
 Lightweight factory which returns a method that builds an Expression
 consisting of the left-hand and right-hand operands, using `op`.
 """
 def inner(self, rhs):
 if inv:
 return Expression(rhs, op, self)
 return Expression(self, op, rhs)
 return inner
 __and__ = _e(OP.AND)
 __or__ = _e(OP.OR)

 __add__ = _e(OP.ADD)
 __sub__ = _e(OP.SUB)
 __mul__ = _e(OP.MUL)
 __div__ = __truediv__ = _e(OP.DIV)
 __xor__ = _e(OP.XOR)
 __radd__ = _e(OP.ADD, inv=True)
 __rsub__ = _e(OP.SUB, inv=True)
 __rmul__ = _e(OP.MUL, inv=True)
 __rdiv__ = __rtruediv__ = _e(OP.DIV, inv=True)
 __rand__ = _e(OP.AND, inv=True)
 __ror__ = _e(OP.OR, inv=True)
 __rxor__ = _e(OP.XOR, inv=True)

 def __eq__(self, rhs):
 op = OP.IS if rhs is None else OP.EQ
 return Expression(self, op, rhs)
 def __ne__(self, rhs):
 op = OP.IS_NOT if rhs is None else OP.NE
 return Expression(self, op, rhs)

 __lt__ = _e(OP.LT)
 __le__ = _e(OP.LTE)
 __gt__ = _e(OP.GT)
 __ge__ = _e(OP.GTE)
 __lshift__ = _e(OP.IN)
 __rshift__ = _e(OP.IS)
 __mod__ = _e(OP.LIKE)
 __pow__ = _e(OP.ILIKE)

 bin_and = _e(OP.BIN_AND)
 bin_or = _e(OP.BIN_OR)
 in_ = _e(OP.IN)
 not_in = _e(OP.NOT_IN)
 regexp = _e(OP.REGEXP)

 # Special expressions.
 def is_null(self, is_null=True):
 op = OP.IS if is_null else OP.IS_NOT
 return Expression(self, op, None)

 def _escape_like_expr(self, s, template):
 if s.find('_') >= 0 or s.find('%') >= 0 or s.find('\\') >= 0:
 s = s.replace('\\', '\\\\').replace('_', '_').replace('%', '\\%')
 return NodeList((template % s, SQL('ESCAPE'), '\\'))
 return template % s
 def contains(self, rhs):
 if isinstance(rhs, Node):
 rhs = Expression('%', OP.CONCAT,
 Expression(rhs, OP.CONCAT, '%'))
 else:
 rhs = self._escape_like_expr(rhs, '%%%s%%')
 return Expression(self, OP.ILIKE, rhs)
 def startswith(self, rhs):
 if isinstance(rhs, Node):
 rhs = Expression(rhs, OP.CONCAT, '%')
 else:
 rhs = self._escape_like_expr(rhs, '%s%%')
 return Expression(self, OP.ILIKE, rhs)
 def endswith(self, rhs):
 if isinstance(rhs, Node):
 rhs = Expression('%', OP.CONCAT, rhs)
 else:
 rhs = self._escape_like_expr(rhs, '%%%s')
 return Expression(self, OP.ILIKE, rhs)
 def between(self, lo, hi):
 return Expression(self, OP.BETWEEN, NodeList((lo, SQL('AND'), hi)))
 def concat(self, rhs):
 return StringExpression(self, OP.CONCAT, rhs)
 def regexp(self, rhs):
 return Expression(self, OP.REGEXP, rhs)
 def iregexp(self, rhs):
 return Expression(self, OP.IREGEXP, rhs)
 def __getitem__(self, item):
 if isinstance(item, slice):
 if item.start is None or item.stop is None:
 raise ValueError('BETWEEN range must have both a start- and '
 'end-point.')
 return self.between(item.start, item.stop)
 return self == item

 def distinct(self):
 return NodeList((SQL('DISTINCT'), self))

 def collate(self, collation):
 return NodeList((self, SQL('COLLATE %s' % collation)))

 def get_sort_key(self, ctx):
 return ()

class Column(ColumnBase):
 def __init__(self, source, name):
 self.source = source
 self.name = name

 def get_sort_key(self, ctx):
 if ctx.scope == SCOPE_VALUES:
 return (self.name,)
 else:
 return self.source.get_sort_key(ctx) + (self.name,)

 def __hash__(self):
 return hash((self.source, self.name))

 def __sql__(self, ctx):
 if ctx.scope == SCOPE_VALUES:
 return ctx.sql(Entity(self.name))
 else:
 with ctx.scope_column():
 return ctx.sql(self.source).literal('.').sql(Entity(self.name))

class WrappedNode(ColumnBase):
 def __init__(self, node):
 self.node = node
 self._coerce = getattr(node, '_coerce', True)
 self._converter = getattr(node, '_converter', None)

 def is_alias(self):
 return self.node.is_alias()

 def unwrap(self):
 return self.node.unwrap()

class EntityFactory(object):
 __slots__ = ('node',)
 def __init__(self, node):
 self.node = node
 def __getattr__(self, attr):
 return Entity(self.node, attr)

class _DynamicEntity(object):
 __slots__ = ()
 def __get__(self, instance, instance_type=None):
 if instance is not None:
 return EntityFactory(instance._alias) # Implements __getattr__().
 return self

class Alias(WrappedNode):
 c = _DynamicEntity()

 def __init__(self, node, alias):
 super(Alias, self).__init__(node)
 self._alias = alias

 def __hash__(self):
 return hash(self._alias)

 def alias(self, alias=None):
 if alias is None:
 return self.node
 else:
 return Alias(self.node, alias)

 def unalias(self):
 return self.node

 def is_alias(self):
 return True

 def __sql__(self, ctx):
 if ctx.scope == SCOPE_SOURCE:
 return (ctx
 .sql(self.node)
 .literal(' AS ')
 .sql(Entity(self._alias)))
 else:
 return ctx.sql(Entity(self._alias))

class Negated(WrappedNode):
 def __invert__(self):
 return self.node

 def __sql__(self, ctx):
 return ctx.literal('NOT ').sql(self.node)

class BitwiseMixin(object):
 def __and__(self, other):
 return self.bin_and(other)

 def __or__(self, other):
 return self.bin_or(other)

 def __sub__(self, other):
 return self.bin_and(other.bin_negated())

 def __invert__(self):
 return BitwiseNegated(self)

class BitwiseNegated(BitwiseMixin, WrappedNode):
 def __invert__(self):
 return self.node

 def __sql__(self, ctx):
 if ctx.state.operations:
 op_sql = ctx.state.operations.get(self.op, self.op)
 else:
 op_sql = self.op
 return ctx.literal(op_sql).sql(self.node)

class Value(ColumnBase):
 def __init__(self, value, converter=None, unpack=True):
 self.value = value
 self.converter = converter
 self.multi = unpack and isinstance(self.value, multi_types)
 if self.multi:
 self.values = []
 for item in self.value:
 if isinstance(item, Node):
 self.values.append(item)
 else:
 self.values.append(Value(item, self.converter))

 def __sql__(self, ctx):
 if self.multi:
 # For multi-part values (e.g. lists of IDs).
 return ctx.sql(EnclosedNodeList(self.values))

 return ctx.value(self.value, self.converter)

def AsIs(value):
 return Value(value, unpack=False)

class Cast(WrappedNode):
 def __init__(self, node, cast):
 super(Cast, self).__init__(node)
 self._cast = cast
 self._coerce = False

 def __sql__(self, ctx):
 return (ctx
 .literal('CAST(')
 .sql(self.node)
 .literal(' AS %s)' % self._cast))

class Ordering(WrappedNode):
 def __init__(self, node, direction, collation=None, nulls=None):
 super(Ordering, self).__init__(node)
 self.direction = direction
 self.collation = collation
 self.nulls = nulls
 if nulls and nulls.lower() not in ('first', 'last'):
 raise ValueError('Ordering nulls= parameter must be "first" or '
 '"last", got: %s' % nulls)

 def collate(self, collation=None):
 return Ordering(self.node, self.direction, collation)

 def _null_ordering_case(self, nulls):
 if nulls.lower() == 'last':
 ifnull, notnull = 1, 0
 elif nulls.lower() == 'first':
 ifnull, notnull = 0, 1
 else:
 raise ValueError('unsupported value for nulls= ordering.')
 return Case(None, ((self.node.is_null(), ifnull),), notnull)

 def __sql__(self, ctx):
 if self.nulls and not ctx.state.nulls_ordering:
 ctx.sql(self._null_ordering_case(self.nulls)).literal(', ')

 ctx.sql(self.node).literal(' %s' % self.direction)
 if self.collation:
 ctx.literal(' COLLATE %s' % self.collation)
 if self.nulls and ctx.state.nulls_ordering:
 ctx.literal(' NULLS %s' % self.nulls)
 return ctx

def Asc(node, collation=None, nulls=None):
 return Ordering(node, 'ASC', collation, nulls)

def Desc(node, collation=None, nulls=None):
 return Ordering(node, 'DESC', collation, nulls)

class Expression(ColumnBase):
 def __init__(self, lhs, op, rhs, flat=False):
 self.lhs = lhs
 self.op = op
 self.rhs = rhs
 self.flat = flat

 def __sql__(self, ctx):
 overrides = {'parentheses': not self.flat, 'in_expr': True}

 # First attempt to unwrap the node on the left-hand-side, so that we
 # can get at the underlying Field if one is present.
 node = raw_node = self.lhs
 if isinstance(raw_node, WrappedNode):
 node = raw_node.unwrap()

 # Set up the appropriate converter if we have a field on the left side.
 if isinstance(node, Field) and raw_node._coerce:
 overrides['converter'] = node.db_value
 else:
 overrides['converter'] = None

 if ctx.state.operations:
 op_sql = ctx.state.operations.get(self.op, self.op)
 else:
 op_sql = self.op

 with ctx(**overrides):
 # Postgresql reports an error for IN/NOT IN (), so convert to
 # the equivalent boolean expression.
 op_in = self.op == OP.IN or self.op == OP.NOT_IN
 if op_in and ctx.as_new().parse(self.rhs)[0] == '()':
 return ctx.literal('0 = 1' if self.op == OP.IN else '1 = 1')

 return (ctx
 .sql(self.lhs)
 .literal(' %s ' % op_sql)
 .sql(self.rhs))

class StringExpression(Expression):
 def __add__(self, rhs):
 return self.concat(rhs)
 def __radd__(self, lhs):
 return StringExpression(lhs, OP.CONCAT, self)

class Entity(ColumnBase):
 def __init__(self, *path):
 self._path = [part.replace('"', '""') for part in path if part]

 def __getattr__(self, attr):
 return Entity(*self._path + [attr])

 def get_sort_key(self, ctx):
 return tuple(self._path)

 def __hash__(self):
 return hash((self.__class__.__name__, tuple(self._path)))

 def __sql__(self, ctx):
 return ctx.literal(quote(self._path, ctx.state.quote or '""'))

class SQL(ColumnBase):
 def __init__(self, sql, params=None):
 self.sql = sql
 self.params = params

 def __sql__(self, ctx):
 ctx.literal(self.sql)
 if self.params:
 for param in self.params:
 ctx.value(param, False, add_param=False)
 return ctx

def Check(constraint):
 return SQL('CHECK (%s)' % constraint)

class Function(ColumnBase):
 def __init__(self, name, arguments, coerce=True, python_value=None):
 self.name = name
 self.arguments = arguments
 self._filter = None
 self._order_by = None
 self._python_value = python_value
 if name and name.lower() in ('sum', 'count', 'cast'):
 self._coerce = False
 else:
 self._coerce = coerce

 def __getattr__(self, attr):
 def decorator(*args, **kwargs):
 return Function(attr, args, **kwargs)
 return decorator

 @Node.copy
 def filter(self, where=None):
 self._filter = where

 @Node.copy
 def order_by(self, *ordering):
 self._order_by = ordering

 @Node.copy
 def python_value(self, func=None):
 self._python_value = func

 def over(self, partition_by=None, order_by=None, start=None, end=None,
 frame_type=None, window=None, exclude=None):
 if isinstance(partition_by, Window) and window is None:
 window = partition_by

 if window is not None:
 node = WindowAlias(window)
 else:
 node = Window(partition_by=partition_by, order_by=order_by,
 start=start, end=end, frame_type=frame_type,
 exclude=exclude, _inline=True)
 return NodeList((self, SQL('OVER'), node))

 def __sql__(self, ctx):
 ctx.literal(self.name)
 if not len(self.arguments):
 ctx.literal('()')
 else:
 args = self.arguments

 # If this is an ordered aggregate, then we will modify the last
 # argument to append the ORDER BY ... clause. We do this to avoid
 # double-wrapping any expression args in parentheses, as NodeList
 # has a special check (hack) in place to work around this.
 if self._order_by:
 args = list(args)
 args[-1] = NodeList((args[-1], SQL('ORDER BY'),
 CommaNodeList(self._order_by)))

 with ctx(in_function=True, function_arg_count=len(self.arguments)):
 ctx.sql(EnclosedNodeList([
 (arg if isinstance(arg, Node) else Value(arg, False))
 for arg in args]))

 if self._filter:
 ctx.literal(' FILTER (WHERE ').sql(self._filter).literal(')')
 return ctx

fn = Function(None, None)

class Window(Node):
 # Frame start/end and frame exclusion.
 CURRENT_ROW = SQL('CURRENT ROW')
 GROUP = SQL('GROUP')
 TIES = SQL('TIES')
 NO_OTHERS = SQL('NO OTHERS')

 # Frame types.
 GROUPS = 'GROUPS'
 RANGE = 'RANGE'
 ROWS = 'ROWS'

 def __init__(self, partition_by=None, order_by=None, start=None, end=None,
 frame_type=None, extends=None, exclude=None, alias=None,
 _inline=False):
 super(Window, self).__init__()
 if start is not None and not isinstance(start, SQL):
 start = SQL(start)
 if end is not None and not isinstance(end, SQL):
 end = SQL(end)

 self.partition_by = ensure_tuple(partition_by)
 self.order_by = ensure_tuple(order_by)
 self.start = start
 self.end = end
 if self.start is None and self.end is not None:
 raise ValueError('Cannot specify WINDOW end without start.')
 self._alias = alias or 'w'
 self._inline = _inline
 self.frame_type = frame_type
 self._extends = extends
 self._exclude = exclude

 def alias(self, alias=None):
 self._alias = alias or 'w'
 return self

 @Node.copy
 def as_range(self):
 self.frame_type = Window.RANGE

 @Node.copy
 def as_rows(self):
 self.frame_type = Window.ROWS

 @Node.copy
 def as_groups(self):
 self.frame_type = Window.GROUPS

 @Node.copy
 def extends(self, window=None):
 self._extends = window

 @Node.copy
 def exclude(self, frame_exclusion=None):
 if isinstance(frame_exclusion, basestring):
 frame_exclusion = SQL(frame_exclusion)
 self._exclude = frame_exclusion

 @staticmethod
 def following(value=None):
 if value is None:
 return SQL('UNBOUNDED FOLLOWING')
 return SQL('%d FOLLOWING' % value)

 @staticmethod
 def preceding(value=None):
 if value is None:
 return SQL('UNBOUNDED PRECEDING')
 return SQL('%d PRECEDING' % value)

 def __sql__(self, ctx):
 if ctx.scope != SCOPE_SOURCE and not self._inline:
 ctx.literal(self._alias)
 ctx.literal(' AS ')

 with ctx(parentheses=True):
 parts = []
 if self._extends is not None:
 ext = self._extends
 if isinstance(ext, Window):
 ext = SQL(ext._alias)
 elif isinstance(ext, basestring):
 ext = SQL(ext)
 parts.append(ext)
 if self.partition_by:
 parts.extend((
 SQL('PARTITION BY'),
 CommaNodeList(self.partition_by)))
 if self.order_by:
 parts.extend((
 SQL('ORDER BY'),
 CommaNodeList(self.order_by)))
 if self.start is not None and self.end is not None:
 frame = self.frame_type or 'ROWS'
 parts.extend((
 SQL('%s BETWEEN' % frame),
 self.start,
 SQL('AND'),
 self.end))
 elif self.start is not None:
 parts.extend((SQL(self.frame_type or 'ROWS'), self.start))
 elif self.frame_type is not None:
 parts.append(SQL('%s UNBOUNDED PRECEDING' % self.frame_type))
 if self._exclude is not None:
 parts.extend((SQL('EXCLUDE'), self._exclude))
 ctx.sql(NodeList(parts))
 return ctx

class WindowAlias(Node):
 def __init__(self, window):
 self.window = window

 def alias(self, window_alias):
 self.window._alias = window_alias
 return self

 def __sql__(self, ctx):
 return ctx.literal(self.window._alias or 'w')

class ForUpdate(Node):
 def __init__(self, expr, of=None, nowait=None):
 expr = 'FOR UPDATE' if expr is True else expr
 if expr.lower().endswith('nowait'):
 expr = expr[:-7] # Strip off the "nowait" bit.
 nowait = True

 self._expr = expr
 if of is not None and not isinstance(of, (list, set, tuple)):
 of = (of,)
 self._of = of
 self._nowait = nowait

 def __sql__(self, ctx):
 ctx.literal(self._expr)
 if self._of is not None:
 ctx.literal(' OF ').sql(CommaNodeList(self._of))
 if self._nowait:
 ctx.literal(' NOWAIT')
 return ctx

def Case(predicate, expression_tuples, default=None):
 clauses = [SQL('CASE')]
 if predicate is not None:
 clauses.append(predicate)
 for expr, value in expression_tuples:
 clauses.extend((SQL('WHEN'), expr, SQL('THEN'), value))
 if default is not None:
 clauses.extend((SQL('ELSE'), default))
 clauses.append(SQL('END'))
 return NodeList(clauses)

class NodeList(ColumnBase):
 def __init__(self, nodes, glue=' ', parens=False):
 self.nodes = nodes
 self.glue = glue
 self.parens = parens
 if parens and len(self.nodes) == 1 and \
 isinstance(self.nodes[0], Expression) and \
 not self.nodes[0].flat:
 # Hack to avoid double-parentheses.
 self.nodes = (self.nodes[0].clone(),)
 self.nodes[0].flat = True

 def __sql__(self, ctx):
 n_nodes = len(self.nodes)
 if n_nodes == 0:
 return ctx.literal('()') if self.parens else ctx
 with ctx(parentheses=self.parens):
 for i in range(n_nodes - 1):
 ctx.sql(self.nodes[i])
 ctx.literal(self.glue)
 ctx.sql(self.nodes[n_nodes - 1])
 return ctx

def CommaNodeList(nodes):
 return NodeList(nodes, ', ')

def EnclosedNodeList(nodes):
 return NodeList(nodes, ', ', True)

class _Namespace(Node):
 __slots__ = ('_name',)
 def __init__(self, name):
 self._name = name
 def __getattr__(self, attr):
 return NamespaceAttribute(self, attr)
 __getitem__ = __getattr__

class NamespaceAttribute(ColumnBase):
 def __init__(self, namespace, attribute):
 self._namespace = namespace
 self._attribute = attribute

 def __sql__(self, ctx):
 return (ctx
 .literal(self._namespace._name + '.')
 .sql(Entity(self._attribute)))

EXCLUDED = _Namespace('EXCLUDED')

class DQ(ColumnBase):
 def __init__(self, **query):
 super(DQ, self).__init__()
 self.query = query
 self._negated = False

 @Node.copy
 def __invert__(self):
 self._negated = not self._negated

 def clone(self):
 node = DQ(**self.query)
 node._negated = self._negated
 return node

#: Represent a row tuple.
Tuple = lambda *a: EnclosedNodeList(a)

class QualifiedNames(WrappedNode):
 def __sql__(self, ctx):
 with ctx.scope_column():
 return ctx.sql(self.node)

def qualify_names(node):
 # Search a node heirarchy to ensure that any column-like objects are
 # referenced using fully-qualified names.
 if isinstance(node, Expression):
 return node.__class__(qualify_names(node.lhs), node.op,
 qualify_names(node.rhs), node.flat)
 elif isinstance(node, ColumnBase):
 return QualifiedNames(node)
 return node

class OnConflict(Node):
 def __init__(self, action=None, update=None, preserve=None, where=None,
 conflict_target=None, conflict_where=None,
 conflict_constraint=None):
 self._action = action
 self._update = update
 self._preserve = ensure_tuple(preserve)
 self._where = where
 if conflict_target is not None and conflict_constraint is not None:
 raise ValueError('only one of "conflict_target" and '
 '"conflict_constraint" may be specified.')
 self._conflict_target = ensure_tuple(conflict_target)
 self._conflict_where = conflict_where
 self._conflict_constraint = conflict_constraint

 def get_conflict_statement(self, ctx, query):
 return ctx.state.conflict_statement(self, query)

 def get_conflict_update(self, ctx, query):
 return ctx.state.conflict_update(self, query)

 @Node.copy
 def preserve(self, *columns):
 self._preserve = columns

 @Node.copy
 def update(self, _data=None, **kwargs):
 if _data and kwargs and not isinstance(_data, dict):
 raise ValueError('Cannot mix data with keyword arguments in the '
 'OnConflict update method.')
 _data = _data or {}
 if kwargs:
 _data.update(kwargs)
 self._update = _data

 @Node.copy
 def where(self, *expressions):
 if self._where is not None:
 expressions = (self._where,) + expressions
 self._where = reduce(operator.and_, expressions)

 @Node.copy
 def conflict_target(self, *constraints):
 self._conflict_constraint = None
 self._conflict_target = constraints

 @Node.copy
 def conflict_where(self, *expressions):
 if self._conflict_where is not None:
 expressions = (self._conflict_where,) + expressions
 self._conflict_where = reduce(operator.and_, expressions)

 @Node.copy
 def conflict_constraint(self, constraint):
 self._conflict_constraint = constraint
 self._conflict_target = None

def database_required(method):
 @wraps(method)
 def inner(self, database=None, *args, **kwargs):
 database = self._database if database is None else database
 if not database:
 raise InterfaceError('Query must be bound to a database in order '
 'to call "%s".' % method.__name__)
 return method(self, database, *args, **kwargs)
 return inner

BASE QUERY INTERFACE.

class BaseQuery(Node):
 default_row_type = ROW.DICT

 def __init__(self, _database=None, **kwargs):
 self._database = _database
 self._cursor_wrapper = None
 self._row_type = None
 self._constructor = None
 super(BaseQuery, self).__init__(**kwargs)

 def bind(self, database=None):
 self._database = database
 return self

 def clone(self):
 query = super(BaseQuery, self).clone()
 query._cursor_wrapper = None
 return query

 @Node.copy
 def dicts(self, as_dict=True):
 self._row_type = ROW.DICT if as_dict else None
 return self

 @Node.copy
 def tuples(self, as_tuple=True):
 self._row_type = ROW.TUPLE if as_tuple else None
 return self

 @Node.copy
 def namedtuples(self, as_namedtuple=True):
 self._row_type = ROW.NAMED_TUPLE if as_namedtuple else None
 return self

 @Node.copy
 def objects(self, constructor=None):
 self._row_type = ROW.CONSTRUCTOR if constructor else None
 self._constructor = constructor
 return self

 def _get_cursor_wrapper(self, cursor):
 row_type = self._row_type or self.default_row_type

 if row_type == ROW.DICT:
 return DictCursorWrapper(cursor)
 elif row_type == ROW.TUPLE:
 return CursorWrapper(cursor)
 elif row_type == ROW.NAMED_TUPLE:
 return NamedTupleCursorWrapper(cursor)
 elif row_type == ROW.CONSTRUCTOR:
 return ObjectCursorWrapper(cursor, self._constructor)
 else:
 raise ValueError('Unrecognized row type: "%s".' % row_type)

 def __sql__(self, ctx):
 raise NotImplementedError

 def sql(self):
 if self._database:
 context = self._database.get_sql_context()
 else:
 context = Context()
 return context.parse(self)

 @database_required
 def execute(self, database):
 return self._execute(database)

 def _execute(self, database):
 raise NotImplementedError

 def iterator(self, database=None):
 return iter(self.execute(database).iterator())

 def _ensure_execution(self):
 if not self._cursor_wrapper:
 if not self._database:
 raise ValueError('Query has not been executed.')
 self.execute()

 def __iter__(self):
 self._ensure_execution()
 return iter(self._cursor_wrapper)

 def __getitem__(self, value):
 self._ensure_execution()
 if isinstance(value, slice):
 index = value.stop
 else:
 index = value
 if index is not None:
 index = index + 1 if index >= 0 else 0
 self._cursor_wrapper.fill_cache(index)
 return self._cursor_wrapper.row_cache[value]

 def __len__(self):
 self._ensure_execution()
 return len(self._cursor_wrapper)

 def __str__(self):
 return query_to_string(self)

class RawQuery(BaseQuery):
 def __init__(self, sql=None, params=None, **kwargs):
 super(RawQuery, self).__init__(**kwargs)
 self._sql = sql
 self._params = params

 def __sql__(self, ctx):
 ctx.literal(self._sql)
 if self._params:
 for param in self._params:
 ctx.value(param, add_param=False)
 return ctx

 def _execute(self, database):
 if self._cursor_wrapper is None:
 cursor = database.execute(self)
 self._cursor_wrapper = self._get_cursor_wrapper(cursor)
 return self._cursor_wrapper

class Query(BaseQuery):
 def __init__(self, where=None, order_by=None, limit=None, offset=None,
 **kwargs):
 super(Query, self).__init__(**kwargs)
 self._where = where
 self._order_by = order_by
 self._limit = limit
 self._offset = offset

 self._cte_list = None

 @Node.copy
 def with_cte(self, *cte_list):
 self._cte_list = cte_list

 @Node.copy
 def where(self, *expressions):
 if self._where is not None:
 expressions = (self._where,) + expressions
 self._where = reduce(operator.and_, expressions)

 @Node.copy
 def orwhere(self, *expressions):
 if self._where is not None:
 expressions = (self._where,) + expressions
 self._where = reduce(operator.or_, expressions)

 @Node.copy
 def order_by(self, *values):
 self._order_by = values

 @Node.copy
 def order_by_extend(self, *values):
 self._order_by = ((self._order_by or ()) + values) or None

 @Node.copy
 def limit(self, value=None):
 self._limit = value

 @Node.copy
 def offset(self, value=None):
 self._offset = value

 @Node.copy
 def paginate(self, page, paginate_by=20):
 if page > 0:
 page -= 1
 self._limit = paginate_by
 self._offset = page * paginate_by

 def _apply_ordering(self, ctx):
 if self._order_by:
 (ctx
 .literal(' ORDER BY ')
 .sql(CommaNodeList(self._order_by)))
 if self._limit is not None or (self._offset is not None and
 ctx.state.limit_max):
 limit = ctx.state.limit_max if self._limit is None else self._limit
 ctx.literal(' LIMIT ').sql(limit)
 if self._offset is not None:
 ctx.literal(' OFFSET ').sql(self._offset)
 return ctx

 def __sql__(self, ctx):
 if self._cte_list:
 # The CTE scope is only used at the very beginning of the query,
 # when we are describing the various CTEs we will be using.
 recursive = any(cte._recursive for cte in self._cte_list)

 # Explicitly disable the "subquery" flag here, so as to avoid
 # unnecessary parentheses around subsequent selects.
 with ctx.scope_cte(subquery=False):
 (ctx
 .literal('WITH RECURSIVE ' if recursive else 'WITH ')
 .sql(CommaNodeList(self._cte_list))
 .literal(' '))
 return ctx

def __compound_select__(operation, inverted=False):
 def method(self, other):
 if inverted:
 self, other = other, self
 return CompoundSelectQuery(self, operation, other)
 return method

class SelectQuery(Query):
 union_all = __add__ = __compound_select__('UNION ALL')
 union = __or__ = __compound_select__('UNION')
 intersect = __and__ = __compound_select__('INTERSECT')
 except_ = __sub__ = __compound_select__('EXCEPT')
 __radd__ = __compound_select__('UNION ALL', inverted=True)
 __ror__ = __compound_select__('UNION', inverted=True)
 __rand__ = __compound_select__('INTERSECT', inverted=True)
 __rsub__ = __compound_select__('EXCEPT', inverted=True)

 def select_from(self, *columns):
 if not columns:
 raise ValueError('select_from() must specify one or more columns.')

 query = (Select((self,), columns)
 .bind(self._database))
 if getattr(self, 'model', None) is not None:
 # Bind to the sub-select's model type, if defined.
 query = query.objects(self.model)
 return query

class SelectBase(_HashableSource, Source, SelectQuery):
 def _get_hash(self):
 return hash((self.__class__, self._alias or id(self)))

 def _execute(self, database):
 if self._cursor_wrapper is None:
 cursor = database.execute(self)
 self._cursor_wrapper = self._get_cursor_wrapper(cursor)
 return self._cursor_wrapper

 @database_required
 def peek(self, database, n=1):
 rows = self.execute(database)[:n]
 if rows:
 return rows[0] if n == 1 else rows

 @database_required
 def first(self, database, n=1):
 if self._limit != n:
 self._limit = n
 self._cursor_wrapper = None
 return self.peek(database, n=n)

 @database_required
 def scalar(self, database, as_tuple=False):
 row = self.tuples().peek(database)
 return row[0] if row and not as_tuple else row

 @database_required
 def count(self, database, clear_limit=False):
 clone = self.order_by().alias('_wrapped')
 if clear_limit:
 clone._limit = clone._offset = None
 try:
 if clone._having is None and clone._group_by is None and \
 clone._windows is None and clone._distinct is None and \
 clone._simple_distinct is not True:
 clone = clone.select(SQL('1'))
 except AttributeError:
 pass
 return Select([clone], [fn.COUNT(SQL('1'))]).scalar(database)

 @database_required
 def exists(self, database):
 clone = self.columns(SQL('1'))
 clone._limit = 1
 clone._offset = None
 return bool(clone.scalar())

 @database_required
 def get(self, database):
 self._cursor_wrapper = None
 try:
 return self.execute(database)[0]
 except IndexError:
 pass

QUERY IMPLEMENTATIONS.

class CompoundSelectQuery(SelectBase):
 def __init__(self, lhs, op, rhs):
 super(CompoundSelectQuery, self).__init__()
 self.lhs = lhs
 self.op = op
 self.rhs = rhs

 @property
 def _returning(self):
 return self.lhs._returning

 @database_required
 def exists(self, database):
 query = Select((self.limit(1),), (SQL('1'),)).bind(database)
 return bool(query.scalar())

 def _get_query_key(self):
 return (self.lhs.get_query_key(), self.rhs.get_query_key())

 def _wrap_parens(self, ctx, subq):
 csq_setting = ctx.state.compound_select_parentheses

 if not csq_setting or csq_setting == CSQ_PARENTHESES_NEVER:
 return False
 elif csq_setting == CSQ_PARENTHESES_ALWAYS:
 return True
 elif csq_setting == CSQ_PARENTHESES_UNNESTED:
 if ctx.state.in_expr or ctx.state.in_function:
 # If this compound select query is being used inside an
 # expression, e.g., an IN or EXISTS().
 return False

 # If the query on the left or right is itself a compound select
 # query, then we do not apply parentheses. However, if it is a
 # regular SELECT query, we will apply parentheses.
 return not isinstance(subq, CompoundSelectQuery)

 def __sql__(self, ctx):
 if ctx.scope == SCOPE_COLUMN:
 return self.apply_column(ctx)

 # Call parent method to handle any CTEs.
 super(CompoundSelectQuery, self).__sql__(ctx)

 outer_parens = ctx.subquery or (ctx.scope == SCOPE_SOURCE)
 with ctx(parentheses=outer_parens):
 # Should the left-hand query be wrapped in parentheses?
 lhs_parens = self._wrap_parens(ctx, self.lhs)
 with ctx.scope_normal(parentheses=lhs_parens, subquery=False):
 ctx.sql(self.lhs)
 ctx.literal(' %s ' % self.op)
 with ctx.push_alias():
 # Should the right-hand query be wrapped in parentheses?
 rhs_parens = self._wrap_parens(ctx, self.rhs)
 with ctx.scope_normal(parentheses=rhs_parens, subquery=False):
 ctx.sql(self.rhs)

 # Apply ORDER BY, LIMIT, OFFSET. We use the "values" scope so that
 # entity names are not fully-qualified. This is a bit of a hack, as
 # we're relying on the logic in Column.__sql__() to not fully
 # qualify column names.
 with ctx.scope_values():
 self._apply_ordering(ctx)

 return self.apply_alias(ctx)

class Select(SelectBase):
 def __init__(self, from_list=None, columns=None, group_by=None,
 having=None, distinct=None, windows=None, for_update=None,
 for_update_of=None, nowait=None, lateral=None, **kwargs):
 super(Select, self).__init__(**kwargs)
 self._from_list = (list(from_list) if isinstance(from_list, tuple)
 else from_list) or []
 self._returning = columns
 self._group_by = group_by
 self._having = having
 self._windows = None
 self._for_update = for_update # XXX: consider reorganizing.
 self._for_update_of = for_update_of
 self._for_update_nowait = nowait
 self._lateral = lateral

 self._distinct = self._simple_distinct = None
 if distinct:
 if isinstance(distinct, bool):
 self._simple_distinct = distinct
 else:
 self._distinct = distinct

 self._cursor_wrapper = None

 def clone(self):
 clone = super(Select, self).clone()
 if clone._from_list:
 clone._from_list = list(clone._from_list)
 return clone

 @Node.copy
 def columns(self, *columns, **kwargs):
 self._returning = columns
 select = columns

 @Node.copy
 def select_extend(self, *columns):
 self._returning = tuple(self._returning) + columns

 @Node.copy
 def from_(self, *sources):
 self._from_list = list(sources)

 @Node.copy
 def join(self, dest, join_type=JOIN.INNER, on=None):
 if not self._from_list:
 raise ValueError('No sources to join on.')
 item = self._from_list.pop()
 self._from_list.append(Join(item, dest, join_type, on))

 @Node.copy
 def group_by(self, *columns):
 grouping = []
 for column in columns:
 if isinstance(column, Table):
 if not column._columns:
 raise ValueError('Cannot pass a table to group_by() that '
 'does not have columns explicitly '
 'declared.')
 grouping.extend([getattr(column, col_name)
 for col_name in column._columns])
 else:
 grouping.append(column)
 self._group_by = grouping

 def group_by_extend(self, *values):
 """@Node.copy used from group_by() call"""
 group_by = tuple(self._group_by or ()) + values
 return self.group_by(*group_by)

 @Node.copy
 def having(self, *expressions):
 if self._having is not None:
 expressions = (self._having,) + expressions
 self._having = reduce(operator.and_, expressions)

 @Node.copy
 def distinct(self, *columns):
 if len(columns) == 1 and (columns[0] is True or columns[0] is False):
 self._simple_distinct = columns[0]
 else:
 self._simple_distinct = False
 self._distinct = columns

 @Node.copy
 def window(self, *windows):
 self._windows = windows if windows else None

 @Node.copy
 def for_update(self, for_update=True, of=None, nowait=None):
 if not for_update and (of is not None or nowait):
 for_update = True
 self._for_update = for_update
 self._for_update_of = of
 self._for_update_nowait = nowait

 @Node.copy
 def lateral(self, lateral=True):
 self._lateral = lateral

 def _get_query_key(self):
 return self._alias

 def __sql_selection__(self, ctx, is_subquery=False):
 return ctx.sql(CommaNodeList(self._returning))

 def __sql__(self, ctx):
 if ctx.scope == SCOPE_COLUMN:
 return self.apply_column(ctx)

 if self._lateral and ctx.scope == SCOPE_SOURCE:
 ctx.literal('LATERAL ')

 is_subquery = ctx.subquery
 state = {
 'converter': None,
 'in_function': False,
 'parentheses': is_subquery or (ctx.scope == SCOPE_SOURCE),
 'subquery': True,
 }
 if ctx.state.in_function and ctx.state.function_arg_count == 1:
 state['parentheses'] = False

 with ctx.scope_normal(**state):
 # Defer calling parent SQL until here. This ensures that any CTEs
 # for this query will be properly nested if this query is a
 # sub-select or is used in an expression. See GH#1809 for example.
 super(Select, self).__sql__(ctx)

 ctx.literal('SELECT ')
 if self._simple_distinct or self._distinct is not None:
 ctx.literal('DISTINCT ')
 if self._distinct:
 (ctx
 .literal('ON ')
 .sql(EnclosedNodeList(self._distinct))
 .literal(' '))

 with ctx.scope_source():
 ctx = self.__sql_selection__(ctx, is_subquery)

 if self._from_list:
 with ctx.scope_source(parentheses=False):
 ctx.literal(' FROM ').sql(CommaNodeList(self._from_list))

 if self._where is not None:
 ctx.literal(' WHERE ').sql(self._where)

 if self._group_by:
 ctx.literal(' GROUP BY ').sql(CommaNodeList(self._group_by))

 if self._having is not None:
 ctx.literal(' HAVING ').sql(self._having)

 if self._windows is not None:
 ctx.literal(' WINDOW ')
 ctx.sql(CommaNodeList(self._windows))

 # Apply ORDER BY, LIMIT, OFFSET.
 self._apply_ordering(ctx)

 if self._for_update:
 if not ctx.state.for_update:
 raise ValueError('FOR UPDATE specified but not supported '
 'by database.')
 ctx.literal(' ')
 ctx.sql(ForUpdate(self._for_update, self._for_update_of,
 self._for_update_nowait))

 # If the subquery is inside a function -or- we are evaluating a
 # subquery on either side of an expression w/o an explicit alias, do
 # not generate an alias + AS clause.
 if ctx.state.in_function or (ctx.state.in_expr and
 self._alias is None):
 return ctx

 return self.apply_alias(ctx)

class _WriteQuery(Query):
 def __init__(self, table, returning=None, **kwargs):
 self.table = table
 self._returning = returning
 self._return_cursor = True if returning else False
 super(_WriteQuery, self).__init__(**kwargs)

 @Node.copy
 def returning(self, *returning):
 self._returning = returning
 self._return_cursor = True if returning else False

 def apply_returning(self, ctx):
 if self._returning:
 with ctx.scope_source():
 ctx.literal(' RETURNING ').sql(CommaNodeList(self._returning))
 return ctx

 def _execute(self, database):
 if self._returning:
 cursor = self.execute_returning(database)
 else:
 cursor = database.execute(self)
 return self.handle_result(database, cursor)

 def execute_returning(self, database):
 if self._cursor_wrapper is None:
 cursor = database.execute(self)
 self._cursor_wrapper = self._get_cursor_wrapper(cursor)
 return self._cursor_wrapper

 def handle_result(self, database, cursor):
 if self._return_cursor:
 return cursor
 return database.rows_affected(cursor)

 def _set_table_alias(self, ctx):
 ctx.alias_manager[self.table] = self.table.__name__

 def __sql__(self, ctx):
 super(_WriteQuery, self).__sql__(ctx)
 # We explicitly set the table alias to the table's name, which ensures
 # that if a sub-select references a column on the outer table, we won't
 # assign it a new alias (e.g. t2) but will refer to it as table.column.
 self._set_table_alias(ctx)
 return ctx

class Update(_WriteQuery):
 def __init__(self, table, update=None, **kwargs):
 super(Update, self).__init__(table, **kwargs)
 self._update = update
 self._from = None

 @Node.copy
 def from_(self, *sources):
 self._from = sources

 def __sql__(self, ctx):
 super(Update, self).__sql__(ctx)

 with ctx.scope_values(subquery=True):
 ctx.literal('UPDATE ')

 expressions = []
 for k, v in sorted(self._update.items(), key=ctx.column_sort_key):
 if not isinstance(v, Node):
 if isinstance(k, Field):
 v = k.to_value(v)
 else:
 v = Value(v, unpack=False)
 if not isinstance(v, Value):
 v = qualify_names(v)
 expressions.append(NodeList((k, SQL('='), v)))

 (ctx
 .sql(self.table)
 .literal(' SET ')
 .sql(CommaNodeList(expressions)))

 if self._from:
 with ctx.scope_source(parentheses=False):
 ctx.literal(' FROM ').sql(CommaNodeList(self._from))

 if self._where:
 with ctx.scope_normal():
 ctx.literal(' WHERE ').sql(self._where)
 self._apply_ordering(ctx)
 return self.apply_returning(ctx)

class Insert(_WriteQuery):
 SIMPLE = 0
 QUERY = 1
 MULTI = 2
 class DefaultValuesException(Exception): pass

 def __init__(self, table, insert=None, columns=None, on_conflict=None,
 **kwargs):
 super(Insert, self).__init__(table, **kwargs)
 self._insert = insert
 self._columns = columns
 self._on_conflict = on_conflict
 self._query_type = None

 def where(self, *expressions):
 raise NotImplementedError('INSERT queries cannot have a WHERE clause.')

 @Node.copy
 def on_conflict_ignore(self, ignore=True):
 self._on_conflict = OnConflict('IGNORE') if ignore else None

 @Node.copy
 def on_conflict_replace(self, replace=True):
 self._on_conflict = OnConflict('REPLACE') if replace else None

 @Node.copy
 def on_conflict(self, *args, **kwargs):
 self._on_conflict = (OnConflict(*args, **kwargs) if (args or kwargs)
 else None)

 def _simple_insert(self, ctx):
 if not self._insert:
 raise self.DefaultValuesException('Error: no data to insert.')
 return self._generate_insert((self._insert,), ctx)

 def get_default_data(self):
 return {}

 def get_default_columns(self):
 if self.table._columns:
 return [getattr(self.table, col) for col in self.table._columns
 if col != self.table._primary_key]

 def _generate_insert(self, insert, ctx):
 rows_iter = iter(insert)
 columns = self._columns

 # Load and organize column defaults (if provided).
 defaults = self.get_default_data()

 # First figure out what columns are being inserted (if they weren't
 # specified explicitly). Resulting columns are normalized and ordered.
 if not columns:
 try:
 row = next(rows_iter)
 except StopIteration:
 raise self.DefaultValuesException('Error: no rows to insert.')

 if not isinstance(row, Mapping):
 columns = self.get_default_columns()
 if columns is None:
 raise ValueError('Bulk insert must specify columns.')
 else:
 # Infer column names from the dict of data being inserted.
 accum = []
 for column in row:
 if isinstance(column, basestring):
 column = getattr(self.table, column)
 accum.append(column)

 # Add any columns present in the default data that are not
 # accounted for by the dictionary of row data.
 column_set = set(accum)
 for col in (set(defaults) - column_set):
 accum.append(col)

 columns = sorted(accum, key=lambda obj: obj.get_sort_key(ctx))
 rows_iter = itertools.chain(iter((row,)), rows_iter)
 else:
 clean_columns = []
 seen = set()
 for column in columns:
 if isinstance(column, basestring):
 column_obj = getattr(self.table, column)
 else:
 column_obj = column
 clean_columns.append(column_obj)
 seen.add(column_obj)

 columns = clean_columns
 for col in sorted(defaults, key=lambda obj: obj.get_sort_key(ctx)):
 if col not in seen:
 columns.append(col)

 value_lookups = {}
 for column in columns:
 lookups = [column, column.name]
 if isinstance(column, Field) and column.name != column.column_name:
 lookups.append(column.column_name)
 value_lookups[column] = lookups

 ctx.sql(EnclosedNodeList(columns)).literal(' VALUES ')
 columns_converters = [
 (column, column.db_value if isinstance(column, Field) else None)
 for column in columns]

 all_values = []
 for row in rows_iter:
 values = []
 is_dict = isinstance(row, Mapping)
 for i, (column, converter) in enumerate(columns_converters):
 try:
 if is_dict:
 # The logic is a bit convoluted, but in order to be
 # flexible in what we accept (dict keyed by
 # column/field, field name, or underlying column name),
 # we try accessing the row data dict using each
 # possible key. If no match is found, throw an error.
 for lookup in value_lookups[column]:
 try:
 val = row[lookup]
 except KeyError: pass
 else: break
 else:
 raise KeyError
 else:
 val = row[i]
 except (KeyError, IndexError):
 if column in defaults:
 val = defaults[column]
 if callable_(val):
 val = val()
 else:
 raise ValueError('Missing value for %s.' % column.name)

 if not isinstance(val, Node):
 val = Value(val, converter=converter, unpack=False)
 values.append(val)

 all_values.append(EnclosedNodeList(values))

 if not all_values:
 raise self.DefaultValuesException('Error: no data to insert.')

 with ctx.scope_values(subquery=True):
 return ctx.sql(CommaNodeList(all_values))

 def _query_insert(self, ctx):
 return (ctx
 .sql(EnclosedNodeList(self._columns))
 .literal(' ')
 .sql(self._insert))

 def _default_values(self, ctx):
 if not self._database:
 return ctx.literal('DEFAULT VALUES')
 return self._database.default_values_insert(ctx)

 def __sql__(self, ctx):
 super(Insert, self).__sql__(ctx)
 with ctx.scope_values():
 stmt = None
 if self._on_conflict is not None:
 stmt = self._on_conflict.get_conflict_statement(ctx, self)

 (ctx
 .sql(stmt or SQL('INSERT'))
 .literal(' INTO ')
 .sql(self.table)
 .literal(' '))

 if isinstance(self._insert, Mapping) and not self._columns:
 try:
 self._simple_insert(ctx)
 except self.DefaultValuesException:
 self._default_values(ctx)
 self._query_type = Insert.SIMPLE
 elif isinstance(self._insert, (SelectQuery, SQL)):
 self._query_insert(ctx)
 self._query_type = Insert.QUERY
 else:
 self._generate_insert(self._insert, ctx)
 self._query_type = Insert.MULTI

 if self._on_conflict is not None:
 update = self._on_conflict.get_conflict_update(ctx, self)
 if update is not None:
 ctx.literal(' ').sql(update)

 return self.apply_returning(ctx)

 def _execute(self, database):
 if self._returning is None and database.returning_clause \
 and self.table._primary_key:
 self._returning = (self.table._primary_key,)
 try:
 return super(Insert, self)._execute(database)
 except self.DefaultValuesException:
 pass

 def handle_result(self, database, cursor):
 if self._return_cursor:
 return cursor
 if self._query_type != Insert.SIMPLE and not self._returning:
 return database.rows_affected(cursor)
 return database.last_insert_id(cursor, self._query_type)

class Delete(_WriteQuery):
 def __sql__(self, ctx):
 super(Delete, self).__sql__(ctx)

 with ctx.scope_values(subquery=True):
 ctx.literal('DELETE FROM ').sql(self.table)
 if self._where is not None:
 with ctx.scope_normal():
 ctx.literal(' WHERE ').sql(self._where)

 self._apply_ordering(ctx)
 return self.apply_returning(ctx)

class Index(Node):
 def __init__(self, name, table, expressions, unique=False, safe=False,
 where=None, using=None):
 self._name = name
 self._table = Entity(table) if not isinstance(table, Table) else table
 self._expressions = expressions
 self._where = where
 self._unique = unique
 self._safe = safe
 self._using = using

 @Node.copy
 def safe(self, _safe=True):
 self._safe = _safe

 @Node.copy
 def where(self, *expressions):
 if self._where is not None:
 expressions = (self._where,) + expressions
 self._where = reduce(operator.and_, expressions)

 @Node.copy
 def using(self, _using=None):
 self._using = _using

 def __sql__(self, ctx):
 statement = 'CREATE UNIQUE INDEX ' if self._unique else 'CREATE INDEX '
 with ctx.scope_values(subquery=True):
 ctx.literal(statement)
 if self._safe:
 ctx.literal('IF NOT EXISTS ')

 # Sqlite uses CREATE INDEX <schema>.<name> ON <table>, whereas most
 # others use: CREATE INDEX <name> ON <schema>.<table>.
 if ctx.state.index_schema_prefix and \
 isinstance(self._table, Table) and self._table._schema:
 index_name = Entity(self._table._schema, self._name)
 table_name = Entity(self._table.__name__)
 else:
 index_name = Entity(self._name)
 table_name = self._table

 ctx.sql(index_name)
 if self._using is not None and \
 ctx.state.index_using_precedes_table:
 ctx.literal(' USING %s' % self._using) # MySQL style.

 (ctx
 .literal(' ON ')
 .sql(table_name)
 .literal(' '))

 if self._using is not None and not \
 ctx.state.index_using_precedes_table:
 ctx.literal('USING %s ' % self._using) # Postgres/default.

 ctx.sql(EnclosedNodeList([
 SQL(expr) if isinstance(expr, basestring) else expr
 for expr in self._expressions]))
 if self._where is not None:
 ctx.literal(' WHERE ').sql(self._where)

 return ctx

class ModelIndex(Index):
 def __init__(self, model, fields, unique=False, safe=True, where=None,
 using=None, name=None):
 self._model = model
 if name is None:
 name = self._generate_name_from_fields(model, fields)
 if using is None:
 for field in fields:
 if isinstance(field, Field) and hasattr(field, 'index_type'):
 using = field.index_type
 super(ModelIndex, self).__init__(
 name=name,
 table=model._meta.table,
 expressions=fields,
 unique=unique,
 safe=safe,
 where=where,
 using=using)

 def _generate_name_from_fields(self, model, fields):
 accum = []
 for field in fields:
 if isinstance(field, basestring):
 accum.append(field.split()[0])
 else:
 if isinstance(field, Node) and not isinstance(field, Field):
 field = field.unwrap()
 if isinstance(field, Field):
 accum.append(field.column_name)

 if not accum:
 raise ValueError('Unable to generate a name for the index, please '
 'explicitly specify a name.')

 clean_field_names = re.sub(r'[^\w]+', '', '_'.join(accum))
 meta = model._meta
 prefix = meta.name if meta.legacy_table_names else meta.table_name
 return _truncate_constraint_name('_'.join((prefix, clean_field_names)))

def _truncate_constraint_name(constraint, maxlen=64):
 if len(constraint) > maxlen:
 name_hash = hashlib.md5(constraint.encode('utf-8')).hexdigest()
 constraint = '%s_%s' % (constraint[:(maxlen - 8)], name_hash[:7])
 return constraint

DB-API 2.0 EXCEPTIONS.

class PeeweeException(Exception):
 def __init__(self, *args):
 if args and isinstance(args[0], Exception):
 self.orig, args = args[0], args[1:]
 super(PeeweeException, self).__init__(*args)
class ImproperlyConfigured(PeeweeException): pass
class DatabaseError(PeeweeException): pass
class DataError(DatabaseError): pass
class IntegrityError(DatabaseError): pass
class InterfaceError(PeeweeException): pass
class InternalError(DatabaseError): pass
class NotSupportedError(DatabaseError): pass
class OperationalError(DatabaseError): pass
class ProgrammingError(DatabaseError): pass

class ExceptionWrapper(object):
 __slots__ = ('exceptions',)
 def __init__(self, exceptions):
 self.exceptions = exceptions
 def __enter__(self): pass
 def __exit__(self, exc_type, exc_value, traceback):
 if exc_type is None:
 return
 # psycopg2.8 shits out a million cute error types. Try to catch em all.
 if pg_errors is not None and exc_type.__name__ not in self.exceptions \
 and issubclass(exc_type, pg_errors.Error):
 exc_type = exc_type.__bases__[0]
 if exc_type.__name__ in self.exceptions:
 new_type = self.exceptions[exc_type.__name__]
 exc_args = exc_value.args
 reraise(new_type, new_type(exc_value, *exc_args), traceback)

EXCEPTIONS = {
 'ConstraintError': IntegrityError,
 'DatabaseError': DatabaseError,
 'DataError': DataError,
 'IntegrityError': IntegrityError,
 'InterfaceError': InterfaceError,
 'InternalError': InternalError,
 'NotSupportedError': NotSupportedError,
 'OperationalError': OperationalError,
 'ProgrammingError': ProgrammingError,
 'TransactionRollbackError': OperationalError}

__exception_wrapper__ = ExceptionWrapper(EXCEPTIONS)

DATABASE INTERFACE AND CONNECTION MANAGEMENT.

IndexMetadata = collections.namedtuple(
 'IndexMetadata',
 ('name', 'sql', 'columns', 'unique', 'table'))
ColumnMetadata = collections.namedtuple(
 'ColumnMetadata',
 ('name', 'data_type', 'null', 'primary_key', 'table', 'default'))
ForeignKeyMetadata = collections.namedtuple(
 'ForeignKeyMetadata',
 ('column', 'dest_table', 'dest_column', 'table'))
ViewMetadata = collections.namedtuple('ViewMetadata', ('name', 'sql'))

class _ConnectionState(object):
 def __init__(self, **kwargs):
 super(_ConnectionState, self).__init__(**kwargs)
 self.reset()

 def reset(self):
 self.closed = True
 self.conn = None
 self.ctx = []
 self.transactions = []

 def set_connection(self, conn):
 self.conn = conn
 self.closed = False
 self.ctx = []
 self.transactions = []

class _ConnectionLocal(_ConnectionState, threading.local): pass
class _NoopLock(object):
 __slots__ = ()
 def __enter__(self): return self
 def __exit__(self, exc_type, exc_val, exc_tb): pass

class ConnectionContext(_callable_context_manager):
 __slots__ = ('db',)
 def __init__(self, db): self.db = db
 def __enter__(self):
 if self.db.is_closed():
 self.db.connect()
 def __exit__(self, exc_type, exc_val, exc_tb): self.db.close()

class Database(_callable_context_manager):
 context_class = Context
 field_types = {}
 operations = {}
 param = '?'
 quote = '""'
 server_version = None

 # Feature toggles.
 commit_select = False
 compound_select_parentheses = CSQ_PARENTHESES_NEVER
 for_update = False
 index_schema_prefix = False
 index_using_precedes_table = False
 limit_max = None
 nulls_ordering = False
 returning_clause = False
 safe_create_index = True
 safe_drop_index = True
 sequences = False
 truncate_table = True

 def __init__(self, database, thread_safe=True, autorollback=False,
 field_types=None, operations=None, autocommit=None,
 autoconnect=True, **kwargs):
 self._field_types = merge_dict(FIELD, self.field_types)
 self._operations = merge_dict(OP, self.operations)
 if field_types:
 self._field_types.update(field_types)
 if operations:
 self._operations.update(operations)

 self.autoconnect = autoconnect
 self.autorollback = autorollback
 self.thread_safe = thread_safe
 if thread_safe:
 self._state = _ConnectionLocal()
 self._lock = threading.RLock()
 else:
 self._state = _ConnectionState()
 self._lock = _NoopLock()

 if autocommit is not None:
 __deprecated__('Peewee no longer uses the "autocommit" option, as '
 'the semantics now require it to always be True. '
 'Because some database-drivers also use the '
 '"autocommit" parameter, you are receiving a '
 'warning so you may update your code and remove '
 'the parameter, as in the future, specifying '
 'autocommit could impact the behavior of the '
 'database driver you are using.')

 self.connect_params = {}
 self.init(database, **kwargs)

 def init(self, database, **kwargs):
 if not self.is_closed():
 self.close()
 self.database = database
 self.connect_params.update(kwargs)
 self.deferred = not bool(database)

 def __enter__(self):
 if self.is_closed():
 self.connect()
 ctx = self.atomic()
 self._state.ctx.append(ctx)
 ctx.__enter__()
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 ctx = self._state.ctx.pop()
 try:
 ctx.__exit__(exc_type, exc_val, exc_tb)
 finally:
 if not self._state.ctx:
 self.close()

 def connection_context(self):
 return ConnectionContext(self)

 def _connect(self):
 raise NotImplementedError

 def connect(self, reuse_if_open=False):
 with self._lock:
 if self.deferred:
 raise InterfaceError('Error, database must be initialized '
 'before opening a connection.')
 if not self._state.closed:
 if reuse_if_open:
 return False
 raise OperationalError('Connection already opened.')

 self._state.reset()
 with __exception_wrapper__:
 self._state.set_connection(self._connect())
 if self.server_version is None:
 self._set_server_version(self._state.conn)
 self._initialize_connection(self._state.conn)
 return True

 def _initialize_connection(self, conn):
 pass

 def _set_server_version(self, conn):
 self.server_version = 0

 def close(self):
 with self._lock:
 if self.deferred:
 raise InterfaceError('Error, database must be initialized '
 'before opening a connection.')
 if self.in_transaction():
 raise OperationalError('Attempting to close database while '
 'transaction is open.')
 is_open = not self._state.closed
 try:
 if is_open:
 with __exception_wrapper__:
 self._close(self._state.conn)
 finally:
 self._state.reset()
 return is_open

 def _close(self, conn):
 conn.close()

 def is_closed(self):
 return self._state.closed

 def is_connection_usable(self):
 return not self._state.closed

 def connection(self):
 if self.is_closed():
 self.connect()
 return self._state.conn

 def cursor(self, commit=None):
 if self.is_closed():
 if self.autoconnect:
 self.connect()
 else:
 raise InterfaceError('Error, database connection not opened.')
 return self._state.conn.cursor()

 def execute_sql(self, sql, params=None, commit=SENTINEL):
 logger.debug((sql, params))
 if commit is SENTINEL:
 if self.in_transaction():
 commit = False
 elif self.commit_select:
 commit = True
 else:
 commit = not sql[:6].lower().startswith('select')

 with __exception_wrapper__:
 cursor = self.cursor(commit)
 try:
 cursor.execute(sql, params or ())
 except Exception:
 if self.autorollback and not self.in_transaction():
 self.rollback()
 raise
 else:
 if commit and not self.in_transaction():
 self.commit()
 return cursor

 def execute(self, query, commit=SENTINEL, **context_options):
 ctx = self.get_sql_context(**context_options)
 sql, params = ctx.sql(query).query()
 return self.execute_sql(sql, params, commit=commit)

 def get_context_options(self):
 return {
 'field_types': self._field_types,
 'operations': self._operations,
 'param': self.param,
 'quote': self.quote,
 'compound_select_parentheses': self.compound_select_parentheses,
 'conflict_statement': self.conflict_statement,
 'conflict_update': self.conflict_update,
 'for_update': self.for_update,
 'index_schema_prefix': self.index_schema_prefix,
 'index_using_precedes_table': self.index_using_precedes_table,
 'limit_max': self.limit_max,
 'nulls_ordering': self.nulls_ordering,
 }

 def get_sql_context(self, **context_options):
 context = self.get_context_options()
 if context_options:
 context.update(context_options)
 return self.context_class(**context)

 def conflict_statement(self, on_conflict, query):
 raise NotImplementedError

 def conflict_update(self, on_conflict, query):
 raise NotImplementedError

 def _build_on_conflict_update(self, on_conflict, query):
 if on_conflict._conflict_target:
 stmt = SQL('ON CONFLICT')
 target = EnclosedNodeList([
 Entity(col) if isinstance(col, basestring) else col
 for col in on_conflict._conflict_target])
 if on_conflict._conflict_where is not None:
 target = NodeList([target, SQL('WHERE'),
 on_conflict._conflict_where])
 else:
 stmt = SQL('ON CONFLICT ON CONSTRAINT')
 target = on_conflict._conflict_constraint
 if isinstance(target, basestring):
 target = Entity(target)

 updates = []
 if on_conflict._preserve:
 for column in on_conflict._preserve:
 excluded = NodeList((SQL('EXCLUDED'), ensure_entity(column)),
 glue='.')
 expression = NodeList((ensure_entity(column), SQL('='),
 excluded))
 updates.append(expression)

 if on_conflict._update:
 for k, v in on_conflict._update.items():
 if not isinstance(v, Node):
 # Attempt to resolve string field-names to their respective
 # field object, to apply data-type conversions.
 if isinstance(k, basestring):
 k = getattr(query.table, k)
 if isinstance(k, Field):
 v = k.to_value(v)
 else:
 v = Value(v, unpack=False)
 else:
 v = QualifiedNames(v)
 updates.append(NodeList((ensure_entity(k), SQL('='), v)))

 parts = [stmt, target, SQL('DO UPDATE SET'), CommaNodeList(updates)]
 if on_conflict._where:
 parts.extend((SQL('WHERE'), QualifiedNames(on_conflict._where)))

 return NodeList(parts)

 def last_insert_id(self, cursor, query_type=None):
 return cursor.lastrowid

 def rows_affected(self, cursor):
 return cursor.rowcount

 def default_values_insert(self, ctx):
 return ctx.literal('DEFAULT VALUES')

 def session_start(self):
 with self._lock:
 return self.transaction().__enter__()

 def session_commit(self):
 with self._lock:
 try:
 txn = self.pop_transaction()
 except IndexError:
 return False
 txn.commit(begin=self.in_transaction())
 return True

 def session_rollback(self):
 with self._lock:
 try:
 txn = self.pop_transaction()
 except IndexError:
 return False
 txn.rollback(begin=self.in_transaction())
 return True

 def in_transaction(self):
 return bool(self._state.transactions)

 def push_transaction(self, transaction):
 self._state.transactions.append(transaction)

 def pop_transaction(self):
 return self._state.transactions.pop()

 def transaction_depth(self):
 return len(self._state.transactions)

 def top_transaction(self):
 if self._state.transactions:
 return self._state.transactions[-1]

 def atomic(self, *args, **kwargs):
 return _atomic(self, *args, **kwargs)

 def manual_commit(self):
 return _manual(self)

 def transaction(self, *args, **kwargs):
 return _transaction(self, *args, **kwargs)

 def savepoint(self):
 return _savepoint(self)

 def begin(self):
 if self.is_closed():
 self.connect()

 def commit(self):
 with __exception_wrapper__:
 return self._state.conn.commit()

 def rollback(self):
 with __exception_wrapper__:
 return self._state.conn.rollback()

 def batch_commit(self, it, n):
 for group in chunked(it, n):
 with self.atomic():
 for obj in group:
 yield obj

 def table_exists(self, table_name, schema=None):
 return table_name in self.get_tables(schema=schema)

 def get_tables(self, schema=None):
 raise NotImplementedError

 def get_indexes(self, table, schema=None):
 raise NotImplementedError

 def get_columns(self, table, schema=None):
 raise NotImplementedError

 def get_primary_keys(self, table, schema=None):
 raise NotImplementedError

 def get_foreign_keys(self, table, schema=None):
 raise NotImplementedError

 def sequence_exists(self, seq):
 raise NotImplementedError

 def create_tables(self, models, **options):
 for model in sort_models(models):
 model.create_table(**options)

 def drop_tables(self, models, **kwargs):
 for model in reversed(sort_models(models)):
 model.drop_table(**kwargs)

 def extract_date(self, date_part, date_field):
 raise NotImplementedError

 def truncate_date(self, date_part, date_field):
 raise NotImplementedError

 def to_timestamp(self, date_field):
 raise NotImplementedError

 def from_timestamp(self, date_field):
 raise NotImplementedError

 def random(self):
 return fn.random()

 def bind(self, models, bind_refs=True, bind_backrefs=True):
 for model in models:
 model.bind(self, bind_refs=bind_refs, bind_backrefs=bind_backrefs)

 def bind_ctx(self, models, bind_refs=True, bind_backrefs=True):
 return _BoundModelsContext(models, self, bind_refs, bind_backrefs)

 def get_noop_select(self, ctx):
 return ctx.sql(Select().columns(SQL('0')).where(SQL('0')))

def __pragma__(name):
 def __get__(self):
 return self.pragma(name)
 def __set__(self, value):
 return self.pragma(name, value)
 return property(__get__, __set__)

class SqliteDatabase(Database):
 field_types = {
 'BIGAUTO': FIELD.AUTO,
 'BIGINT': FIELD.INT,
 'BOOL': FIELD.INT,
 'DOUBLE': FIELD.FLOAT,
 'SMALLINT': FIELD.INT,
 'UUID': FIELD.TEXT}
 operations = {
 'LIKE': 'GLOB',
 'ILIKE': 'LIKE'}
 index_schema_prefix = True
 limit_max = -1
 server_version = __sqlite_version__
 truncate_table = False

 def __init__(self, database, *args, **kwargs):
 self._pragmas = kwargs.pop('pragmas', ())
 super(SqliteDatabase, self).__init__(database, *args, **kwargs)
 self._aggregates = {}
 self._collations = {}
 self._functions = {}
 self._window_functions = {}
 self._table_functions = []
 self._extensions = set()
 self._attached = {}
 self.register_function(_sqlite_date_part, 'date_part', 2)
 self.register_function(_sqlite_date_trunc, 'date_trunc', 2)
 self.nulls_ordering = self.server_version >= (3, 30, 0)

 def init(self, database, pragmas=None, timeout=5, **kwargs):
 if pragmas is not None:
 self._pragmas = pragmas
 if isinstance(self._pragmas, dict):
 self._pragmas = list(self._pragmas.items())
 self._timeout = timeout
 super(SqliteDatabase, self).init(database, **kwargs)

 def _set_server_version(self, conn):
 pass

 def _connect(self):
 if sqlite3 is None:
 raise ImproperlyConfigured('SQLite driver not installed!')
 conn = sqlite3.connect(self.database, timeout=self._timeout,
 isolation_level=None, **self.connect_params)
 try:
 self._add_conn_hooks(conn)
 except:
 conn.close()
 raise
 return conn

 def _add_conn_hooks(self, conn):
 if self._attached:
 self._attach_databases(conn)
 if self._pragmas:
 self._set_pragmas(conn)
 self._load_aggregates(conn)
 self._load_collations(conn)
 self._load_functions(conn)
 if self.server_version >= (3, 25, 0):
 self._load_window_functions(conn)
 if self._table_functions:
 for table_function in self._table_functions:
 table_function.register(conn)
 if self._extensions:
 self._load_extensions(conn)

 def _set_pragmas(self, conn):
 cursor = conn.cursor()
 for pragma, value in self._pragmas:
 cursor.execute('PRAGMA %s = %s;' % (pragma, value))
 cursor.close()

 def _attach_databases(self, conn):
 cursor = conn.cursor()
 for name, db in self._attached.items():
 cursor.execute('ATTACH DATABASE "%s" AS "%s"' % (db, name))
 cursor.close()

 def pragma(self, key, value=SENTINEL, permanent=False, schema=None):
 if schema is not None:
 key = '"%s".%s' % (schema, key)
 sql = 'PRAGMA %s' % key
 if value is not SENTINEL:
 sql += ' = %s' % (value or 0)
 if permanent:
 pragmas = dict(self._pragmas or ())
 pragmas[key] = value
 self._pragmas = list(pragmas.items())
 elif permanent:
 raise ValueError('Cannot specify a permanent pragma without value')
 row = self.execute_sql(sql).fetchone()
 if row:
 return row[0]

 cache_size = __pragma__('cache_size')
 foreign_keys = __pragma__('foreign_keys')
 journal_mode = __pragma__('journal_mode')
 journal_size_limit = __pragma__('journal_size_limit')
 mmap_size = __pragma__('mmap_size')
 page_size = __pragma__('page_size')
 read_uncommitted = __pragma__('read_uncommitted')
 synchronous = __pragma__('synchronous')
 wal_autocheckpoint = __pragma__('wal_autocheckpoint')

 @property
 def timeout(self):
 return self._timeout

 @timeout.setter
 def timeout(self, seconds):
 if self._timeout == seconds:
 return

 self._timeout = seconds
 if not self.is_closed():
 # PySQLite multiplies user timeout by 1000, but the unit of the
 # timeout PRAGMA is actually milliseconds.
 self.execute_sql('PRAGMA busy_timeout=%d;' % (seconds * 1000))

 def _load_aggregates(self, conn):
 for name, (klass, num_params) in self._aggregates.items():
 conn.create_aggregate(name, num_params, klass)

 def _load_collations(self, conn):
 for name, fn in self._collations.items():
 conn.create_collation(name, fn)

 def _load_functions(self, conn):
 for name, (fn, num_params) in self._functions.items():
 conn.create_function(name, num_params, fn)

 def _load_window_functions(self, conn):
 for name, (klass, num_params) in self._window_functions.items():
 conn.create_window_function(name, num_params, klass)

 def register_aggregate(self, klass, name=None, num_params=-1):
 self._aggregates[name or klass.__name__.lower()] = (klass, num_params)
 if not self.is_closed():
 self._load_aggregates(self.connection())

 def aggregate(self, name=None, num_params=-1):
 def decorator(klass):
 self.register_aggregate(klass, name, num_params)
 return klass
 return decorator

 def register_collation(self, fn, name=None):
 name = name or fn.__name__
 def _collation(*args):
 expressions = args + (SQL('collate %s' % name),)
 return NodeList(expressions)
 fn.collation = _collation
 self._collations[name] = fn
 if not self.is_closed():
 self._load_collations(self.connection())

 def collation(self, name=None):
 def decorator(fn):
 self.register_collation(fn, name)
 return fn
 return decorator

 def register_function(self, fn, name=None, num_params=-1):
 self._functions[name or fn.__name__] = (fn, num_params)
 if not self.is_closed():
 self._load_functions(self.connection())

 def func(self, name=None, num_params=-1):
 def decorator(fn):
 self.register_function(fn, name, num_params)
 return fn
 return decorator

 def register_window_function(self, klass, name=None, num_params=-1):
 name = name or klass.__name__.lower()
 self._window_functions[name] = (klass, num_params)
 if not self.is_closed():
 self._load_window_functions(self.connection())

 def window_function(self, name=None, num_params=-1):
 def decorator(klass):
 self.register_window_function(klass, name, num_params)
 return klass
 return decorator

 def register_table_function(self, klass, name=None):
 if name is not None:
 klass.name = name
 self._table_functions.append(klass)
 if not self.is_closed():
 klass.register(self.connection())

 def table_function(self, name=None):
 def decorator(klass):
 self.register_table_function(klass, name)
 return klass
 return decorator

 def unregister_aggregate(self, name):
 del(self._aggregates[name])

 def unregister_collation(self, name):
 del(self._collations[name])

 def unregister_function(self, name):
 del(self._functions[name])

 def unregister_window_function(self, name):
 del(self._window_functions[name])

 def unregister_table_function(self, name):
 for idx, klass in enumerate(self._table_functions):
 if klass.name == name:
 break
 else:
 return False
 self._table_functions.pop(idx)
 return True

 def _load_extensions(self, conn):
 conn.enable_load_extension(True)
 for extension in self._extensions:
 conn.load_extension(extension)

 def load_extension(self, extension):
 self._extensions.add(extension)
 if not self.is_closed():
 conn = self.connection()
 conn.enable_load_extension(True)
 conn.load_extension(extension)

 def unload_extension(self, extension):
 self._extensions.remove(extension)

 def attach(self, filename, name):
 if name in self._attached:
 if self._attached[name] == filename:
 return False
 raise OperationalError('schema "%s" already attached.' % name)

 self._attached[name] = filename
 if not self.is_closed():
 self.execute_sql('ATTACH DATABASE "%s" AS "%s"' % (filename, name))
 return True

 def detach(self, name):
 if name not in self._attached:
 return False

 del self._attached[name]
 if not self.is_closed():
 self.execute_sql('DETACH DATABASE "%s"' % name)
 return True

 def begin(self, lock_type=None):
 statement = 'BEGIN %s' % lock_type if lock_type else 'BEGIN'
 self.execute_sql(statement, commit=False)

 def get_tables(self, schema=None):
 schema = schema or 'main'
 cursor = self.execute_sql('SELECT name FROM "%s".sqlite_master WHERE '
 'type=? ORDER BY name' % schema, ('table',))
 return [row for row, in cursor.fetchall()]

 def get_views(self, schema=None):
 sql = ('SELECT name, sql FROM "%s".sqlite_master WHERE type=? '
 'ORDER BY name') % (schema or 'main')
 return [ViewMetadata(*row) for row in self.execute_sql(sql, ('view',))]

 def get_indexes(self, table, schema=None):
 schema = schema or 'main'
 query = ('SELECT name, sql FROM "%s".sqlite_master '
 'WHERE tbl_name = ? AND type = ? ORDER BY name') % schema
 cursor = self.execute_sql(query, (table, 'index'))
 index_to_sql = dict(cursor.fetchall())

 # Determine which indexes have a unique constraint.
 unique_indexes = set()
 cursor = self.execute_sql('PRAGMA "%s".index_list("%s")' %
 (schema, table))
 for row in cursor.fetchall():
 name = row[1]
 is_unique = int(row[2]) == 1
 if is_unique:
 unique_indexes.add(name)

 # Retrieve the indexed columns.
 index_columns = {}
 for index_name in sorted(index_to_sql):
 cursor = self.execute_sql('PRAGMA "%s".index_info("%s")' %
 (schema, index_name))
 index_columns[index_name] = [row[2] for row in cursor.fetchall()]

 return [
 IndexMetadata(
 name,
 index_to_sql[name],
 index_columns[name],
 name in unique_indexes,
 table)
 for name in sorted(index_to_sql)]

 def get_columns(self, table, schema=None):
 cursor = self.execute_sql('PRAGMA "%s".table_info("%s")' %
 (schema or 'main', table))
 return [ColumnMetadata(r[1], r[2], not r[3], bool(r[5]), table, r[4])
 for r in cursor.fetchall()]

 def get_primary_keys(self, table, schema=None):
 cursor = self.execute_sql('PRAGMA "%s".table_info("%s")' %
 (schema or 'main', table))
 return [row[1] for row in filter(lambda r: r[-1], cursor.fetchall())]

 def get_foreign_keys(self, table, schema=None):
 cursor = self.execute_sql('PRAGMA "%s".foreign_key_list("%s")' %
 (schema or 'main', table))
 return [ForeignKeyMetadata(row[3], row[2], row[4], table)
 for row in cursor.fetchall()]

 def get_binary_type(self):
 return sqlite3.Binary

 def conflict_statement(self, on_conflict, query):
 action = on_conflict._action.lower() if on_conflict._action else ''
 if action and action not in ('nothing', 'update'):
 return SQL('INSERT OR %s' % on_conflict._action.upper())

 def conflict_update(self, oc, query):
 # Sqlite prior to 3.24.0 does not support Postgres-style upsert.
 if self.server_version < (3, 24, 0) and \
 any((oc._preserve, oc._update, oc._where, oc._conflict_target,
 oc._conflict_constraint)):
 raise ValueError('SQLite does not support specifying which values '
 'to preserve or update.')

 action = oc._action.lower() if oc._action else ''
 if action and action not in ('nothing', 'update', ''):
 return

 if action == 'nothing':
 return SQL('ON CONFLICT DO NOTHING')
 elif not oc._update and not oc._preserve:
 raise ValueError('If you are not performing any updates (or '
 'preserving any INSERTed values), then the '
 'conflict resolution action should be set to '
 '"NOTHING".')
 elif oc._conflict_constraint:
 raise ValueError('SQLite does not support specifying named '
 'constraints for conflict resolution.')
 elif not oc._conflict_target:
 raise ValueError('SQLite requires that a conflict target be '
 'specified when doing an upsert.')

 return self._build_on_conflict_update(oc, query)

 def extract_date(self, date_part, date_field):
 return fn.date_part(date_part, date_field, python_value=int)

 def truncate_date(self, date_part, date_field):
 return fn.date_trunc(date_part, date_field,
 python_value=simple_date_time)

 def to_timestamp(self, date_field):
 return fn.strftime('%s', date_field).cast('integer')

 def from_timestamp(self, date_field):
 return fn.datetime(date_field, 'unixepoch')

class PostgresqlDatabase(Database):
 field_types = {
 'AUTO': 'SERIAL',
 'BIGAUTO': 'BIGSERIAL',
 'BLOB': 'BYTEA',
 'BOOL': 'BOOLEAN',
 'DATETIME': 'TIMESTAMP',
 'DECIMAL': 'NUMERIC',
 'DOUBLE': 'DOUBLE PRECISION',
 'UUID': 'UUID',
 'UUIDB': 'BYTEA'}
 operations = {'REGEXP': '~', 'IREGEXP': '~*'}
 param = '%s'

 commit_select = True
 compound_select_parentheses = CSQ_PARENTHESES_ALWAYS
 for_update = True
 nulls_ordering = True
 returning_clause = True
 safe_create_index = False
 sequences = True

 def init(self, database, register_unicode=True, encoding=None,
 isolation_level=None, **kwargs):
 self._register_unicode = register_unicode
 self._encoding = encoding
 self._isolation_level = isolation_level
 super(PostgresqlDatabase, self).init(database, **kwargs)

 def _connect(self):
 if psycopg2 is None:
 raise ImproperlyConfigured('Postgres driver not installed!')
 conn = psycopg2.connect(database=self.database, **self.connect_params)
 if self._register_unicode:
 pg_extensions.register_type(pg_extensions.UNICODE, conn)
 pg_extensions.register_type(pg_extensions.UNICODEARRAY, conn)
 if self._encoding:
 conn.set_client_encoding(self._encoding)
 if self._isolation_level:
 conn.set_isolation_level(self._isolation_level)
 return conn

 def _set_server_version(self, conn):
 self.server_version = conn.server_version
 if self.server_version >= 90600:
 self.safe_create_index = True

 def is_connection_usable(self):
 if self._state.closed:
 return False

 # Returns True if we are idle, running a command, or in an active
 # connection. If the connection is in an error state or the connection
 # is otherwise unusable, return False.
 txn_status = self._state.conn.get_transaction_status()
 return txn_status < pg_extensions.TRANSACTION_STATUS_INERROR

 def last_insert_id(self, cursor, query_type=None):
 try:
 return cursor if query_type != Insert.SIMPLE else cursor[0][0]
 except (IndexError, KeyError, TypeError):
 pass

 def get_tables(self, schema=None):
 query = ('SELECT tablename FROM pg_catalog.pg_tables '
 'WHERE schemaname = %s ORDER BY tablename')
 cursor = self.execute_sql(query, (schema or 'public',))
 return [table for table, in cursor.fetchall()]

 def get_views(self, schema=None):
 query = ('SELECT viewname, definition FROM pg_catalog.pg_views '
 'WHERE schemaname = %s ORDER BY viewname')
 cursor = self.execute_sql(query, (schema or 'public',))
 return [ViewMetadata(view_name, sql.strip(' \t;'))
 for (view_name, sql) in cursor.fetchall()]

 def get_indexes(self, table, schema=None):
 query = """
 SELECT
 i.relname, idxs.indexdef, idx.indisunique,
 array_to_string(ARRAY(
 SELECT pg_get_indexdef(idx.indexrelid, k + 1, TRUE)
 FROM generate_subscripts(idx.indkey, 1) AS k
 ORDER BY k), ',')
 FROM pg_catalog.pg_class AS t
 INNER JOIN pg_catalog.pg_index AS idx ON t.oid = idx.indrelid
 INNER JOIN pg_catalog.pg_class AS i ON idx.indexrelid = i.oid
 INNER JOIN pg_catalog.pg_indexes AS idxs ON
 (idxs.tablename = t.relname AND idxs.indexname = i.relname)
 WHERE t.relname = %s AND t.relkind = %s AND idxs.schemaname = %s
 ORDER BY idx.indisunique DESC, i.relname;"""
 cursor = self.execute_sql(query, (table, 'r', schema or 'public'))
 return [IndexMetadata(name, sql.rstrip(' ;'), columns.split(','),
 is_unique, table)
 for name, sql, is_unique, columns in cursor.fetchall()]

 def get_columns(self, table, schema=None):
 query = """
 SELECT column_name, is_nullable, data_type, column_default
 FROM information_schema.columns
 WHERE table_name = %s AND table_schema = %s
 ORDER BY ordinal_position"""
 cursor = self.execute_sql(query, (table, schema or 'public'))
 pks = set(self.get_primary_keys(table, schema))
 return [ColumnMetadata(name, dt, null == 'YES', name in pks, table, df)
 for name, null, dt, df in cursor.fetchall()]

 def get_primary_keys(self, table, schema=None):
 query = """
 SELECT kc.column_name
 FROM information_schema.table_constraints AS tc
 INNER JOIN information_schema.key_column_usage AS kc ON (
 tc.table_name = kc.table_name AND
 tc.table_schema = kc.table_schema AND
 tc.constraint_name = kc.constraint_name)
 WHERE
 tc.constraint_type = %s AND
 tc.table_name = %s AND
 tc.table_schema = %s"""
 ctype = 'PRIMARY KEY'
 cursor = self.execute_sql(query, (ctype, table, schema or 'public'))
 return [pk for pk, in cursor.fetchall()]

 def get_foreign_keys(self, table, schema=None):
 sql = """
 SELECT DISTINCT
 kcu.column_name, ccu.table_name, ccu.column_name
 FROM information_schema.table_constraints AS tc
 JOIN information_schema.key_column_usage AS kcu
 ON (tc.constraint_name = kcu.constraint_name AND
 tc.constraint_schema = kcu.constraint_schema)
 JOIN information_schema.constraint_column_usage AS ccu
 ON (ccu.constraint_name = tc.constraint_name AND
 ccu.constraint_schema = tc.constraint_schema)
 WHERE
 tc.constraint_type = 'FOREIGN KEY' AND
 tc.table_name = %s AND
 tc.table_schema = %s"""
 cursor = self.execute_sql(sql, (table, schema or 'public'))
 return [ForeignKeyMetadata(row[0], row[1], row[2], table)
 for row in cursor.fetchall()]

 def sequence_exists(self, sequence):
 res = self.execute_sql("""
 SELECT COUNT(*) FROM pg_class, pg_namespace
 WHERE relkind='S'
 AND pg_class.relnamespace = pg_namespace.oid
 AND relname=%s""", (sequence,))
 return bool(res.fetchone()[0])

 def get_binary_type(self):
 return psycopg2.Binary

 def conflict_statement(self, on_conflict, query):
 return

 def conflict_update(self, oc, query):
 action = oc._action.lower() if oc._action else ''
 if action in ('ignore', 'nothing'):
 return SQL('ON CONFLICT DO NOTHING')
 elif action and action != 'update':
 raise ValueError('The only supported actions for conflict '
 'resolution with Postgresql are "ignore" or '
 '"update".')
 elif not oc._update and not oc._preserve:
 raise ValueError('If you are not performing any updates (or '
 'preserving any INSERTed values), then the '
 'conflict resolution action should be set to '
 '"IGNORE".')
 elif not (oc._conflict_target or oc._conflict_constraint):
 raise ValueError('Postgres requires that a conflict target be '
 'specified when doing an upsert.')

 return self._build_on_conflict_update(oc, query)

 def extract_date(self, date_part, date_field):
 return fn.EXTRACT(NodeList((date_part, SQL('FROM'), date_field)))

 def truncate_date(self, date_part, date_field):
 return fn.DATE_TRUNC(date_part, date_field)

 def to_timestamp(self, date_field):
 return self.extract_date('EPOCH', date_field)

 def from_timestamp(self, date_field):
 # Ironically, here, Postgres means "to the Postgresql timestamp type".
 return fn.to_timestamp(date_field)

 def get_noop_select(self, ctx):
 return ctx.sql(Select().columns(SQL('0')).where(SQL('false')))

 def set_time_zone(self, timezone):
 self.execute_sql('set time zone "%s";' % timezone)

class MySQLDatabase(Database):
 field_types = {
 'AUTO': 'INTEGER AUTO_INCREMENT',
 'BIGAUTO': 'BIGINT AUTO_INCREMENT',
 'BOOL': 'BOOL',
 'DECIMAL': 'NUMERIC',
 'DOUBLE': 'DOUBLE PRECISION',
 'FLOAT': 'FLOAT',
 'UUID': 'VARCHAR(40)',
 'UUIDB': 'VARBINARY(16)'}
 operations = {
 'LIKE': 'LIKE BINARY',
 'ILIKE': 'LIKE',
 'REGEXP': 'REGEXP BINARY',
 'IREGEXP': 'REGEXP',
 'XOR': 'XOR'}
 param = '%s'
 quote = '``'

 commit_select = True
 compound_select_parentheses = CSQ_PARENTHESES_UNNESTED
 for_update = True
 index_using_precedes_table = True
 limit_max = 2 ** 64 - 1
 safe_create_index = False
 safe_drop_index = False
 sql_mode = 'PIPES_AS_CONCAT'

 def init(self, database, **kwargs):
 params = {
 'charset': 'utf8',
 'sql_mode': self.sql_mode,
 'use_unicode': True}
 params.update(kwargs)
 if 'password' in params and mysql_passwd:
 params['passwd'] = params.pop('password')
 super(MySQLDatabase, self).init(database, **params)

 def _connect(self):
 if mysql is None:
 raise ImproperlyConfigured('MySQL driver not installed!')
 conn = mysql.connect(db=self.database, **self.connect_params)
 return conn

 def _set_server_version(self, conn):
 try:
 version_raw = conn.server_version
 except AttributeError:
 version_raw = conn.get_server_info()
 self.server_version = self._extract_server_version(version_raw)

 def _extract_server_version(self, version):
 version = version.lower()
 if 'maria' in version:
 match_obj = re.search(r'(1\d\.\d+\.\d+)', version)
 else:
 match_obj = re.search(r'(\d\.\d+\.\d+)', version)
 if match_obj is not None:
 return tuple(int(num) for num in match_obj.groups()[0].split('.'))

 warnings.warn('Unable to determine MySQL version: "%s"' % version)
 return (0, 0, 0) # Unable to determine version!

 def default_values_insert(self, ctx):
 return ctx.literal('() VALUES ()')

 def get_tables(self, schema=None):
 query = ('SELECT table_name FROM information_schema.tables '
 'WHERE table_schema = DATABASE() AND table_type != %s '
 'ORDER BY table_name')
 return [table for table, in self.execute_sql(query, ('VIEW',))]

 def get_views(self, schema=None):
 query = ('SELECT table_name, view_definition '
 'FROM information_schema.views '
 'WHERE table_schema = DATABASE() ORDER BY table_name')
 cursor = self.execute_sql(query)
 return [ViewMetadata(*row) for row in cursor.fetchall()]

 def get_indexes(self, table, schema=None):
 cursor = self.execute_sql('SHOW INDEX FROM `%s`' % table)
 unique = set()
 indexes = {}
 for row in cursor.fetchall():
 if not row[1]:
 unique.add(row[2])
 indexes.setdefault(row[2], [])
 indexes[row[2]].append(row[4])
 return [IndexMetadata(name, None, indexes[name], name in unique, table)
 for name in indexes]

 def get_columns(self, table, schema=None):
 sql = """
 SELECT column_name, is_nullable, data_type, column_default
 FROM information_schema.columns
 WHERE table_name = %s AND table_schema = DATABASE()"""
 cursor = self.execute_sql(sql, (table,))
 pks = set(self.get_primary_keys(table))
 return [ColumnMetadata(name, dt, null == 'YES', name in pks, table, df)
 for name, null, dt, df in cursor.fetchall()]

 def get_primary_keys(self, table, schema=None):
 cursor = self.execute_sql('SHOW INDEX FROM `%s`' % table)
 return [row[4] for row in
 filter(lambda row: row[2] == 'PRIMARY', cursor.fetchall())]

 def get_foreign_keys(self, table, schema=None):
 query = """
 SELECT column_name, referenced_table_name, referenced_column_name
 FROM information_schema.key_column_usage
 WHERE table_name = %s
 AND table_schema = DATABASE()
 AND referenced_table_name IS NOT NULL
 AND referenced_column_name IS NOT NULL"""
 cursor = self.execute_sql(query, (table,))
 return [
 ForeignKeyMetadata(column, dest_table, dest_column, table)
 for column, dest_table, dest_column in cursor.fetchall()]

 def get_binary_type(self):
 return mysql.Binary

 def conflict_statement(self, on_conflict, query):
 if not on_conflict._action: return

 action = on_conflict._action.lower()
 if action == 'replace':
 return SQL('REPLACE')
 elif action == 'ignore':
 return SQL('INSERT IGNORE')
 elif action != 'update':
 raise ValueError('Un-supported action for conflict resolution. '
 'MySQL supports REPLACE, IGNORE and UPDATE.')

 def conflict_update(self, on_conflict, query):
 if on_conflict._where or on_conflict._conflict_target or \
 on_conflict._conflict_constraint:
 raise ValueError('MySQL does not support the specification of '
 'where clauses or conflict targets for conflict '
 'resolution.')

 updates = []
 if on_conflict._preserve:
 # Here we need to determine which function to use, which varies
 # depending on the MySQL server version. MySQL and MariaDB prior to
 # 10.3.3 use "VALUES", while MariaDB 10.3.3+ use "VALUE".
 version = self.server_version or (0,)
 if version[0] == 10 and version >= (10, 3, 3):
 VALUE_FN = fn.VALUE
 else:
 VALUE_FN = fn.VALUES

 for column in on_conflict._preserve:
 entity = ensure_entity(column)
 expression = NodeList((
 ensure_entity(column),
 SQL('='),
 VALUE_FN(entity)))
 updates.append(expression)

 if on_conflict._update:
 for k, v in on_conflict._update.items():
 if not isinstance(v, Node):
 # Attempt to resolve string field-names to their respective
 # field object, to apply data-type conversions.
 if isinstance(k, basestring):
 k = getattr(query.table, k)
 if isinstance(k, Field):
 v = k.to_value(v)
 else:
 v = Value(v, unpack=False)
 updates.append(NodeList((ensure_entity(k), SQL('='), v)))

 if updates:
 return NodeList((SQL('ON DUPLICATE KEY UPDATE'),
 CommaNodeList(updates)))

 def extract_date(self, date_part, date_field):
 return fn.EXTRACT(NodeList((SQL(date_part), SQL('FROM'), date_field)))

 def truncate_date(self, date_part, date_field):
 return fn.DATE_FORMAT(date_field, __mysql_date_trunc__[date_part],
 python_value=simple_date_time)

 def to_timestamp(self, date_field):
 return fn.UNIX_TIMESTAMP(date_field)

 def from_timestamp(self, date_field):
 return fn.FROM_UNIXTIME(date_field)

 def random(self):
 return fn.rand()

 def get_noop_select(self, ctx):
 return ctx.literal('DO 0')

TRANSACTION CONTROL.

class _manual(_callable_context_manager):
 def __init__(self, db):
 self.db = db

 def __enter__(self):
 top = self.db.top_transaction()
 if top is not None and not isinstance(top, _manual):
 raise ValueError('Cannot enter manual commit block while a '
 'transaction is active.')
 self.db.push_transaction(self)

 def __exit__(self, exc_type, exc_val, exc_tb):
 if self.db.pop_transaction() is not self:
 raise ValueError('Transaction stack corrupted while exiting '
 'manual commit block.')

class _atomic(_callable_context_manager):
 def __init__(self, db, *args, **kwargs):
 self.db = db
 self._transaction_args = (args, kwargs)

 def __enter__(self):
 if self.db.transaction_depth() == 0:
 args, kwargs = self._transaction_args
 self._helper = self.db.transaction(*args, **kwargs)
 elif isinstance(self.db.top_transaction(), _manual):
 raise ValueError('Cannot enter atomic commit block while in '
 'manual commit mode.')
 else:
 self._helper = self.db.savepoint()
 return self._helper.__enter__()

 def __exit__(self, exc_type, exc_val, exc_tb):
 return self._helper.__exit__(exc_type, exc_val, exc_tb)

class _transaction(_callable_context_manager):
 def __init__(self, db, *args, **kwargs):
 self.db = db
 self._begin_args = (args, kwargs)

 def _begin(self):
 args, kwargs = self._begin_args
 self.db.begin(*args, **kwargs)

 def commit(self, begin=True):
 self.db.commit()
 if begin:
 self._begin()

 def rollback(self, begin=True):
 self.db.rollback()
 if begin:
 self._begin()

 def __enter__(self):
 if self.db.transaction_depth() == 0:
 self._begin()
 self.db.push_transaction(self)
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 try:
 if exc_type:
 self.rollback(False)
 elif self.db.transaction_depth() == 1:
 try:
 self.commit(False)
 except:
 self.rollback(False)
 raise
 finally:
 self.db.pop_transaction()

class _savepoint(_callable_context_manager):
 def __init__(self, db, sid=None):
 self.db = db
 self.sid = sid or 's' + uuid.uuid4().hex
 self.quoted_sid = self.sid.join(self.db.quote)

 def _begin(self):
 self.db.execute_sql('SAVEPOINT %s;' % self.quoted_sid)

 def commit(self, begin=True):
 self.db.execute_sql('RELEASE SAVEPOINT %s;' % self.quoted_sid)
 if begin: self._begin()

 def rollback(self):
 self.db.execute_sql('ROLLBACK TO SAVEPOINT %s;' % self.quoted_sid)

 def __enter__(self):
 self._begin()
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 if exc_type:
 self.rollback()
 else:
 try:
 self.commit(begin=False)
 except:
 self.rollback()
 raise

CURSOR REPRESENTATIONS.

class CursorWrapper(object):
 def __init__(self, cursor):
 self.cursor = cursor
 self.count = 0
 self.index = 0
 self.initialized = False
 self.populated = False
 self.row_cache = []

 def __iter__(self):
 if self.populated:
 return iter(self.row_cache)
 return ResultIterator(self)

 def __getitem__(self, item):
 if isinstance(item, slice):
 stop = item.stop
 if stop is None or stop < 0:
 self.fill_cache()
 else:
 self.fill_cache(stop)
 return self.row_cache[item]
 elif isinstance(item, int):
 self.fill_cache(item if item > 0 else 0)
 return self.row_cache[item]
 else:
 raise ValueError('CursorWrapper only supports integer and slice '
 'indexes.')

 def __len__(self):
 self.fill_cache()
 return self.count

 def initialize(self):
 pass

 def iterate(self, cache=True):
 row = self.cursor.fetchone()
 if row is None:
 self.populated = True
 self.cursor.close()
 raise StopIteration
 elif not self.initialized:
 self.initialize() # Lazy initialization.
 self.initialized = True
 self.count += 1
 result = self.process_row(row)
 if cache:
 self.row_cache.append(result)
 return result

 def process_row(self, row):
 return row

 def iterator(self):
 """Efficient one-pass iteration over the result set."""
 while True:
 try:
 yield self.iterate(False)
 except StopIteration:
 return

 def fill_cache(self, n=0):
 n = n or float('Inf')
 if n < 0:
 raise ValueError('Negative values are not supported.')

 iterator = ResultIterator(self)
 iterator.index = self.count
 while not self.populated and (n > self.count):
 try:
 iterator.next()
 except StopIteration:
 break

class DictCursorWrapper(CursorWrapper):
 def _initialize_columns(self):
 description = self.cursor.description
 self.columns = [t[0][t[0].find('.') + 1:].strip('")')
 for t in description]
 self.ncols = len(description)

 initialize = _initialize_columns

 def _row_to_dict(self, row):
 result = {}
 for i in range(self.ncols):
 result.setdefault(self.columns[i], row[i]) # Do not overwrite.
 return result

 process_row = _row_to_dict

class NamedTupleCursorWrapper(CursorWrapper):
 def initialize(self):
 description = self.cursor.description
 self.tuple_class = collections.namedtuple(
 'Row',
 [col[0][col[0].find('.') + 1:].strip('"') for col in description])

 def process_row(self, row):
 return self.tuple_class(*row)

class ObjectCursorWrapper(DictCursorWrapper):
 def __init__(self, cursor, constructor):
 super(ObjectCursorWrapper, self).__init__(cursor)
 self.constructor = constructor

 def process_row(self, row):
 row_dict = self._row_to_dict(row)
 return self.constructor(**row_dict)

class ResultIterator(object):
 def __init__(self, cursor_wrapper):
 self.cursor_wrapper = cursor_wrapper
 self.index = 0

 def __iter__(self):
 return self

 def next(self):
 if self.index < self.cursor_wrapper.count:
 obj = self.cursor_wrapper.row_cache[self.index]
 elif not self.cursor_wrapper.populated:
 self.cursor_wrapper.iterate()
 obj = self.cursor_wrapper.row_cache[self.index]
 else:
 raise StopIteration
 self.index += 1
 return obj

 __next__ = next

FIELDS

class FieldAccessor(object):
 def __init__(self, model, field, name):
 self.model = model
 self.field = field
 self.name = name

 def __get__(self, instance, instance_type=None):
 if instance is not None:
 return instance.__data__.get(self.name)
 return self.field

 def __set__(self, instance, value):
 instance.__data__[self.name] = value
 instance._dirty.add(self.name)

class ForeignKeyAccessor(FieldAccessor):
 def __init__(self, model, field, name):
 super(ForeignKeyAccessor, self).__init__(model, field, name)
 self.rel_model = field.rel_model

 def get_rel_instance(self, instance):
 value = instance.__data__.get(self.name)
 if value is not None or self.name in instance.__rel__:
 if self.name not in instance.__rel__ and self.field.lazy_load:
 obj = self.rel_model.get(self.field.rel_field == value)
 instance.__rel__[self.name] = obj
 return instance.__rel__.get(self.name, value)
 elif not self.field.null:
 raise self.rel_model.DoesNotExist
 return value

 def __get__(self, instance, instance_type=None):
 if instance is not None:
 return self.get_rel_instance(instance)
 return self.field

 def __set__(self, instance, obj):
 if isinstance(obj, self.rel_model):
 instance.__data__[self.name] = getattr(obj, self.field.rel_field.name)
 instance.__rel__[self.name] = obj
 else:
 fk_value = instance.__data__.get(self.name)
 instance.__data__[self.name] = obj
 if obj != fk_value and self.name in instance.__rel__:
 del instance.__rel__[self.name]
 instance._dirty.add(self.name)

class BackrefAccessor(object):
 def __init__(self, field):
 self.field = field
 self.model = field.rel_model
 self.rel_model = field.model

 def __get__(self, instance, instance_type=None):
 if instance is not None:
 dest = self.field.rel_field.name
 return (self.rel_model
 .select()
 .where(self.field == getattr(instance, dest)))
 return self

class ObjectIdAccessor(object):
 """Gives direct access to the underlying id"""
 def __init__(self, field):
 self.field = field

 def __get__(self, instance, instance_type=None):
 if instance is not None:
 value = instance.__data__.get(self.field.name)
 # Pull the object-id from the related object if it is not set.
 if value is None and self.field.name in instance.__rel__:
 rel_obj = instance.__rel__[self.field.name]
 value = getattr(rel_obj, self.field.rel_field.name)
 return value
 return self.field

 def __set__(self, instance, value):
 setattr(instance, self.field.name, value)

class Field(ColumnBase):
 _field_counter = 0
 _order = 0
 accessor_class = FieldAccessor
 auto_increment = False
 default_index_type = None
 field_type = 'DEFAULT'
 unpack = True

 def __init__(self, null=False, index=False, unique=False, column_name=None,
 default=None, primary_key=False, constraints=None,
 sequence=None, collation=None, unindexed=False, choices=None,
 help_text=None, verbose_name=None, index_type=None,
 db_column=None, _hidden=False):
 if db_column is not None:
 __deprecated__('"db_column" has been deprecated in favor of '
 '"column_name" for Field objects.')
 column_name = db_column

 self.null = null
 self.index = index
 self.unique = unique
 self.column_name = column_name
 self.default = default
 self.primary_key = primary_key
 self.constraints = constraints # List of column constraints.
 self.sequence = sequence # Name of sequence, e.g. foo_id_seq.
 self.collation = collation
 self.unindexed = unindexed
 self.choices = choices
 self.help_text = help_text
 self.verbose_name = verbose_name
 self.index_type = index_type or self.default_index_type
 self._hidden = _hidden

 # Used internally for recovering the order in which Fields were defined
 # on the Model class.
 Field._field_counter += 1
 self._order = Field._field_counter
 self._sort_key = (self.primary_key and 1 or 2), self._order

 def __hash__(self):
 return hash(self.name + '.' + self.model.__name__)

 def __repr__(self):
 if hasattr(self, 'model') and getattr(self, 'name', None):
 return '<%s: %s.%s>' % (type(self).__name__,
 self.model.__name__,
 self.name)
 return '<%s: (unbound)>' % type(self).__name__

 def bind(self, model, name, set_attribute=True):
 self.model = model
 self.name = self.safe_name = name
 self.column_name = self.column_name or name
 if set_attribute:
 setattr(model, name, self.accessor_class(model, self, name))

 @property
 def column(self):
 return Column(self.model._meta.table, self.column_name)

 def adapt(self, value):
 return value

 def db_value(self, value):
 return value if value is None else self.adapt(value)

 def python_value(self, value):
 return value if value is None else self.adapt(value)

 def to_value(self, value):
 return Value(value, self.db_value, unpack=False)

 def get_sort_key(self, ctx):
 return self._sort_key

 def __sql__(self, ctx):
 return ctx.sql(self.column)

 def get_modifiers(self):
 pass

 def ddl_datatype(self, ctx):
 if ctx and ctx.state.field_types:
 column_type = ctx.state.field_types.get(self.field_type,
 self.field_type)
 else:
 column_type = self.field_type

 modifiers = self.get_modifiers()
 if column_type and modifiers:
 modifier_literal = ', '.join([str(m) for m in modifiers])
 return SQL('%s(%s)' % (column_type, modifier_literal))
 else:
 return SQL(column_type)

 def ddl(self, ctx):
 accum = [Entity(self.column_name)]
 data_type = self.ddl_datatype(ctx)
 if data_type:
 accum.append(data_type)
 if self.unindexed:
 accum.append(SQL('UNINDEXED'))
 if not self.null:
 accum.append(SQL('NOT NULL'))
 if self.primary_key:
 accum.append(SQL('PRIMARY KEY'))
 if self.sequence:
 accum.append(SQL("DEFAULT NEXTVAL('%s')" % self.sequence))
 if self.constraints:
 accum.extend(self.constraints)
 if self.collation:
 accum.append(SQL('COLLATE %s' % self.collation))
 return NodeList(accum)

class IntegerField(Field):
 field_type = 'INT'

 def adapt(self, value):
 try:
 return int(value)
 except ValueError:
 return value

class BigIntegerField(IntegerField):
 field_type = 'BIGINT'

class SmallIntegerField(IntegerField):
 field_type = 'SMALLINT'

class AutoField(IntegerField):
 auto_increment = True
 field_type = 'AUTO'

 def __init__(self, *args, **kwargs):
 if kwargs.get('primary_key') is False:
 raise ValueError('%s must always be a primary key.' % type(self))
 kwargs['primary_key'] = True
 super(AutoField, self).__init__(*args, **kwargs)

class BigAutoField(AutoField):
 field_type = 'BIGAUTO'

class IdentityField(AutoField):
 field_type = 'INT GENERATED BY DEFAULT AS IDENTITY'

 def __init__(self, generate_always=False, **kwargs):
 if generate_always:
 self.field_type = 'INT GENERATED ALWAYS AS IDENTITY'
 super(IdentityField, self).__init__(**kwargs)

class PrimaryKeyField(AutoField):
 def __init__(self, *args, **kwargs):
 __deprecated__('"PrimaryKeyField" has been renamed to "AutoField". '
 'Please update your code accordingly as this will be '
 'completely removed in a subsequent release.')
 super(PrimaryKeyField, self).__init__(*args, **kwargs)

class FloatField(Field):
 field_type = 'FLOAT'

 def adapt(self, value):
 try:
 return float(value)
 except ValueError:
 return value

class DoubleField(FloatField):
 field_type = 'DOUBLE'

class DecimalField(Field):
 field_type = 'DECIMAL'

 def __init__(self, max_digits=10, decimal_places=5, auto_round=False,
 rounding=None, *args, **kwargs):
 self.max_digits = max_digits
 self.decimal_places = decimal_places
 self.auto_round = auto_round
 self.rounding = rounding or decimal.DefaultContext.rounding
 self._exp = decimal.Decimal(10) ** (-self.decimal_places)
 super(DecimalField, self).__init__(*args, **kwargs)

 def get_modifiers(self):
 return [self.max_digits, self.decimal_places]

 def db_value(self, value):
 D = decimal.Decimal
 if not value:
 return value if value is None else D(0)
 if self.auto_round:
 decimal_value = D(text_type(value))
 return decimal_value.quantize(self._exp, rounding=self.rounding)
 return value

 def python_value(self, value):
 if value is not None:
 if isinstance(value, decimal.Decimal):
 return value
 return decimal.Decimal(text_type(value))

class _StringField(Field):
 def adapt(self, value):
 if isinstance(value, text_type):
 return value
 elif isinstance(value, bytes_type):
 return value.decode('utf-8')
 return text_type(value)

 def __add__(self, other): return StringExpression(self, OP.CONCAT, other)
 def __radd__(self, other): return StringExpression(other, OP.CONCAT, self)

class CharField(_StringField):
 field_type = 'VARCHAR'

 def __init__(self, max_length=255, *args, **kwargs):
 self.max_length = max_length
 super(CharField, self).__init__(*args, **kwargs)

 def get_modifiers(self):
 return self.max_length and [self.max_length] or None

class FixedCharField(CharField):
 field_type = 'CHAR'

 def python_value(self, value):
 value = super(FixedCharField, self).python_value(value)
 if value:
 value = value.strip()
 return value

class TextField(_StringField):
 field_type = 'TEXT'

class BlobField(Field):
 field_type = 'BLOB'

 def _db_hook(self, database):
 if database is None:
 self._constructor = bytearray
 else:
 self._constructor = database.get_binary_type()

 def bind(self, model, name, set_attribute=True):
 self._constructor = bytearray
 if model._meta.database:
 if isinstance(model._meta.database, Proxy):
 model._meta.database.attach_callback(self._db_hook)
 else:
 self._db_hook(model._meta.database)

 # Attach a hook to the model metadata; in the event the database is
 # changed or set at run-time, we will be sure to apply our callback and
 # use the proper data-type for our database driver.
 model._meta._db_hooks.append(self._db_hook)
 return super(BlobField, self).bind(model, name, set_attribute)

 def db_value(self, value):
 if isinstance(value, text_type):
 value = value.encode('raw_unicode_escape')
 if isinstance(value, bytes_type):
 return self._constructor(value)
 return value

class BitField(BitwiseMixin, BigIntegerField):
 def __init__(self, *args, **kwargs):
 kwargs.setdefault('default', 0)
 super(BitField, self).__init__(*args, **kwargs)
 self.__current_flag = 1

 def flag(self, value=None):
 if value is None:
 value = self.__current_flag
 self.__current_flag <<= 1
 else:
 self.__current_flag = value << 1

 class FlagDescriptor(ColumnBase):
 def __init__(self, field, value):
 self._field = field
 self._value = value
 super(FlagDescriptor, self).__init__()
 def clear(self):
 return self._field.bin_and(~self._value)
 def set(self):
 return self._field.bin_or(self._value)
 def __get__(self, instance, instance_type=None):
 if instance is None:
 return self
 value = getattr(instance, self._field.name) or 0
 return (value & self._value) != 0
 def __set__(self, instance, is_set):
 if is_set not in (True, False):
 raise ValueError('Value must be either True or False')
 value = getattr(instance, self._field.name) or 0
 if is_set:
 value |= self._value
 else:
 value &= ~self._value
 setattr(instance, self._field.name, value)
 def __sql__(self, ctx):
 return ctx.sql(self._field.bin_and(self._value) != 0)
 return FlagDescriptor(self, value)

class BigBitFieldData(object):
 def __init__(self, instance, name):
 self.instance = instance
 self.name = name
 value = self.instance.__data__.get(self.name)
 if not value:
 value = bytearray()
 elif not isinstance(value, bytearray):
 value = bytearray(value)
 self._buffer = self.instance.__data__[self.name] = value

 def _ensure_length(self, idx):
 byte_num, byte_offset = divmod(idx, 8)
 cur_size = len(self._buffer)
 if cur_size <= byte_num:
 self._buffer.extend(b'\x00' * ((byte_num + 1) - cur_size))
 return byte_num, byte_offset

 def set_bit(self, idx):
 byte_num, byte_offset = self._ensure_length(idx)
 self._buffer[byte_num] |= (1 << byte_offset)

 def clear_bit(self, idx):
 byte_num, byte_offset = self._ensure_length(idx)
 self._buffer[byte_num] &= ~(1 << byte_offset)

 def toggle_bit(self, idx):
 byte_num, byte_offset = self._ensure_length(idx)
 self._buffer[byte_num] ^= (1 << byte_offset)
 return bool(self._buffer[byte_num] & (1 << byte_offset))

 def is_set(self, idx):
 byte_num, byte_offset = self._ensure_length(idx)
 return bool(self._buffer[byte_num] & (1 << byte_offset))

 def __repr__(self):
 return repr(self._buffer)

class BigBitFieldAccessor(FieldAccessor):
 def __get__(self, instance, instance_type=None):
 if instance is None:
 return self.field
 return BigBitFieldData(instance, self.name)
 def __set__(self, instance, value):
 if isinstance(value, memoryview):
 value = value.tobytes()
 elif isinstance(value, buffer_type):
 value = bytes(value)
 elif isinstance(value, bytearray):
 value = bytes_type(value)
 elif isinstance(value, BigBitFieldData):
 value = bytes_type(value._buffer)
 elif isinstance(value, text_type):
 value = value.encode('utf-8')
 elif not isinstance(value, bytes_type):
 raise ValueError('Value must be either a bytes, memoryview or '
 'BigBitFieldData instance.')
 super(BigBitFieldAccessor, self).__set__(instance, value)

class BigBitField(BlobField):
 accessor_class = BigBitFieldAccessor

 def __init__(self, *args, **kwargs):
 kwargs.setdefault('default', bytes_type)
 super(BigBitField, self).__init__(*args, **kwargs)

 def db_value(self, value):
 return bytes_type(value) if value is not None else value

class UUIDField(Field):
 field_type = 'UUID'

 def db_value(self, value):
 if isinstance(value, basestring) and len(value) == 32:
 # Hex string. No transformation is necessary.
 return value
 elif isinstance(value, bytes) and len(value) == 16:
 # Allow raw binary representation.
 value = uuid.UUID(bytes=value)
 if isinstance(value, uuid.UUID):
 return value.hex
 try:
 return uuid.UUID(value).hex
 except:
 return value

 def python_value(self, value):
 if isinstance(value, uuid.UUID):
 return value
 return uuid.UUID(value) if value is not None else None

class BinaryUUIDField(BlobField):
 field_type = 'UUIDB'

 def db_value(self, value):
 if isinstance(value, bytes) and len(value) == 16:
 # Raw binary value. No transformation is necessary.
 return self._constructor(value)
 elif isinstance(value, basestring) and len(value) == 32:
 # Allow hex string representation.
 value = uuid.UUID(hex=value)
 if isinstance(value, uuid.UUID):
 return self._constructor(value.bytes)
 elif value is not None:
 raise ValueError('value for binary UUID field must be UUID(), '
 'a hexadecimal string, or a bytes object.')

 def python_value(self, value):
 if isinstance(value, uuid.UUID):
 return value
 elif isinstance(value, memoryview):
 value = value.tobytes()
 elif value and not isinstance(value, bytes):
 value = bytes(value)
 return uuid.UUID(bytes=value) if value is not None else None

def _date_part(date_part):
 def dec(self):
 return self.model._meta.database.extract_date(date_part, self)
 return dec

def format_date_time(value, formats, post_process=None):
 post_process = post_process or (lambda x: x)
 for fmt in formats:
 try:
 return post_process(datetime.datetime.strptime(value, fmt))
 except ValueError:
 pass
 return value

def simple_date_time(value):
 try:
 return datetime.datetime.strptime(value, '%Y-%m-%d %H:%M:%S')
 except (TypeError, ValueError):
 return value

class _BaseFormattedField(Field):
 formats = None

 def __init__(self, formats=None, *args, **kwargs):
 if formats is not None:
 self.formats = formats
 super(_BaseFormattedField, self).__init__(*args, **kwargs)

class DateTimeField(_BaseFormattedField):
 field_type = 'DATETIME'
 formats = [
 '%Y-%m-%d %H:%M:%S.%f',
 '%Y-%m-%d %H:%M:%S',
 '%Y-%m-%d',
]

 def adapt(self, value):
 if value and isinstance(value, basestring):
 return format_date_time(value, self.formats)
 return value

 def to_timestamp(self):
 return self.model._meta.database.to_timestamp(self)

 def truncate(self, part):
 return self.model._meta.database.truncate_date(part, self)

 year = property(_date_part('year'))
 month = property(_date_part('month'))
 day = property(_date_part('day'))
 hour = property(_date_part('hour'))
 minute = property(_date_part('minute'))
 second = property(_date_part('second'))

class DateField(_BaseFormattedField):
 field_type = 'DATE'
 formats = [
 '%Y-%m-%d',
 '%Y-%m-%d %H:%M:%S',
 '%Y-%m-%d %H:%M:%S.%f',
]

 def adapt(self, value):
 if value and isinstance(value, basestring):
 pp = lambda x: x.date()
 return format_date_time(value, self.formats, pp)
 elif value and isinstance(value, datetime.datetime):
 return value.date()
 return value

 def to_timestamp(self):
 return self.model._meta.database.to_timestamp(self)

 def truncate(self, part):
 return self.model._meta.database.truncate_date(part, self)

 year = property(_date_part('year'))
 month = property(_date_part('month'))
 day = property(_date_part('day'))

class TimeField(_BaseFormattedField):
 field_type = 'TIME'
 formats = [
 '%H:%M:%S.%f',
 '%H:%M:%S',
 '%H:%M',
 '%Y-%m-%d %H:%M:%S.%f',
 '%Y-%m-%d %H:%M:%S',
]

 def adapt(self, value):
 if value:
 if isinstance(value, basestring):
 pp = lambda x: x.time()
 return format_date_time(value, self.formats, pp)
 elif isinstance(value, datetime.datetime):
 return value.time()
 if value is not None and isinstance(value, datetime.timedelta):
 return (datetime.datetime.min + value).time()
 return value

 hour = property(_date_part('hour'))
 minute = property(_date_part('minute'))
 second = property(_date_part('second'))

def _timestamp_date_part(date_part):
 def dec(self):
 db = self.model._meta.database
 expr = ((self / Value(self.resolution, converter=False))
 if self.resolution > 1 else self)
 return db.extract_date(date_part, db.from_timestamp(expr))
 return dec

class TimestampField(BigIntegerField):
 # Support second -> microsecond resolution.
 valid_resolutions = [10**i for i in range(7)]

 def __init__(self, *args, **kwargs):
 self.resolution = kwargs.pop('resolution', None)

 if not self.resolution:
 self.resolution = 1
 elif self.resolution in range(2, 7):
 self.resolution = 10 ** self.resolution
 elif self.resolution not in self.valid_resolutions:
 raise ValueError('TimestampField resolution must be one of: %s' %
 ', '.join(str(i) for i in self.valid_resolutions))
 self.ticks_to_microsecond = 1000000 // self.resolution

 self.utc = kwargs.pop('utc', False) or False
 dflt = datetime.datetime.utcnow if self.utc else datetime.datetime.now
 kwargs.setdefault('default', dflt)
 super(TimestampField, self).__init__(*args, **kwargs)

 def local_to_utc(self, dt):
 # Convert naive local datetime into naive UTC, e.g.:
 # 2019-03-01T12:00:00 (local=US/Central) -> 2019-03-01T18:00:00.
 # 2019-05-01T12:00:00 (local=US/Central) -> 2019-05-01T17:00:00.
 # 2019-03-01T12:00:00 (local=UTC) -> 2019-03-01T12:00:00.
 return datetime.datetime(*time.gmtime(time.mktime(dt.timetuple()))[:6])

 def utc_to_local(self, dt):
 # Convert a naive UTC datetime into local time, e.g.:
 # 2019-03-01T18:00:00 (local=US/Central) -> 2019-03-01T12:00:00.
 # 2019-05-01T17:00:00 (local=US/Central) -> 2019-05-01T12:00:00.
 # 2019-03-01T12:00:00 (local=UTC) -> 2019-03-01T12:00:00.
 ts = calendar.timegm(dt.utctimetuple())
 return datetime.datetime.fromtimestamp(ts)

 def get_timestamp(self, value):
 if self.utc:
 # If utc-mode is on, then we assume all naive datetimes are in UTC.
 return calendar.timegm(value.utctimetuple())
 else:
 return time.mktime(value.timetuple())

 def db_value(self, value):
 if value is None:
 return

 if isinstance(value, datetime.datetime):
 pass
 elif isinstance(value, datetime.date):
 value = datetime.datetime(value.year, value.month, value.day)
 else:
 return int(round(value * self.resolution))

 timestamp = self.get_timestamp(value)
 if self.resolution > 1:
 timestamp += (value.microsecond * .000001)
 timestamp *= self.resolution
 return int(round(timestamp))

 def python_value(self, value):
 if value is not None and isinstance(value, (int, float, long)):
 if self.resolution > 1:
 value, ticks = divmod(value, self.resolution)
 microseconds = int(ticks * self.ticks_to_microsecond)
 else:
 microseconds = 0

 if self.utc:
 value = datetime.datetime.utcfromtimestamp(value)
 else:
 value = datetime.datetime.fromtimestamp(value)

 if microseconds:
 value = value.replace(microsecond=microseconds)

 return value

 def from_timestamp(self):
 expr = ((self / Value(self.resolution, converter=False))
 if self.resolution > 1 else self)
 return self.model._meta.database.from_timestamp(expr)

 year = property(_timestamp_date_part('year'))
 month = property(_timestamp_date_part('month'))
 day = property(_timestamp_date_part('day'))
 hour = property(_timestamp_date_part('hour'))
 minute = property(_timestamp_date_part('minute'))
 second = property(_timestamp_date_part('second'))

class IPField(BigIntegerField):
 def db_value(self, val):
 if val is not None:
 return struct.unpack('!I', socket.inet_aton(val))[0]

 def python_value(self, val):
 if val is not None:
 return socket.inet_ntoa(struct.pack('!I', val))

class BooleanField(Field):
 field_type = 'BOOL'
 adapt = bool

class BareField(Field):
 def __init__(self, adapt=None, *args, **kwargs):
 super(BareField, self).__init__(*args, **kwargs)
 if adapt is not None:
 self.adapt = adapt

 def ddl_datatype(self, ctx):
 return

class ForeignKeyField(Field):
 accessor_class = ForeignKeyAccessor

 def __init__(self, model, field=None, backref=None, on_delete=None,
 on_update=None, deferrable=None, _deferred=None,
 rel_model=None, to_field=None, object_id_name=None,
 lazy_load=True, related_name=None, *args, **kwargs):
 kwargs.setdefault('index', True)

 super(ForeignKeyField, self).__init__(*args, **kwargs)

 if rel_model is not None:
 __deprecated__('"rel_model" has been deprecated in favor of '
 '"model" for ForeignKeyField objects.')
 model = rel_model
 if to_field is not None:
 __deprecated__('"to_field" has been deprecated in favor of '
 '"field" for ForeignKeyField objects.')
 field = to_field
 if related_name is not None:
 __deprecated__('"related_name" has been deprecated in favor of '
 '"backref" for Field objects.')
 backref = related_name

 self._is_self_reference = model == 'self'
 self.rel_model = model
 self.rel_field = field
 self.declared_backref = backref
 self.backref = None
 self.on_delete = on_delete
 self.on_update = on_update
 self.deferrable = deferrable
 self.deferred = _deferred
 self.object_id_name = object_id_name
 self.lazy_load = lazy_load

 @property
 def field_type(self):
 if not isinstance(self.rel_field, AutoField):
 return self.rel_field.field_type
 elif isinstance(self.rel_field, BigAutoField):
 return BigIntegerField.field_type
 return IntegerField.field_type

 def get_modifiers(self):
 if not isinstance(self.rel_field, AutoField):
 return self.rel_field.get_modifiers()
 return super(ForeignKeyField, self).get_modifiers()

 def adapt(self, value):
 return self.rel_field.adapt(value)

 def db_value(self, value):
 if isinstance(value, self.rel_model):
 value = getattr(value, self.rel_field.name)
 return self.rel_field.db_value(value)

 def python_value(self, value):
 if isinstance(value, self.rel_model):
 return value
 return self.rel_field.python_value(value)

 def bind(self, model, name, set_attribute=True):
 if not self.column_name:
 self.column_name = name if name.endswith('_id') else name + '_id'
 if not self.object_id_name:
 self.object_id_name = self.column_name
 if self.object_id_name == name:
 self.object_id_name += '_id'
 elif self.object_id_name == name:
 raise ValueError('ForeignKeyField "%s"."%s" specifies an '
 'object_id_name that conflicts with its field '
 'name.' % (model._meta.name, name))
 if self._is_self_reference:
 self.rel_model = model
 if isinstance(self.rel_field, basestring):
 self.rel_field = getattr(self.rel_model, self.rel_field)
 elif self.rel_field is None:
 self.rel_field = self.rel_model._meta.primary_key

 # Bind field before assigning backref, so field is bound when
 # calling declared_backref() (if callable).
 super(ForeignKeyField, self).bind(model, name, set_attribute)
 self.safe_name = self.object_id_name

 if callable_(self.declared_backref):
 self.backref = self.declared_backref(self)
 else:
 self.backref, self.declared_backref = self.declared_backref, None
 if not self.backref:
 self.backref = '%s_set' % model._meta.name

 if set_attribute:
 setattr(model, self.object_id_name, ObjectIdAccessor(self))
 if self.backref not in '!+':
 setattr(self.rel_model, self.backref, BackrefAccessor(self))

 def foreign_key_constraint(self):
 parts = [
 SQL('FOREIGN KEY'),
 EnclosedNodeList((self,)),
 SQL('REFERENCES'),
 self.rel_model,
 EnclosedNodeList((self.rel_field,))]
 if self.on_delete:
 parts.append(SQL('ON DELETE %s' % self.on_delete))
 if self.on_update:
 parts.append(SQL('ON UPDATE %s' % self.on_update))
 if self.deferrable:
 parts.append(SQL('DEFERRABLE %s' % self.deferrable))
 return NodeList(parts)

 def __getattr__(self, attr):
 if attr.startswith('__'):
 # Prevent recursion error when deep-copying.
 raise AttributeError('Cannot look-up non-existant "__" methods.')
 if attr in self.rel_model._meta.fields:
 return self.rel_model._meta.fields[attr]
 raise AttributeError('Foreign-key has no attribute %s, nor is it a '
 'valid field on the related model.' % attr)

class DeferredForeignKey(Field):
 _unresolved = set()

 def __init__(self, rel_model_name, **kwargs):
 self.field_kwargs = kwargs
 self.rel_model_name = rel_model_name.lower()
 DeferredForeignKey._unresolved.add(self)
 super(DeferredForeignKey, self).__init__(
 column_name=kwargs.get('column_name'),
 null=kwargs.get('null'))

 __hash__ = object.__hash__

 def __deepcopy__(self, memo=None):
 return DeferredForeignKey(self.rel_model_name, **self.field_kwargs)

 def set_model(self, rel_model):
 field = ForeignKeyField(rel_model, _deferred=True, **self.field_kwargs)
 self.model._meta.add_field(self.name, field)

 @staticmethod
 def resolve(model_cls):
 unresolved = sorted(DeferredForeignKey._unresolved,
 key=operator.attrgetter('_order'))
 for dr in unresolved:
 if dr.rel_model_name == model_cls.__name__.lower():
 dr.set_model(model_cls)
 DeferredForeignKey._unresolved.discard(dr)

class DeferredThroughModel(object):
 def __init__(self):
 self._refs = []

 def set_field(self, model, field, name):
 self._refs.append((model, field, name))

 def set_model(self, through_model):
 for src_model, m2mfield, name in self._refs:
 m2mfield.through_model = through_model
 src_model._meta.add_field(name, m2mfield)

class MetaField(Field):
 column_name = default = model = name = None
 primary_key = False

class ManyToManyFieldAccessor(FieldAccessor):
 def __init__(self, model, field, name):
 super(ManyToManyFieldAccessor, self).__init__(model, field, name)
 self.model = field.model
 self.rel_model = field.rel_model
 self.through_model = field.through_model
 src_fks = self.through_model._meta.model_refs[self.model]
 dest_fks = self.through_model._meta.model_refs[self.rel_model]
 if not src_fks:
 raise ValueError('Cannot find foreign-key to "%s" on "%s" model.' %
 (self.model, self.through_model))
 elif not dest_fks:
 raise ValueError('Cannot find foreign-key to "%s" on "%s" model.' %
 (self.rel_model, self.through_model))
 self.src_fk = src_fks[0]
 self.dest_fk = dest_fks[0]

 def __get__(self, instance, instance_type=None, force_query=False):
 if instance is not None:
 if not force_query and self.src_fk.backref != '+':
 backref = getattr(instance, self.src_fk.backref)
 if isinstance(backref, list):
 return [getattr(obj, self.dest_fk.name) for obj in backref]

 src_id = getattr(instance, self.src_fk.rel_field.name)
 return (ManyToManyQuery(instance, self, self.rel_model)
 .join(self.through_model)
 .join(self.model)
 .where(self.src_fk == src_id))

 return self.field

 def __set__(self, instance, value):
 query = self.__get__(instance, force_query=True)
 query.add(value, clear_existing=True)

class ManyToManyField(MetaField):
 accessor_class = ManyToManyFieldAccessor

 def __init__(self, model, backref=None, through_model=None, on_delete=None,
 on_update=None, _is_backref=False):
 if through_model is not None:
 if not (isinstance(through_model, DeferredThroughModel) or
 is_model(through_model)):
 raise TypeError('Unexpected value for through_model. Expected '
 'Model or DeferredThroughModel.')
 if not _is_backref and (on_delete is not None or on_update is not None):
 raise ValueError('Cannot specify on_delete or on_update when '
 'through_model is specified.')
 self.rel_model = model
 self.backref = backref
 self._through_model = through_model
 self._on_delete = on_delete
 self._on_update = on_update
 self._is_backref = _is_backref

 def _get_descriptor(self):
 return ManyToManyFieldAccessor(self)

 def bind(self, model, name, set_attribute=True):
 if isinstance(self._through_model, DeferredThroughModel):
 self._through_model.set_field(model, self, name)
 return

 super(ManyToManyField, self).bind(model, name, set_attribute)

 if not self._is_backref:
 many_to_many_field = ManyToManyField(
 self.model,
 backref=name,
 through_model=self.through_model,
 on_delete=self._on_delete,
 on_update=self._on_update,
 _is_backref=True)
 self.backref = self.backref or model._meta.name + 's'
 self.rel_model._meta.add_field(self.backref, many_to_many_field)

 def get_models(self):
 return [model for _, model in sorted((
 (self._is_backref, self.model),
 (not self._is_backref, self.rel_model)))]

 @property
 def through_model(self):
 if self._through_model is None:
 self._through_model = self._create_through_model()
 return self._through_model

 @through_model.setter
 def through_model(self, value):
 self._through_model = value

 def _create_through_model(self):
 lhs, rhs = self.get_models()
 tables = [model._meta.table_name for model in (lhs, rhs)]

 class Meta:
 database = self.model._meta.database
 schema = self.model._meta.schema
 table_name = '%s_%s_through' % tuple(tables)
 indexes = (
 ((lhs._meta.name, rhs._meta.name),
 True),)

 params = {'on_delete': self._on_delete, 'on_update': self._on_update}
 attrs = {
 lhs._meta.name: ForeignKeyField(lhs, **params),
 rhs._meta.name: ForeignKeyField(rhs, **params),
 'Meta': Meta}

 klass_name = '%s%sThrough' % (lhs.__name__, rhs.__name__)
 return type(klass_name, (Model,), attrs)

 def get_through_model(self):
 # XXX: Deprecated. Just use the "through_model" property.
 return self.through_model

class VirtualField(MetaField):
 field_class = None

 def __init__(self, field_class=None, *args, **kwargs):
 Field = field_class if field_class is not None else self.field_class
 self.field_instance = Field() if Field is not None else None
 super(VirtualField, self).__init__(*args, **kwargs)

 def db_value(self, value):
 if self.field_instance is not None:
 return self.field_instance.db_value(value)
 return value

 def python_value(self, value):
 if self.field_instance is not None:
 return self.field_instance.python_value(value)
 return value

 def bind(self, model, name, set_attribute=True):
 self.model = model
 self.column_name = self.name = self.safe_name = name
 setattr(model, name, self.accessor_class(model, self, name))

class CompositeKey(MetaField):
 sequence = None

 def __init__(self, *field_names):
 self.field_names = field_names
 self._safe_field_names = None

 @property
 def safe_field_names(self):
 if self._safe_field_names is None:
 if self.model is None:
 return self.field_names

 self._safe_field_names = [self.model._meta.fields[f].safe_name
 for f in self.field_names]
 return self._safe_field_names

 def __get__(self, instance, instance_type=None):
 if instance is not None:
 return tuple([getattr(instance, f) for f in self.safe_field_names])
 return self

 def __set__(self, instance, value):
 if not isinstance(value, (list, tuple)):
 raise TypeError('A list or tuple must be used to set the value of '
 'a composite primary key.')
 if len(value) != len(self.field_names):
 raise ValueError('The length of the value must equal the number '
 'of columns of the composite primary key.')
 for idx, field_value in enumerate(value):
 setattr(instance, self.field_names[idx], field_value)

 def __eq__(self, other):
 expressions = [(self.model._meta.fields[field] == value)
 for field, value in zip(self.field_names, other)]
 return reduce(operator.and_, expressions)

 def __ne__(self, other):
 return ~(self == other)

 def __hash__(self):
 return hash((self.model.__name__, self.field_names))

 def __sql__(self, ctx):
 # If the composite PK is being selected, do not use parens. Elsewhere,
 # such as in an expression, we want to use parentheses and treat it as
 # a row value.
 parens = ctx.scope != SCOPE_SOURCE
 return ctx.sql(NodeList([self.model._meta.fields[field]
 for field in self.field_names], ', ', parens))

 def bind(self, model, name, set_attribute=True):
 self.model = model
 self.column_name = self.name = self.safe_name = name
 setattr(model, self.name, self)

class _SortedFieldList(object):
 __slots__ = ('_keys', '_items')

 def __init__(self):
 self._keys = []
 self._items = []

 def __getitem__(self, i):
 return self._items[i]

 def __iter__(self):
 return iter(self._items)

 def __contains__(self, item):
 k = item._sort_key
 i = bisect_left(self._keys, k)
 j = bisect_right(self._keys, k)
 return item in self._items[i:j]

 def index(self, field):
 return self._keys.index(field._sort_key)

 def insert(self, item):
 k = item._sort_key
 i = bisect_left(self._keys, k)
 self._keys.insert(i, k)
 self._items.insert(i, item)

 def remove(self, item):
 idx = self.index(item)
 del self._items[idx]
 del self._keys[idx]

MODELS

class SchemaManager(object):
 def __init__(self, model, database=None, **context_options):
 self.model = model
 self._database = database
 context_options.setdefault('scope', SCOPE_VALUES)
 self.context_options = context_options

 @property
 def database(self):
 db = self._database or self.model._meta.database
 if db is None:
 raise ImproperlyConfigured('database attribute does not appear to '
 'be set on the model: %s' % self.model)
 return db

 @database.setter
 def database(self, value):
 self._database = value

 def _create_context(self):
 return self.database.get_sql_context(**self.context_options)

 def _create_table(self, safe=True, **options):
 is_temp = options.pop('temporary', False)
 ctx = self._create_context()
 ctx.literal('CREATE TEMPORARY TABLE ' if is_temp else 'CREATE TABLE ')
 if safe:
 ctx.literal('IF NOT EXISTS ')
 ctx.sql(self.model).literal(' ')

 columns = []
 constraints = []
 meta = self.model._meta
 if meta.composite_key:
 pk_columns = [meta.fields[field_name].column
 for field_name in meta.primary_key.field_names]
 constraints.append(NodeList((SQL('PRIMARY KEY'),
 EnclosedNodeList(pk_columns))))

 for field in meta.sorted_fields:
 columns.append(field.ddl(ctx))
 if isinstance(field, ForeignKeyField) and not field.deferred:
 constraints.append(field.foreign_key_constraint())

 if meta.constraints:
 constraints.extend(meta.constraints)

 constraints.extend(self._create_table_option_sql(options))
 ctx.sql(EnclosedNodeList(columns + constraints))

 if meta.table_settings is not None:
 table_settings = ensure_tuple(meta.table_settings)
 for setting in table_settings:
 if not isinstance(setting, basestring):
 raise ValueError('table_settings must be strings')
 ctx.literal(' ').literal(setting)

 if meta.without_rowid:
 ctx.literal(' WITHOUT ROWID')
 return ctx

 def _create_table_option_sql(self, options):
 accum = []
 options = merge_dict(self.model._meta.options or {}, options)
 if not options:
 return accum

 for key, value in sorted(options.items()):
 if not isinstance(value, Node):
 if is_model(value):
 value = value._meta.table
 else:
 value = SQL(str(value))
 accum.append(NodeList((SQL(key), value), glue='='))
 return accum

 def create_table(self, safe=True, **options):
 self.database.execute(self._create_table(safe=safe, **options))

 def _create_table_as(self, table_name, query, safe=True, **meta):
 ctx = (self._create_context()
 .literal('CREATE TEMPORARY TABLE '
 if meta.get('temporary') else 'CREATE TABLE '))
 if safe:
 ctx.literal('IF NOT EXISTS ')
 return (ctx
 .sql(Entity(table_name))
 .literal(' AS ')
 .sql(query))

 def create_table_as(self, table_name, query, safe=True, **meta):
 ctx = self._create_table_as(table_name, query, safe=safe, **meta)
 self.database.execute(ctx)

 def _drop_table(self, safe=True, **options):
 ctx = (self._create_context()
 .literal('DROP TABLE IF EXISTS ' if safe else 'DROP TABLE ')
 .sql(self.model))
 if options.get('cascade'):
 ctx = ctx.literal(' CASCADE')
 elif options.get('restrict'):
 ctx = ctx.literal(' RESTRICT')
 return ctx

 def drop_table(self, safe=True, **options):
 self.database.execute(self._drop_table(safe=safe, **options))

 def _truncate_table(self, restart_identity=False, cascade=False):
 db = self.database
 if not db.truncate_table:
 return (self._create_context()
 .literal('DELETE FROM ').sql(self.model))

 ctx = self._create_context().literal('TRUNCATE TABLE ').sql(self.model)
 if restart_identity:
 ctx = ctx.literal(' RESTART IDENTITY')
 if cascade:
 ctx = ctx.literal(' CASCADE')
 return ctx

 def truncate_table(self, restart_identity=False, cascade=False):
 self.database.execute(self._truncate_table(restart_identity, cascade))

 def _create_indexes(self, safe=True):
 return [self._create_index(index, safe)
 for index in self.model._meta.fields_to_index()]

 def _create_index(self, index, safe=True):
 if isinstance(index, Index):
 if not self.database.safe_create_index:
 index = index.safe(False)
 elif index._safe != safe:
 index = index.safe(safe)
 return self._create_context().sql(index)

 def create_indexes(self, safe=True):
 for query in self._create_indexes(safe=safe):
 self.database.execute(query)

 def _drop_indexes(self, safe=True):
 return [self._drop_index(index, safe)
 for index in self.model._meta.fields_to_index()
 if isinstance(index, Index)]

 def _drop_index(self, index, safe):
 statement = 'DROP INDEX '
 if safe and self.database.safe_drop_index:
 statement += 'IF EXISTS '
 if isinstance(index._table, Table) and index._table._schema:
 index_name = Entity(index._table._schema, index._name)
 else:
 index_name = Entity(index._name)
 return (self
 ._create_context()
 .literal(statement)
 .sql(index_name))

 def drop_indexes(self, safe=True):
 for query in self._drop_indexes(safe=safe):
 self.database.execute(query)

 def _check_sequences(self, field):
 if not field.sequence or not self.database.sequences:
 raise ValueError('Sequences are either not supported, or are not '
 'defined for "%s".' % field.name)

 def _sequence_for_field(self, field):
 if field.model._meta.schema:
 return Entity(field.model._meta.schema, field.sequence)
 else:
 return Entity(field.sequence)

 def _create_sequence(self, field):
 self._check_sequences(field)
 if not self.database.sequence_exists(field.sequence):
 return (self
 ._create_context()
 .literal('CREATE SEQUENCE ')
 .sql(self._sequence_for_field(field)))

 def create_sequence(self, field):
 seq_ctx = self._create_sequence(field)
 if seq_ctx is not None:
 self.database.execute(seq_ctx)

 def _drop_sequence(self, field):
 self._check_sequences(field)
 if self.database.sequence_exists(field.sequence):
 return (self
 ._create_context()
 .literal('DROP SEQUENCE ')
 .sql(self._sequence_for_field(field)))

 def drop_sequence(self, field):
 seq_ctx = self._drop_sequence(field)
 if seq_ctx is not None:
 self.database.execute(seq_ctx)

 def _create_foreign_key(self, field):
 name = 'fk_%s_%s_refs_%s' % (field.model._meta.table_name,
 field.column_name,
 field.rel_model._meta.table_name)
 return (self
 ._create_context()
 .literal('ALTER TABLE ')
 .sql(field.model)
 .literal(' ADD CONSTRAINT ')
 .sql(Entity(_truncate_constraint_name(name)))
 .literal(' ')
 .sql(field.foreign_key_constraint()))

 def create_foreign_key(self, field):
 self.database.execute(self._create_foreign_key(field))

 def create_sequences(self):
 if self.database.sequences:
 for field in self.model._meta.sorted_fields:
 if field.sequence:
 self.create_sequence(field)

 def create_all(self, safe=True, **table_options):
 self.create_sequences()
 self.create_table(safe, **table_options)
 self.create_indexes(safe=safe)

 def drop_sequences(self):
 if self.database.sequences:
 for field in self.model._meta.sorted_fields:
 if field.sequence:
 self.drop_sequence(field)

 def drop_all(self, safe=True, drop_sequences=True, **options):
 self.drop_table(safe, **options)
 if drop_sequences:
 self.drop_sequences()

class Metadata(object):
 def __init__(self, model, database=None, table_name=None, indexes=None,
 primary_key=None, constraints=None, schema=None,
 only_save_dirty=False, depends_on=None, options=None,
 db_table=None, table_function=None, table_settings=None,
 without_rowid=False, temporary=False, legacy_table_names=True,
 **kwargs):
 if db_table is not None:
 __deprecated__('"db_table" has been deprecated in favor of '
 '"table_name" for Models.')
 table_name = db_table
 self.model = model
 self.database = database

 self.fields = {}
 self.columns = {}
 self.combined = {}

 self._sorted_field_list = _SortedFieldList()
 self.sorted_fields = []
 self.sorted_field_names = []

 self.defaults = {}
 self._default_by_name = {}
 self._default_dict = {}
 self._default_callables = {}
 self._default_callable_list = []

 self.name = model.__name__.lower()
 self.table_function = table_function
 self.legacy_table_names = legacy_table_names
 if not table_name:
 table_name = (self.table_function(model)
 if self.table_function
 else self.make_table_name())
 self.table_name = table_name
 self._table = None

 self.indexes = list(indexes) if indexes else []
 self.constraints = constraints
 self._schema = schema
 self.primary_key = primary_key
 self.composite_key = self.auto_increment = None
 self.only_save_dirty = only_save_dirty
 self.depends_on = depends_on
 self.table_settings = table_settings
 self.without_rowid = without_rowid
 self.temporary = temporary

 self.refs = {}
 self.backrefs = {}
 self.model_refs = collections.defaultdict(list)
 self.model_backrefs = collections.defaultdict(list)
 self.manytomany = {}

 self.options = options or {}
 for key, value in kwargs.items():
 setattr(self, key, value)
 self._additional_keys = set(kwargs.keys())

 # Allow objects to register hooks that are called if the model is bound
 # to a different database. For example, BlobField uses a different
 # Python data-type depending on the db driver / python version. When
 # the database changes, we need to update any BlobField so they can use
 # the appropriate data-type.
 self._db_hooks = []

 def make_table_name(self):
 if self.legacy_table_names:
 return re.sub(r'[^\w]+', '_', self.name)
 return make_snake_case(self.model.__name__)

 def model_graph(self, refs=True, backrefs=True, depth_first=True):
 if not refs and not backrefs:
 raise ValueError('One of `refs` or `backrefs` must be True.')

 accum = [(None, self.model, None)]
 seen = set()
 queue = collections.deque((self,))
 method = queue.pop if depth_first else queue.popleft

 while queue:
 curr = method()
 if curr in seen: continue
 seen.add(curr)

 if refs:
 for fk, model in curr.refs.items():
 accum.append((fk, model, False))
 queue.append(model._meta)
 if backrefs:
 for fk, model in curr.backrefs.items():
 accum.append((fk, model, True))
 queue.append(model._meta)

 return accum

 def add_ref(self, field):
 rel = field.rel_model
 self.refs[field] = rel
 self.model_refs[rel].append(field)
 rel._meta.backrefs[field] = self.model
 rel._meta.model_backrefs[self.model].append(field)

 def remove_ref(self, field):
 rel = field.rel_model
 del self.refs[field]
 self.model_refs[rel].remove(field)
 del rel._meta.backrefs[field]
 rel._meta.model_backrefs[self.model].remove(field)

 def add_manytomany(self, field):
 self.manytomany[field.name] = field

 def remove_manytomany(self, field):
 del self.manytomany[field.name]

 @property
 def table(self):
 if self._table is None:
 self._table = Table(
 self.table_name,
 [field.column_name for field in self.sorted_fields],
 schema=self.schema,
 _model=self.model,
 _database=self.database)
 return self._table

 @table.setter
 def table(self, value):
 raise AttributeError('Cannot set the "table".')

 @table.deleter
 def table(self):
 self._table = None

 @property
 def schema(self):
 return self._schema

 @schema.setter
 def schema(self, value):
 self._schema = value
 del self.table

 @property
 def entity(self):
 if self._schema:
 return Entity(self._schema, self.table_name)
 else:
 return Entity(self.table_name)

 def _update_sorted_fields(self):
 self.sorted_fields = list(self._sorted_field_list)
 self.sorted_field_names = [f.name for f in self.sorted_fields]

 def get_rel_for_model(self, model):
 if isinstance(model, ModelAlias):
 model = model.model
 forwardrefs = self.model_refs.get(model, [])
 backrefs = self.model_backrefs.get(model, [])
 return (forwardrefs, backrefs)

 def add_field(self, field_name, field, set_attribute=True):
 if field_name in self.fields:
 self.remove_field(field_name)
 elif field_name in self.manytomany:
 self.remove_manytomany(self.manytomany[field_name])

 if not isinstance(field, MetaField):
 del self.table
 field.bind(self.model, field_name, set_attribute)
 self.fields[field.name] = field
 self.columns[field.column_name] = field
 self.combined[field.name] = field
 self.combined[field.column_name] = field

 self._sorted_field_list.insert(field)
 self._update_sorted_fields()

 if field.default is not None:
 # This optimization helps speed up model instance construction.
 self.defaults[field] = field.default
 if callable_(field.default):
 self._default_callables[field] = field.default
 self._default_callable_list.append((field.name,
 field.default))
 else:
 self._default_dict[field] = field.default
 self._default_by_name[field.name] = field.default
 else:
 field.bind(self.model, field_name, set_attribute)

 if isinstance(field, ForeignKeyField):
 self.add_ref(field)
 elif isinstance(field, ManyToManyField) and field.name:
 self.add_manytomany(field)

 def remove_field(self, field_name):
 if field_name not in self.fields:
 return

 del self.table
 original = self.fields.pop(field_name)
 del self.columns[original.column_name]
 del self.combined[field_name]
 try:
 del self.combined[original.column_name]
 except KeyError:
 pass
 self._sorted_field_list.remove(original)
 self._update_sorted_fields()

 if original.default is not None:
 del self.defaults[original]
 if self._default_callables.pop(original, None):
 for i, (name, _) in enumerate(self._default_callable_list):
 if name == field_name:
 self._default_callable_list.pop(i)
 break
 else:
 self._default_dict.pop(original, None)
 self._default_by_name.pop(original.name, None)

 if isinstance(original, ForeignKeyField):
 self.remove_ref(original)

 def set_primary_key(self, name, field):
 self.composite_key = isinstance(field, CompositeKey)
 self.add_field(name, field)
 self.primary_key = field
 self.auto_increment = (
 field.auto_increment or
 bool(field.sequence))

 def get_primary_keys(self):
 if self.composite_key:
 return tuple([self.fields[field_name]
 for field_name in self.primary_key.field_names])
 else:
 return (self.primary_key,) if self.primary_key is not False else ()

 def get_default_dict(self):
 dd = self._default_by_name.copy()
 for field_name, default in self._default_callable_list:
 dd[field_name] = default()
 return dd

 def fields_to_index(self):
 indexes = []
 for f in self.sorted_fields:
 if f.primary_key:
 continue
 if f.index or f.unique:
 indexes.append(ModelIndex(self.model, (f,), unique=f.unique,
 using=f.index_type))

 for index_obj in self.indexes:
 if isinstance(index_obj, Node):
 indexes.append(index_obj)
 elif isinstance(index_obj, (list, tuple)):
 index_parts, unique = index_obj
 fields = []
 for part in index_parts:
 if isinstance(part, basestring):
 fields.append(self.combined[part])
 elif isinstance(part, Node):
 fields.append(part)
 else:
 raise ValueError('Expected either a field name or a '
 'subclass of Node. Got: %s' % part)
 indexes.append(ModelIndex(self.model, fields, unique=unique))

 return indexes

 def set_database(self, database):
 self.database = database
 self.model._schema._database = database
 del self.table

 # Apply any hooks that have been registered.
 for hook in self._db_hooks:
 hook(database)

 def set_table_name(self, table_name):
 self.table_name = table_name
 del self.table

class SubclassAwareMetadata(Metadata):
 models = []

 def __init__(self, model, *args, **kwargs):
 super(SubclassAwareMetadata, self).__init__(model, *args, **kwargs)
 self.models.append(model)

 def map_models(self, fn):
 for model in self.models:
 fn(model)

class DoesNotExist(Exception): pass

class ModelBase(type):
 inheritable = set(['constraints', 'database', 'indexes', 'primary_key',
 'options', 'schema', 'table_function', 'temporary',
 'only_save_dirty', 'legacy_table_names',
 'table_settings'])

 def __new__(cls, name, bases, attrs):
 if name == MODEL_BASE or bases[0].__name__ == MODEL_BASE:
 return super(ModelBase, cls).__new__(cls, name, bases, attrs)

 meta_options = {}
 meta = attrs.pop('Meta', None)
 if meta:
 for k, v in meta.__dict__.items():
 if not k.startswith('_'):
 meta_options[k] = v

 pk = getattr(meta, 'primary_key', None)
 pk_name = parent_pk = None

 # Inherit any field descriptors by deep copying the underlying field
 # into the attrs of the new model, additionally see if the bases define
 # inheritable model options and swipe them.
 for b in bases:
 if not hasattr(b, '_meta'):
 continue

 base_meta = b._meta
 if parent_pk is None:
 parent_pk = deepcopy(base_meta.primary_key)
 all_inheritable = cls.inheritable | base_meta._additional_keys
 for k in base_meta.__dict__:
 if k in all_inheritable and k not in meta_options:
 meta_options[k] = base_meta.__dict__[k]
 meta_options.setdefault('schema', base_meta.schema)

 for (k, v) in b.__dict__.items():
 if k in attrs: continue

 if isinstance(v, FieldAccessor) and not v.field.primary_key:
 attrs[k] = deepcopy(v.field)

 sopts = meta_options.pop('schema_options', None) or {}
 Meta = meta_options.get('model_metadata_class', Metadata)
 Schema = meta_options.get('schema_manager_class', SchemaManager)

 # Construct the new class.
 cls = super(ModelBase, cls).__new__(cls, name, bases, attrs)
 cls.__data__ = cls.__rel__ = None

 cls._meta = Meta(cls, **meta_options)
 cls._schema = Schema(cls, **sopts)

 fields = []
 for key, value in cls.__dict__.items():
 if isinstance(value, Field):
 if value.primary_key and pk:
 raise ValueError('over-determined primary key %s.' % name)
 elif value.primary_key:
 pk, pk_name = value, key
 else:
 fields.append((key, value))

 if pk is None:
 if parent_pk is not False:
 pk, pk_name = ((parent_pk, parent_pk.name)
 if parent_pk is not None else
 (AutoField(), 'id'))
 else:
 pk = False
 elif isinstance(pk, CompositeKey):
 pk_name = '__composite_key__'
 cls._meta.composite_key = True

 if pk is not False:
 cls._meta.set_primary_key(pk_name, pk)

 for name, field in fields:
 cls._meta.add_field(name, field)

 # Create a repr and error class before finalizing.
 if hasattr(cls, '__str__') and '__repr__' not in attrs:
 setattr(cls, '__repr__', lambda self: '<%s: %s>' % (
 cls.__name__, self.__str__()))

 exc_name = '%sDoesNotExist' % cls.__name__
 exc_attrs = {'__module__': cls.__module__}
 exception_class = type(exc_name, (DoesNotExist,), exc_attrs)
 cls.DoesNotExist = exception_class

 # Call validation hook, allowing additional model validation.
 cls.validate_model()
 DeferredForeignKey.resolve(cls)
 return cls

 def __repr__(self):
 return '<Model: %s>' % self.__name__

 def __iter__(self):
 return iter(self.select())

 def __getitem__(self, key):
 return self.get_by_id(key)

 def __setitem__(self, key, value):
 self.set_by_id(key, value)

 def __delitem__(self, key):
 self.delete_by_id(key)

 def __contains__(self, key):
 try:
 self.get_by_id(key)
 except self.DoesNotExist:
 return False
 else:
 return True

 def __len__(self):
 return self.select().count()
 def __bool__(self): return True
 __nonzero__ = __bool__ # Python 2.

 def __sql__(self, ctx):
 return ctx.sql(self._meta.table)

class _BoundModelsContext(_callable_context_manager):
 def __init__(self, models, database, bind_refs, bind_backrefs):
 self.models = models
 self.database = database
 self.bind_refs = bind_refs
 self.bind_backrefs = bind_backrefs

 def __enter__(self):
 self._orig_database = []
 for model in self.models:
 self._orig_database.append(model._meta.database)
 model.bind(self.database, self.bind_refs, self.bind_backrefs,
 _exclude=set(self.models))
 return self.models

 def __exit__(self, exc_type, exc_val, exc_tb):
 for model, db in zip(self.models, self._orig_database):
 model.bind(db, self.bind_refs, self.bind_backrefs,
 _exclude=set(self.models))

class Model(with_metaclass(ModelBase, Node)):
 def __init__(self, *args, **kwargs):
 if kwargs.pop('__no_default__', None):
 self.__data__ = {}
 else:
 self.__data__ = self._meta.get_default_dict()
 self._dirty = set(self.__data__)
 self.__rel__ = {}

 for k in kwargs:
 setattr(self, k, kwargs[k])

 def __str__(self):
 return str(self._pk) if self._meta.primary_key is not False else 'n/a'

 @classmethod
 def validate_model(cls):
 pass

 @classmethod
 def alias(cls, alias=None):
 return ModelAlias(cls, alias)

 @classmethod
 def select(cls, *fields):
 is_default = not fields
 if not fields:
 fields = cls._meta.sorted_fields
 return ModelSelect(cls, fields, is_default=is_default)

 @classmethod
 def _normalize_data(cls, data, kwargs):
 normalized = {}
 if data:
 if not isinstance(data, dict):
 if kwargs:
 raise ValueError('Data cannot be mixed with keyword '
 'arguments: %s' % data)
 return data
 for key in data:
 try:
 field = (key if isinstance(key, Field)
 else cls._meta.combined[key])
 except KeyError:
 if not isinstance(key, Node):
 raise ValueError('Unrecognized field name: "%s" in %s.'
 % (key, data))
 field = key
 normalized[field] = data[key]
 if kwargs:
 for key in kwargs:
 try:
 normalized[cls._meta.combined[key]] = kwargs[key]
 except KeyError:
 normalized[getattr(cls, key)] = kwargs[key]
 return normalized

 @classmethod
 def update(cls, __data=None, **update):
 return ModelUpdate(cls, cls._normalize_data(__data, update))

 @classmethod
 def insert(cls, __data=None, **insert):
 return ModelInsert(cls, cls._normalize_data(__data, insert))

 @classmethod
 def insert_many(cls, rows, fields=None):
 return ModelInsert(cls, insert=rows, columns=fields)

 @classmethod
 def insert_from(cls, query, fields):
 columns = [getattr(cls, field) if isinstance(field, basestring)
 else field for field in fields]
 return ModelInsert(cls, insert=query, columns=columns)

 @classmethod
 def replace(cls, __data=None, **insert):
 return cls.insert(__data, **insert).on_conflict('REPLACE')

 @classmethod
 def replace_many(cls, rows, fields=None):
 return (cls
 .insert_many(rows=rows, fields=fields)
 .on_conflict('REPLACE'))

 @classmethod
 def raw(cls, sql, *params):
 return ModelRaw(cls, sql, params)

 @classmethod
 def delete(cls):
 return ModelDelete(cls)

 @classmethod
 def create(cls, **query):
 inst = cls(**query)
 inst.save(force_insert=True)
 return inst

 @classmethod
 def bulk_create(cls, model_list, batch_size=None):
 if batch_size is not None:
 batches = chunked(model_list, batch_size)
 else:
 batches = [model_list]

 field_names = list(cls._meta.sorted_field_names)
 if cls._meta.auto_increment:
 pk_name = cls._meta.primary_key.name
 field_names.remove(pk_name)

 if cls._meta.database.returning_clause and \
 cls._meta.primary_key is not False:
 pk_fields = cls._meta.get_primary_keys()
 else:
 pk_fields = None

 fields = [cls._meta.fields[field_name] for field_name in field_names]
 attrs = []
 for field in fields:
 if isinstance(field, ForeignKeyField):
 attrs.append(field.object_id_name)
 else:
 attrs.append(field.name)

 for batch in batches:
 accum = ([getattr(model, f) for f in attrs]
 for model in batch)
 res = cls.insert_many(accum, fields=fields).execute()
 if pk_fields and res is not None:
 for row, model in zip(res, batch):
 for (pk_field, obj_id) in zip(pk_fields, row):
 setattr(model, pk_field.name, obj_id)

 @classmethod
 def bulk_update(cls, model_list, fields, batch_size=None):
 if isinstance(cls._meta.primary_key, CompositeKey):
 raise ValueError('bulk_update() is not supported for models with '
 'a composite primary key.')

 # First normalize list of fields so all are field instances.
 fields = [cls._meta.fields[f] if isinstance(f, basestring) else f
 for f in fields]
 # Now collect list of attribute names to use for values.
 attrs = [field.object_id_name if isinstance(field, ForeignKeyField)
 else field.name for field in fields]

 if batch_size is not None:
 batches = chunked(model_list, batch_size)
 else:
 batches = [model_list]

 n = 0
 pk = cls._meta.primary_key

 for batch in batches:
 id_list = [model._pk for model in batch]
 update = {}
 for field, attr in zip(fields, attrs):
 accum = []
 for model in batch:
 value = getattr(model, attr)
 if not isinstance(value, Node):
 value = field.to_value(value)
 accum.append((pk.to_value(model._pk), value))
 case = Case(pk, accum)
 update[field] = case

 n += (cls.update(update)
 .where(cls._meta.primary_key.in_(id_list))
 .execute())
 return n

 @classmethod
 def noop(cls):
 return NoopModelSelect(cls, ())

 @classmethod
 def get(cls, *query, **filters):
 sq = cls.select()
 if query:
 # Handle simple lookup using just the primary key.
 if len(query) == 1 and isinstance(query[0], int):
 sq = sq.where(cls._meta.primary_key == query[0])
 else:
 sq = sq.where(*query)
 if filters:
 sq = sq.filter(**filters)
 return sq.get()

 @classmethod
 def get_or_none(cls, *query, **filters):
 try:
 return cls.get(*query, **filters)
 except DoesNotExist:
 pass

 @classmethod
 def get_by_id(cls, pk):
 return cls.get(cls._meta.primary_key == pk)

 @classmethod
 def set_by_id(cls, key, value):
 if key is None:
 return cls.insert(value).execute()
 else:
 return (cls.update(value)
 .where(cls._meta.primary_key == key).execute())

 @classmethod
 def delete_by_id(cls, pk):
 return cls.delete().where(cls._meta.primary_key == pk).execute()

 @classmethod
 def get_or_create(cls, **kwargs):
 defaults = kwargs.pop('defaults', {})
 query = cls.select()
 for field, value in kwargs.items():
 query = query.where(getattr(cls, field) == value)

 try:
 return query.get(), False
 except cls.DoesNotExist:
 try:
 if defaults:
 kwargs.update(defaults)
 with cls._meta.database.atomic():
 return cls.create(**kwargs), True
 except IntegrityError as exc:
 try:
 return query.get(), False
 except cls.DoesNotExist:
 raise exc

 @classmethod
 def filter(cls, *dq_nodes, **filters):
 return cls.select().filter(*dq_nodes, **filters)

 def get_id(self):
 # Using getattr(self, pk-name) could accidentally trigger a query if
 # the primary-key is a foreign-key. So we use the safe_name attribute,
 # which defaults to the field-name, but will be the object_id_name for
 # foreign-key fields.
 if self._meta.primary_key is not False:
 return getattr(self, self._meta.primary_key.safe_name)

 _pk = property(get_id)

 @_pk.setter
 def _pk(self, value):
 setattr(self, self._meta.primary_key.name, value)

 def _pk_expr(self):
 return self._meta.primary_key == self._pk

 def _prune_fields(self, field_dict, only):
 new_data = {}
 for field in only:
 if isinstance(field, basestring):
 field = self._meta.combined[field]
 if field.name in field_dict:
 new_data[field.name] = field_dict[field.name]
 return new_data

 def _populate_unsaved_relations(self, field_dict):
 for foreign_key_field in self._meta.refs:
 foreign_key = foreign_key_field.name
 conditions = (
 foreign_key in field_dict and
 field_dict[foreign_key] is None and
 self.__rel__.get(foreign_key) is not None)
 if conditions:
 setattr(self, foreign_key, getattr(self, foreign_key))
 field_dict[foreign_key] = self.__data__[foreign_key]

 def save(self, force_insert=False, only=None):
 field_dict = self.__data__.copy()
 if self._meta.primary_key is not False:
 pk_field = self._meta.primary_key
 pk_value = self._pk
 else:
 pk_field = pk_value = None
 if only is not None:
 field_dict = self._prune_fields(field_dict, only)
 elif self._meta.only_save_dirty and not force_insert:
 field_dict = self._prune_fields(field_dict, self.dirty_fields)
 if not field_dict:
 self._dirty.clear()
 return False

 self._populate_unsaved_relations(field_dict)
 rows = 1

 if self._meta.auto_increment and pk_value is None:
 field_dict.pop(pk_field.name, None)

 if pk_value is not None and not force_insert:
 if self._meta.composite_key:
 for pk_part_name in pk_field.field_names:
 field_dict.pop(pk_part_name, None)
 else:
 field_dict.pop(pk_field.name, None)
 if not field_dict:
 raise ValueError('no data to save!')
 rows = self.update(**field_dict).where(self._pk_expr()).execute()
 elif pk_field is not None:
 pk = self.insert(**field_dict).execute()
 if pk is not None and (self._meta.auto_increment or
 pk_value is None):
 self._pk = pk
 else:
 self.insert(**field_dict).execute()

 self._dirty.clear()
 return rows

 def is_dirty(self):
 return bool(self._dirty)

 @property
 def dirty_fields(self):
 return [f for f in self._meta.sorted_fields if f.name in self._dirty]

 def dependencies(self, search_nullable=False):
 model_class = type(self)
 stack = [(type(self), None)]
 seen = set()

 while stack:
 klass, query = stack.pop()
 if klass in seen:
 continue
 seen.add(klass)
 for fk, rel_model in klass._meta.backrefs.items():
 if rel_model is model_class or query is None:
 node = (fk == self.__data__[fk.rel_field.name])
 else:
 node = fk << query
 subquery = (rel_model.select(rel_model._meta.primary_key)
 .where(node))
 if not fk.null or search_nullable:
 stack.append((rel_model, subquery))
 yield (node, fk)

 def delete_instance(self, recursive=False, delete_nullable=False):
 if recursive:
 dependencies = self.dependencies(delete_nullable)
 for query, fk in reversed(list(dependencies)):
 model = fk.model
 if fk.null and not delete_nullable:
 model.update(**{fk.name: None}).where(query).execute()
 else:
 model.delete().where(query).execute()
 return type(self).delete().where(self._pk_expr()).execute()

 def __hash__(self):
 return hash((self.__class__, self._pk))

 def __eq__(self, other):
 return (
 other.__class__ == self.__class__ and
 self._pk is not None and
 self._pk == other._pk)

 def __ne__(self, other):
 return not self == other

 def __sql__(self, ctx):
 # NOTE: when comparing a foreign-key field whose related-field is not a
 # primary-key, then doing an equality test for the foreign-key with a
 # model instance will return the wrong value; since we would return
 # the primary key for a given model instance.
 #
 # This checks to see if we have a converter in the scope, and if so,
 # hands the model instance to the converter rather than blindly
 # grabbing the primary-key. In the event the provided converter fails
 # to handle the model instance, then we will return the primary-key.
 if ctx.state.converter is not None:
 try:
 return ctx.sql(Value(self, converter=ctx.state.converter))
 except (TypeError, ValueError):
 pass

 return ctx.sql(Value(getattr(self, self._meta.primary_key.name),
 converter=self._meta.primary_key.db_value))

 @classmethod
 def bind(cls, database, bind_refs=True, bind_backrefs=True, _exclude=None):
 is_different = cls._meta.database is not database
 cls._meta.set_database(database)
 if bind_refs or bind_backrefs:
 if _exclude is None:
 _exclude = set()
 G = cls._meta.model_graph(refs=bind_refs, backrefs=bind_backrefs)
 for _, model, is_backref in G:
 if model not in _exclude:
 model._meta.set_database(database)
 _exclude.add(model)
 return is_different

 @classmethod
 def bind_ctx(cls, database, bind_refs=True, bind_backrefs=True):
 return _BoundModelsContext((cls,), database, bind_refs, bind_backrefs)

 @classmethod
 def table_exists(cls):
 M = cls._meta
 return cls._schema.database.table_exists(M.table.__name__, M.schema)

 @classmethod
 def create_table(cls, safe=True, **options):
 if 'fail_silently' in options:
 __deprecated__('"fail_silently" has been deprecated in favor of '
 '"safe" for the create_table() method.')
 safe = options.pop('fail_silently')

 if safe and not cls._schema.database.safe_create_index \
 and cls.table_exists():
 return
 if cls._meta.temporary:
 options.setdefault('temporary', cls._meta.temporary)
 cls._schema.create_all(safe, **options)

 @classmethod
 def drop_table(cls, safe=True, drop_sequences=True, **options):
 if safe and not cls._schema.database.safe_drop_index \
 and not cls.table_exists():
 return
 if cls._meta.temporary:
 options.setdefault('temporary', cls._meta.temporary)
 cls._schema.drop_all(safe, drop_sequences, **options)

 @classmethod
 def truncate_table(cls, **options):
 cls._schema.truncate_table(**options)

 @classmethod
 def index(cls, *fields, **kwargs):
 return ModelIndex(cls, fields, **kwargs)

 @classmethod
 def add_index(cls, *fields, **kwargs):
 if len(fields) == 1 and isinstance(fields[0], (SQL, Index)):
 cls._meta.indexes.append(fields[0])
 else:
 cls._meta.indexes.append(ModelIndex(cls, fields, **kwargs))

class ModelAlias(Node):
 """Provide a separate reference to a model in a query."""
 def __init__(self, model, alias=None):
 self.__dict__['model'] = model
 self.__dict__['alias'] = alias

 def __getattr__(self, attr):
 # Hack to work-around the fact that properties or other objects
 # implementing the descriptor protocol (on the model being aliased),
 # will not work correctly when we use getattr(). So we explicitly pass
 # the model alias to the descriptor's getter.
 try:
 obj = self.model.__dict__[attr]
 except KeyError:
 pass
 else:
 if isinstance(obj, ModelDescriptor):
 return obj.__get__(None, self)

 model_attr = getattr(self.model, attr)
 if isinstance(model_attr, Field):
 self.__dict__[attr] = FieldAlias.create(self, model_attr)
 return self.__dict__[attr]
 return model_attr

 def __setattr__(self, attr, value):
 raise AttributeError('Cannot set attributes on model aliases.')

 def get_field_aliases(self):
 return [getattr(self, n) for n in self.model._meta.sorted_field_names]

 def select(self, *selection):
 if not selection:
 selection = self.get_field_aliases()
 return ModelSelect(self, selection)

 def __call__(self, **kwargs):
 return self.model(**kwargs)

 def __sql__(self, ctx):
 if ctx.scope == SCOPE_VALUES:
 # Return the quoted table name.
 return ctx.sql(self.model)

 if self.alias:
 ctx.alias_manager[self] = self.alias

 if ctx.scope == SCOPE_SOURCE:
 # Define the table and its alias.
 return (ctx
 .sql(self.model._meta.entity)
 .literal(' AS ')
 .sql(Entity(ctx.alias_manager[self])))
 else:
 # Refer to the table using the alias.
 return ctx.sql(Entity(ctx.alias_manager[self]))

class FieldAlias(Field):
 def __init__(self, source, field):
 self.source = source
 self.model = source.model
 self.field = field

 @classmethod
 def create(cls, source, field):
 class _FieldAlias(cls, type(field)):
 pass
 return _FieldAlias(source, field)

 def clone(self):
 return FieldAlias(self.source, self.field)

 def adapt(self, value): return self.field.adapt(value)
 def python_value(self, value): return self.field.python_value(value)
 def db_value(self, value): return self.field.db_value(value)
 def __getattr__(self, attr):
 return self.source if attr == 'model' else getattr(self.field, attr)

 def __sql__(self, ctx):
 return ctx.sql(Column(self.source, self.field.column_name))

def sort_models(models):
 models = set(models)
 seen = set()
 ordering = []
 def dfs(model):
 if model in models and model not in seen:
 seen.add(model)
 for foreign_key, rel_model in model._meta.refs.items():
 # Do not depth-first search deferred foreign-keys as this can
 # cause tables to be created in the incorrect order.
 if not foreign_key.deferred:
 dfs(rel_model)
 if model._meta.depends_on:
 for dependency in model._meta.depends_on:
 dfs(dependency)
 ordering.append(model)

 names = lambda m: (m._meta.name, m._meta.table_name)
 for m in sorted(models, key=names):
 dfs(m)
 return ordering

class _ModelQueryHelper(object):
 default_row_type = ROW.MODEL

 def __init__(self, *args, **kwargs):
 super(_ModelQueryHelper, self).__init__(*args, **kwargs)
 if not self._database:
 self._database = self.model._meta.database

 @Node.copy
 def objects(self, constructor=None):
 self._row_type = ROW.CONSTRUCTOR
 self._constructor = self.model if constructor is None else constructor

 def _get_cursor_wrapper(self, cursor):
 row_type = self._row_type or self.default_row_type
 if row_type == ROW.MODEL:
 return self._get_model_cursor_wrapper(cursor)
 elif row_type == ROW.DICT:
 return ModelDictCursorWrapper(cursor, self.model, self._returning)
 elif row_type == ROW.TUPLE:
 return ModelTupleCursorWrapper(cursor, self.model, self._returning)
 elif row_type == ROW.NAMED_TUPLE:
 return ModelNamedTupleCursorWrapper(cursor, self.model,
 self._returning)
 elif row_type == ROW.CONSTRUCTOR:
 return ModelObjectCursorWrapper(cursor, self.model,
 self._returning, self._constructor)
 else:
 raise ValueError('Unrecognized row type: "%s".' % row_type)

 def _get_model_cursor_wrapper(self, cursor):
 return ModelObjectCursorWrapper(cursor, self.model, [], self.model)

class ModelRaw(_ModelQueryHelper, RawQuery):
 def __init__(self, model, sql, params, **kwargs):
 self.model = model
 self._returning = ()
 super(ModelRaw, self).__init__(sql=sql, params=params, **kwargs)

 def get(self):
 try:
 return self.execute()[0]
 except IndexError:
 sql, params = self.sql()
 raise self.model.DoesNotExist('%s instance matching query does '
 'not exist:\nSQL: %s\nParams: %s' %
 (self.model, sql, params))

class BaseModelSelect(_ModelQueryHelper):
 def union_all(self, rhs):
 return ModelCompoundSelectQuery(self.model, self, 'UNION ALL', rhs)
 __add__ = union_all

 def union(self, rhs):
 return ModelCompoundSelectQuery(self.model, self, 'UNION', rhs)
 __or__ = union

 def intersect(self, rhs):
 return ModelCompoundSelectQuery(self.model, self, 'INTERSECT', rhs)
 __and__ = intersect

 def except_(self, rhs):
 return ModelCompoundSelectQuery(self.model, self, 'EXCEPT', rhs)
 __sub__ = except_

 def __iter__(self):
 if not self._cursor_wrapper:
 self.execute()
 return iter(self._cursor_wrapper)

 def prefetch(self, *subqueries):
 return prefetch(self, *subqueries)

 def get(self, database=None):
 clone = self.paginate(1, 1)
 clone._cursor_wrapper = None
 try:
 return clone.execute(database)[0]
 except IndexError:
 sql, params = clone.sql()
 raise self.model.DoesNotExist('%s instance matching query does '
 'not exist:\nSQL: %s\nParams: %s' %
 (clone.model, sql, params))

 @Node.copy
 def group_by(self, *columns):
 grouping = []
 for column in columns:
 if is_model(column):
 grouping.extend(column._meta.sorted_fields)
 elif isinstance(column, Table):
 if not column._columns:
 raise ValueError('Cannot pass a table to group_by() that '
 'does not have columns explicitly '
 'declared.')
 grouping.extend([getattr(column, col_name)
 for col_name in column._columns])
 else:
 grouping.append(column)
 self._group_by = grouping

class ModelCompoundSelectQuery(BaseModelSelect, CompoundSelectQuery):
 def __init__(self, model, *args, **kwargs):
 self.model = model
 super(ModelCompoundSelectQuery, self).__init__(*args, **kwargs)

 def _get_model_cursor_wrapper(self, cursor):
 return self.lhs._get_model_cursor_wrapper(cursor)

def _normalize_model_select(fields_or_models):
 fields = []
 for fm in fields_or_models:
 if is_model(fm):
 fields.extend(fm._meta.sorted_fields)
 elif isinstance(fm, ModelAlias):
 fields.extend(fm.get_field_aliases())
 elif isinstance(fm, Table) and fm._columns:
 fields.extend([getattr(fm, col) for col in fm._columns])
 else:
 fields.append(fm)
 return fields

class ModelSelect(BaseModelSelect, Select):
 def __init__(self, model, fields_or_models, is_default=False):
 self.model = self._join_ctx = model
 self._joins = {}
 self._is_default = is_default
 fields = _normalize_model_select(fields_or_models)
 super(ModelSelect, self).__init__([model], fields)

 def clone(self):
 clone = super(ModelSelect, self).clone()
 if clone._joins:
 clone._joins = dict(clone._joins)
 return clone

 def select(self, *fields_or_models):
 if fields_or_models or not self._is_default:
 self._is_default = False
 fields = _normalize_model_select(fields_or_models)
 return super(ModelSelect, self).select(*fields)
 return self

 def switch(self, ctx=None):
 self._join_ctx = self.model if ctx is None else ctx
 return self

 def _get_model(self, src):
 if is_model(src):
 return src, True
 elif isinstance(src, Table) and src._model:
 return src._model, False
 elif isinstance(src, ModelAlias):
 return src.model, False
 elif isinstance(src, ModelSelect):
 return src.model, False
 return None, False

 def _normalize_join(self, src, dest, on, attr):
 # Allow "on" expression to have an alias that determines the
 # destination attribute for the joined data.
 on_alias = isinstance(on, Alias)
 if on_alias:
 attr = attr or on._alias
 on = on.alias()

 # Obtain references to the source and destination models being joined.
 src_model, src_is_model = self._get_model(src)
 dest_model, dest_is_model = self._get_model(dest)

 if src_model and dest_model:
 self._join_ctx = dest
 constructor = dest_model

 # In the case where the "on" clause is a Column or Field, we will
 # convert that field into the appropriate predicate expression.
 if not (src_is_model and dest_is_model) and isinstance(on, Column):
 if on.source is src:
 to_field = src_model._meta.columns[on.name]
 elif on.source is dest:
 to_field = dest_model._meta.columns[on.name]
 else:
 raise AttributeError('"on" clause Column %s does not '
 'belong to %s or %s.' %
 (on, src_model, dest_model))
 on = None
 elif isinstance(on, Field):
 to_field = on
 on = None
 else:
 to_field = None

 fk_field, is_backref = self._generate_on_clause(
 src_model, dest_model, to_field, on)

 if on is None:
 src_attr = 'name' if src_is_model else 'column_name'
 dest_attr = 'name' if dest_is_model else 'column_name'
 if is_backref:
 lhs = getattr(dest, getattr(fk_field, dest_attr))
 rhs = getattr(src, getattr(fk_field.rel_field, src_attr))
 else:
 lhs = getattr(src, getattr(fk_field, src_attr))
 rhs = getattr(dest, getattr(fk_field.rel_field, dest_attr))
 on = (lhs == rhs)

 if not attr:
 if fk_field is not None and not is_backref:
 attr = fk_field.name
 else:
 attr = dest_model._meta.name
 elif on_alias and fk_field is not None and \
 attr == fk_field.object_id_name and not is_backref:
 raise ValueError('Cannot assign join alias to "%s", as this '
 'attribute is the object_id_name for the '
 'foreign-key field "%s"' % (attr, fk_field))

 elif isinstance(dest, Source):
 constructor = dict
 attr = attr or dest._alias
 if not attr and isinstance(dest, Table):
 attr = attr or dest.__name__

 return (on, attr, constructor)

 def _generate_on_clause(self, src, dest, to_field=None, on=None):
 meta = src._meta
 is_backref = fk_fields = False

 # Get all the foreign keys between source and dest, and determine if
 # the join is via a back-reference.
 if dest in meta.model_refs:
 fk_fields = meta.model_refs[dest]
 elif dest in meta.model_backrefs:
 fk_fields = meta.model_backrefs[dest]
 is_backref = True

 if not fk_fields:
 if on is not None:
 return None, False
 raise ValueError('Unable to find foreign key between %s and %s. '
 'Please specify an explicit join condition.' %
 (src, dest))
 elif to_field is not None:
 # If the foreign-key field was specified explicitly, remove all
 # other foreign-key fields from the list.
 target = (to_field.field if isinstance(to_field, FieldAlias)
 else to_field)
 fk_fields = [f for f in fk_fields if (
 (f is target) or
 (is_backref and f.rel_field is to_field))]

 if len(fk_fields) == 1:
 return fk_fields[0], is_backref

 if on is None:
 # If multiple foreign-keys exist, try using the FK whose name
 # matches that of the related model. If not, raise an error as this
 # is ambiguous.
 for fk in fk_fields:
 if fk.name == dest._meta.name:
 return fk, is_backref

 raise ValueError('More than one foreign key between %s and %s.'
 ' Please specify which you are joining on.' %
 (src, dest))

 # If there are multiple foreign-keys to choose from and the join
 # predicate is an expression, we'll try to figure out which
 # foreign-key field we're joining on so that we can assign to the
 # correct attribute when resolving the model graph.
 to_field = None
 if isinstance(on, Expression):
 lhs, rhs = on.lhs, on.rhs
 # Coerce to set() so that we force Python to compare using the
 # object's hash rather than equality test, which returns a
 # false-positive due to overriding __eq__.
 fk_set = set(fk_fields)

 if isinstance(lhs, Field):
 lhs_f = lhs.field if isinstance(lhs, FieldAlias) else lhs
 if lhs_f in fk_set:
 to_field = lhs_f
 elif isinstance(rhs, Field):
 rhs_f = rhs.field if isinstance(rhs, FieldAlias) else rhs
 if rhs_f in fk_set:
 to_field = rhs_f

 return to_field, False

 @Node.copy
 def join(self, dest, join_type=JOIN.INNER, on=None, src=None, attr=None):
 src = self._join_ctx if src is None else src

 if join_type == JOIN.LATERAL or join_type == JOIN.LEFT_LATERAL:
 on = True
 elif join_type != JOIN.CROSS:
 on, attr, constructor = self._normalize_join(src, dest, on, attr)
 if attr:
 self._joins.setdefault(src, [])
 self._joins[src].append((dest, attr, constructor, join_type))
 elif on is not None:
 raise ValueError('Cannot specify on clause with cross join.')

 if not self._from_list:
 raise ValueError('No sources to join on.')

 item = self._from_list.pop()
 self._from_list.append(Join(item, dest, join_type, on))

 def join_from(self, src, dest, join_type=JOIN.INNER, on=None, attr=None):
 return self.join(dest, join_type, on, src, attr)

 def _get_model_cursor_wrapper(self, cursor):
 if len(self._from_list) == 1 and not self._joins:
 return ModelObjectCursorWrapper(cursor, self.model,
 self._returning, self.model)
 return ModelCursorWrapper(cursor, self.model, self._returning,
 self._from_list, self._joins)

 def ensure_join(self, lm, rm, on=None, **join_kwargs):
 join_ctx = self._join_ctx
 for dest, _, constructor, _ in self._joins.get(lm, []):
 if dest == rm:
 return self
 return self.switch(lm).join(rm, on=on, **join_kwargs).switch(join_ctx)

 def convert_dict_to_node(self, qdict):
 accum = []
 joins = []
 fks = (ForeignKeyField, BackrefAccessor)
 for key, value in sorted(qdict.items()):
 curr = self.model
 if '__' in key and key.rsplit('__', 1)[1] in DJANGO_MAP:
 key, op = key.rsplit('__', 1)
 op = DJANGO_MAP[op]
 elif value is None:
 op = DJANGO_MAP['is']
 else:
 op = DJANGO_MAP['eq']

 if '__' not in key:
 # Handle simplest case. This avoids joining over-eagerly when a
 # direct FK lookup is all that is required.
 model_attr = getattr(curr, key)
 else:
 for piece in key.split('__'):
 for dest, attr, _, _ in self._joins.get(curr, ()):
 if attr == piece or (isinstance(dest, ModelAlias) and
 dest.alias == piece):
 curr = dest
 break
 else:
 model_attr = getattr(curr, piece)
 if value is not None and isinstance(model_attr, fks):
 curr = model_attr.rel_model
 joins.append(model_attr)
 accum.append(op(model_attr, value))
 return accum, joins

 def filter(self, *args, **kwargs):
 # normalize args and kwargs into a new expression
 if args and kwargs:
 dq_node = (reduce(operator.and_, [a.clone() for a in args]) &
 DQ(**kwargs))
 elif args:
 dq_node = (reduce(operator.and_, [a.clone() for a in args]) &
 ColumnBase())
 elif kwargs:
 dq_node = DQ(**kwargs) & ColumnBase()
 else:
 return self.clone()

 # dq_node should now be an Expression, lhs = Node(), rhs = ...
 q = collections.deque([dq_node])
 dq_joins = []
 seen_joins = set()
 while q:
 curr = q.popleft()
 if not isinstance(curr, Expression):
 continue
 for side, piece in (('lhs', curr.lhs), ('rhs', curr.rhs)):
 if isinstance(piece, DQ):
 query, joins = self.convert_dict_to_node(piece.query)
 for join in joins:
 if join not in seen_joins:
 dq_joins.append(join)
 seen_joins.add(join)
 expression = reduce(operator.and_, query)
 # Apply values from the DQ object.
 if piece._negated:
 expression = Negated(expression)
 #expression._alias = piece._alias
 setattr(curr, side, expression)
 else:
 q.append(piece)

 if not args or not kwargs:
 dq_node = dq_node.lhs

 query = self.clone()
 for field in dq_joins:
 if isinstance(field, ForeignKeyField):
 lm, rm = field.model, field.rel_model
 field_obj = field
 elif isinstance(field, BackrefAccessor):
 lm, rm = field.model, field.rel_model
 field_obj = field.field
 query = query.ensure_join(lm, rm, field_obj)
 return query.where(dq_node)

 def create_table(self, name, safe=True, **meta):
 return self.model._schema.create_table_as(name, self, safe, **meta)

 def __sql_selection__(self, ctx, is_subquery=False):
 if self._is_default and is_subquery and len(self._returning) > 1 and \
 self.model._meta.primary_key is not False:
 return ctx.sql(self.model._meta.primary_key)

 return ctx.sql(CommaNodeList(self._returning))

class NoopModelSelect(ModelSelect):
 def __sql__(self, ctx):
 return self.model._meta.database.get_noop_select(ctx)

 def _get_cursor_wrapper(self, cursor):
 return CursorWrapper(cursor)

class _ModelWriteQueryHelper(_ModelQueryHelper):
 def __init__(self, model, *args, **kwargs):
 self.model = model
 super(_ModelWriteQueryHelper, self).__init__(model, *args, **kwargs)

 def returning(self, *returning):
 accum = []
 for item in returning:
 if is_model(item):
 accum.extend(item._meta.sorted_fields)
 else:
 accum.append(item)
 return super(_ModelWriteQueryHelper, self).returning(*accum)

 def _set_table_alias(self, ctx):
 table = self.model._meta.table
 ctx.alias_manager[table] = table.__name__

class ModelUpdate(_ModelWriteQueryHelper, Update):
 pass

class ModelInsert(_ModelWriteQueryHelper, Insert):
 default_row_type = ROW.TUPLE

 def __init__(self, *args, **kwargs):
 super(ModelInsert, self).__init__(*args, **kwargs)
 if self._returning is None and self.model._meta.database is not None:
 if self.model._meta.database.returning_clause:
 self._returning = self.model._meta.get_primary_keys()

 def returning(self, *returning):
 # By default ModelInsert will yield a `tuple` containing the
 # primary-key of the newly inserted row. But if we are explicitly
 # specifying a returning clause and have not set a row type, we will
 # default to returning model instances instead.
 if returning and self._row_type is None:
 self._row_type = ROW.MODEL
 return super(ModelInsert, self).returning(*returning)

 def get_default_data(self):
 return self.model._meta.defaults

 def get_default_columns(self):
 fields = self.model._meta.sorted_fields
 return fields[1:] if self.model._meta.auto_increment else fields

class ModelDelete(_ModelWriteQueryHelper, Delete):
 pass

class ManyToManyQuery(ModelSelect):
 def __init__(self, instance, accessor, rel, *args, **kwargs):
 self._instance = instance
 self._accessor = accessor
 self._src_attr = accessor.src_fk.rel_field.name
 self._dest_attr = accessor.dest_fk.rel_field.name
 super(ManyToManyQuery, self).__init__(rel, (rel,), *args, **kwargs)

 def _id_list(self, model_or_id_list):
 if isinstance(model_or_id_list[0], Model):
 return [getattr(obj, self._dest_attr) for obj in model_or_id_list]
 return model_or_id_list

 def add(self, value, clear_existing=False):
 if clear_existing:
 self.clear()

 accessor = self._accessor
 src_id = getattr(self._instance, self._src_attr)
 if isinstance(value, SelectQuery):
 query = value.columns(
 Value(src_id),
 accessor.dest_fk.rel_field)
 accessor.through_model.insert_from(
 fields=[accessor.src_fk, accessor.dest_fk],
 query=query).execute()
 else:
 value = ensure_tuple(value)
 if not value: return

 inserts = [{
 accessor.src_fk.name: src_id,
 accessor.dest_fk.name: rel_id}
 for rel_id in self._id_list(value)]
 accessor.through_model.insert_many(inserts).execute()

 def remove(self, value):
 src_id = getattr(self._instance, self._src_attr)
 if isinstance(value, SelectQuery):
 column = getattr(value.model, self._dest_attr)
 subquery = value.columns(column)
 return (self._accessor.through_model
 .delete()
 .where(
 (self._accessor.dest_fk << subquery) &
 (self._accessor.src_fk == src_id))
 .execute())
 else:
 value = ensure_tuple(value)
 if not value:
 return
 return (self._accessor.through_model
 .delete()
 .where(
 (self._accessor.dest_fk << self._id_list(value)) &
 (self._accessor.src_fk == src_id))
 .execute())

 def clear(self):
 src_id = getattr(self._instance, self._src_attr)
 return (self._accessor.through_model
 .delete()
 .where(self._accessor.src_fk == src_id)
 .execute())

def safe_python_value(conv_func):
 def validate(value):
 try:
 return conv_func(value)
 except (TypeError, ValueError):
 return value
 return validate

class BaseModelCursorWrapper(DictCursorWrapper):
 def __init__(self, cursor, model, columns):
 super(BaseModelCursorWrapper, self).__init__(cursor)
 self.model = model
 self.select = columns or []

 def _initialize_columns(self):
 combined = self.model._meta.combined
 table = self.model._meta.table
 description = self.cursor.description

 self.ncols = len(self.cursor.description)
 self.columns = []
 self.converters = converters = [None] * self.ncols
 self.fields = fields = [None] * self.ncols

 for idx, description_item in enumerate(description):
 column = description_item[0]
 dot_index = column.find('.')
 if dot_index != -1:
 column = column[dot_index + 1:]

 column = column.strip('")')
 self.columns.append(column)
 try:
 raw_node = self.select[idx]
 except IndexError:
 if column in combined:
 raw_node = node = combined[column]
 else:
 continue
 else:
 node = raw_node.unwrap()

 # Heuristics used to attempt to get the field associated with a
 # given SELECT column, so that we can accurately convert the value
 # returned by the database-cursor into a Python object.
 if isinstance(node, Field):
 if raw_node._coerce:
 converters[idx] = node.python_value
 fields[idx] = node
 if not raw_node.is_alias():
 self.columns[idx] = node.name
 elif isinstance(node, ColumnBase) and raw_node._converter:
 converters[idx] = raw_node._converter
 elif isinstance(node, Function) and node._coerce:
 if node._python_value is not None:
 converters[idx] = node._python_value
 elif node.arguments and isinstance(node.arguments[0], Node):
 # If the first argument is a field or references a column
 # on a Model, try using that field's conversion function.
 # This usually works, but we use "safe_python_value()" so
 # that if a TypeError or ValueError occurs during
 # conversion we can just fall-back to the raw cursor value.
 first = node.arguments[0].unwrap()
 if isinstance(first, Entity):
 path = first._path[-1] # Try to look-up by name.
 first = combined.get(path)
 if isinstance(first, Field):
 converters[idx] = safe_python_value(first.python_value)
 elif column in combined:
 if node._coerce:
 converters[idx] = combined[column].python_value
 if isinstance(node, Column) and node.source == table:
 fields[idx] = combined[column]

 initialize = _initialize_columns

 def process_row(self, row):
 raise NotImplementedError

class ModelDictCursorWrapper(BaseModelCursorWrapper):
 def process_row(self, row):
 result = {}
 columns, converters = self.columns, self.converters
 fields = self.fields

 for i in range(self.ncols):
 attr = columns[i]
 if attr in result: continue # Don't overwrite if we have dupes.
 if converters[i] is not None:
 result[attr] = converters[i](row[i])
 else:
 result[attr] = row[i]

 return result

class ModelTupleCursorWrapper(ModelDictCursorWrapper):
 constructor = tuple

 def process_row(self, row):
 columns, converters = self.columns, self.converters
 return self.constructor([
 (converters[i](row[i]) if converters[i] is not None else row[i])
 for i in range(self.ncols)])

class ModelNamedTupleCursorWrapper(ModelTupleCursorWrapper):
 def initialize(self):
 self._initialize_columns()
 attributes = []
 for i in range(self.ncols):
 attributes.append(self.columns[i])
 self.tuple_class = collections.namedtuple('Row', attributes)
 self.constructor = lambda row: self.tuple_class(*row)

class ModelObjectCursorWrapper(ModelDictCursorWrapper):
 def __init__(self, cursor, model, select, constructor):
 self.constructor = constructor
 self.is_model = is_model(constructor)
 super(ModelObjectCursorWrapper, self).__init__(cursor, model, select)

 def process_row(self, row):
 data = super(ModelObjectCursorWrapper, self).process_row(row)
 if self.is_model:
 # Clear out any dirty fields before returning to the user.
 obj = self.constructor(__no_default__=1, **data)
 obj._dirty.clear()
 return obj
 else:
 return self.constructor(**data)

class ModelCursorWrapper(BaseModelCursorWrapper):
 def __init__(self, cursor, model, select, from_list, joins):
 super(ModelCursorWrapper, self).__init__(cursor, model, select)
 self.from_list = from_list
 self.joins = joins

 def initialize(self):
 self._initialize_columns()
 selected_src = set([field.model for field in self.fields
 if field is not None])
 select, columns = self.select, self.columns

 self.key_to_constructor = {self.model: self.model}
 self.src_is_dest = {}
 self.src_to_dest = []
 accum = collections.deque(self.from_list)
 dests = set()

 while accum:
 curr = accum.popleft()
 if isinstance(curr, Join):
 accum.append(curr.lhs)
 accum.append(curr.rhs)
 continue

 if curr not in self.joins:
 continue

 is_dict = isinstance(curr, dict)
 for key, attr, constructor, join_type in self.joins[curr]:
 if key not in self.key_to_constructor:
 self.key_to_constructor[key] = constructor

 # (src, attr, dest, is_dict, join_type).
 self.src_to_dest.append((curr, attr, key, is_dict,
 join_type))
 dests.add(key)
 accum.append(key)

 # Ensure that we accommodate everything selected.
 for src in selected_src:
 if src not in self.key_to_constructor:
 if is_model(src):
 self.key_to_constructor[src] = src
 elif isinstance(src, ModelAlias):
 self.key_to_constructor[src] = src.model

 # Indicate which sources are also dests.
 for src, _, dest, _, _ in self.src_to_dest:
 self.src_is_dest[src] = src in dests and (dest in selected_src
 or src in selected_src)

 self.column_keys = []
 for idx, node in enumerate(select):
 key = self.model
 field = self.fields[idx]
 if field is not None:
 if isinstance(field, FieldAlias):
 key = field.source
 else:
 key = field.model
 else:
 if isinstance(node, Node):
 node = node.unwrap()
 if isinstance(node, Column):
 key = node.source

 self.column_keys.append(key)

 def process_row(self, row):
 objects = {}
 object_list = []
 for key, constructor in self.key_to_constructor.items():
 objects[key] = constructor(__no_default__=True)
 object_list.append(objects[key])

 default_instance = objects[self.model]

 set_keys = set()
 for idx, key in enumerate(self.column_keys):
 # Get the instance corresponding to the selected column/value,
 # falling back to the "root" model instance.
 instance = objects.get(key, default_instance)
 column = self.columns[idx]
 value = row[idx]
 if value is not None:
 set_keys.add(key)
 if self.converters[idx]:
 value = self.converters[idx](value)

 if isinstance(instance, dict):
 instance[column] = value
 else:
 setattr(instance, column, value)

 # Need to do some analysis on the joins before this.
 for (src, attr, dest, is_dict, join_type) in self.src_to_dest:
 instance = objects[src]
 try:
 joined_instance = objects[dest]
 except KeyError:
 continue

 # If no fields were set on the destination instance then do not
 # assign an "empty" instance.
 if instance is None or dest is None or \
 (dest not in set_keys and not self.src_is_dest.get(dest)):
 continue

 # If no fields were set on either the source or the destination,
 # then we have nothing to do here.
 if instance not in set_keys and dest not in set_keys \
 and join_type.endswith('OUTER JOIN'):
 continue

 if is_dict:
 instance[attr] = joined_instance
 else:
 setattr(instance, attr, joined_instance)

 # When instantiating models from a cursor, we clear the dirty fields.
 for instance in object_list:
 if isinstance(instance, Model):
 instance._dirty.clear()

 return objects[self.model]

class PrefetchQuery(collections.namedtuple('_PrefetchQuery', (
 'query', 'fields', 'is_backref', 'rel_models', 'field_to_name', 'model'))):
 def __new__(cls, query, fields=None, is_backref=None, rel_models=None,
 field_to_name=None, model=None):
 if fields:
 if is_backref:
 if rel_models is None:
 rel_models = [field.model for field in fields]
 foreign_key_attrs = [field.rel_field.name for field in fields]
 else:
 if rel_models is None:
 rel_models = [field.rel_model for field in fields]
 foreign_key_attrs = [field.name for field in fields]
 field_to_name = list(zip(fields, foreign_key_attrs))
 model = query.model
 return super(PrefetchQuery, cls).__new__(
 cls, query, fields, is_backref, rel_models, field_to_name, model)

 def populate_instance(self, instance, id_map):
 if self.is_backref:
 for field in self.fields:
 identifier = instance.__data__[field.name]
 key = (field, identifier)
 if key in id_map:
 setattr(instance, field.name, id_map[key])
 else:
 for field, attname in self.field_to_name:
 identifier = instance.__data__[field.rel_field.name]
 key = (field, identifier)
 rel_instances = id_map.get(key, [])
 for inst in rel_instances:
 setattr(inst, attname, instance)
 inst._dirty.clear()
 setattr(instance, field.backref, rel_instances)

 def store_instance(self, instance, id_map):
 for field, attname in self.field_to_name:
 identity = field.rel_field.python_value(instance.__data__[attname])
 key = (field, identity)
 if self.is_backref:
 id_map[key] = instance
 else:
 id_map.setdefault(key, [])
 id_map[key].append(instance)

def prefetch_add_subquery(sq, subqueries):
 fixed_queries = [PrefetchQuery(sq)]
 for i, subquery in enumerate(subqueries):
 if isinstance(subquery, tuple):
 subquery, target_model = subquery
 else:
 target_model = None
 if not isinstance(subquery, Query) and is_model(subquery) or \
 isinstance(subquery, ModelAlias):
 subquery = subquery.select()
 subquery_model = subquery.model
 fks = backrefs = None
 for j in reversed(range(i + 1)):
 fixed = fixed_queries[j]
 last_query = fixed.query
 last_model = last_obj = fixed.model
 if isinstance(last_model, ModelAlias):
 last_model = last_model.model
 rels = subquery_model._meta.model_refs.get(last_model, [])
 if rels:
 fks = [getattr(subquery_model, fk.name) for fk in rels]
 pks = [getattr(last_obj, fk.rel_field.name) for fk in rels]
 else:
 backrefs = subquery_model._meta.model_backrefs.get(last_model)
 if (fks or backrefs) and ((target_model is last_obj) or
 (target_model is None)):
 break

 if not fks and not backrefs:
 tgt_err = ' using %s' % target_model if target_model else ''
 raise AttributeError('Error: unable to find foreign key for '
 'query: %s%s' % (subquery, tgt_err))

 dest = (target_model,) if target_model else None

 if fks:
 expr = reduce(operator.or_, [
 (fk << last_query.select(pk))
 for (fk, pk) in zip(fks, pks)])
 subquery = subquery.where(expr)
 fixed_queries.append(PrefetchQuery(subquery, fks, False, dest))
 elif backrefs:
 expressions = []
 for backref in backrefs:
 rel_field = getattr(subquery_model, backref.rel_field.name)
 fk_field = getattr(last_obj, backref.name)
 expressions.append(rel_field << last_query.select(fk_field))
 subquery = subquery.where(reduce(operator.or_, expressions))
 fixed_queries.append(PrefetchQuery(subquery, backrefs, True, dest))

 return fixed_queries

def prefetch(sq, *subqueries):
 if not subqueries:
 return sq

 fixed_queries = prefetch_add_subquery(sq, subqueries)
 deps = {}
 rel_map = {}
 for pq in reversed(fixed_queries):
 query_model = pq.model
 if pq.fields:
 for rel_model in pq.rel_models:
 rel_map.setdefault(rel_model, [])
 rel_map[rel_model].append(pq)

 deps.setdefault(query_model, {})
 id_map = deps[query_model]
 has_relations = bool(rel_map.get(query_model))

 for instance in pq.query:
 if pq.fields:
 pq.store_instance(instance, id_map)
 if has_relations:
 for rel in rel_map[query_model]:
 rel.populate_instance(instance, deps[rel.model])

 return list(pq.query)

 Source code for nngt.analysis.activity_analysis

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Tools for activity analysis from data """

import logging

import numpy as np
import scipy.signal as sps
import scipy.sparse as ssp

from nngt.lib import nonstring_container, find_idx_nearest
from nngt.lib.logger import _log_message

__all__ = [
 "get_b2",
 "get_firing_rate",
 "get_spikes",
 "total_firing_rate",
]

logger = logging.getLogger(__name__)

Get activity properties

[docs]def get_b2(network=None, spike_detector=None, data=None, nodes=None):
 '''
 Return the B2 coefficient for the neurons.

 Parameters

 network : :class:`nngt.Network`, optional (default: None)
 Network for which the activity was simulated.
 spike_detector : tuple of ints, optional (default: spike detectors)
 GID of the "spike_detector" objects recording the network activity.
 data : array-like of shape (N, 2), optionale (default: None)
 Array containing the spikes data (first line must contain the NEST GID
 of the neuron that fired, second line must contain the associated spike
 time).
 nodes : array-like, optional (default: all neurons)
 NNGT ids of the nodes for which the B2 should be computed.

 Returns

 b2 : array-like
 B2 coefficient for each neuron in `nodes`.
 '''
 if data is None:
 data, nodes = _set_data_nodes(network, data, nodes)
 data = _set_spike_data(data, spike_detector)
 else:
 if nodes is None:
 nodes = np.unique(data[:, 0])

 return _b2_from_data(nodes, data)

[docs]def get_firing_rate(network=None, spike_detector=None, data=None, nodes=None):
 '''
 Return the average firing rate for the neurons.

 Parameters

 network : :class:`nngt.Network`, optional (default: None)
 Network for which the activity was simulated.
 spike_detector : tuple of ints, optional (default: spike detectors)
 GID of the "spike_detector" objects recording the network activity.
 data : :class:`numpy.array` of shape (N, 2), optionale (default: None)
 Array containing the spikes data (first line must contain the NEST GID
 of the neuron that fired, second line must contain the associated spike
 time).
 nodes : array-like, optional (default: all nodes)
 NNGT ids of the nodes for which the B2 should be computed.

 Returns

 fr : array-like
 Firing rate for each neuron in `nodes`.
 '''
 if data is None:
 data, nodes = _set_data_nodes(network, data, nodes)
 data = _set_spike_data(data, spike_detector)
 else:
 if nodes is None:
 nodes = np.unique(data[:, 0])

 return _fr_from_data(nodes, data)

[docs]def total_firing_rate(network=None, spike_detector=None, nodes=None, data=None,
 kernel_center=0., kernel_std=30., resolution=None,
 cut_gaussian=5.):
 '''
 Computes the total firing rate of the network from the spike times.
 Firing rate is obtained as the convolution of the spikes with a Gaussian
 kernel characterized by a standard deviation and a temporal shift.

 .. versionadded:: 0.7

 Parameters

 network : :class:`nngt.Network`, optional (default: None)
 Network for which the activity was simulated.
 spike_detector : tuple of ints, optional (default: spike detectors)
 GID of the "spike_detector" objects recording the network activity.
 data : :class:`numpy.array` of shape (N, 2), optionale (default: None)
 Array containing the spikes data (first line must contain the NEST GID
 of the neuron that fired, second line must contain the associated spike
 time).
 kernel_center : float, optional (default: 0.)
 Temporal shift of the Gaussian kernel, in ms.
 kernel_std : float, optional (default: 30.)
 Characteristic width of the Gaussian kernel (standard deviation) in ms.
 resolution : float or array, optional (default: `0.1*kernel_std`)
 The resolution at which the firing rate values will be computed.
 Choosing a value smaller than `kernel_std` is strongly advised.
 If resolution is an array, it will be considered as the times were the
 firing rate should be computed.
 cut_gaussian : float, optional (default: 5.)
 Range over which the Gaussian will be computed. By default, we consider
 the 5-sigma range. Decreasing this value will increase speed at the
 cost of lower fidelity; increasing it with increase the fidelity at the
 cost of speed.

 Returns

 fr : array-like
 The firing rate in Hz.
 times : array-like
 The times associated to the firing rate values.
 '''
 times, kernel_size = None, None

 if data is None:
 data, _ = _set_data_nodes(network, data, nodes)
 data = _set_spike_data(data, spike_detector)

 # set resolution and kernel properties + generate the times
 if resolution is None:
 resolution = 0.1*kernel_std

 if nonstring_container(resolution):
 dt = np.diff(resolution)
 assert np.allclose(dt - dt[0], 0.), 'If `resolution` is an array, ' +\
 'it must contain evenly spaced ' +\
 'times.'
 times = np.array(resolution)
 resolution = dt[0]

 bin_std = int(kernel_std / float(resolution))
 kernel_size = int(2. * cut_gaussian * bin_std)

 if times is None:
 delta_T = resolution * 0.5 * kernel_size
 times = np.arange(np.min(data[:, 1]) - delta_T,
 np.max(data[:, 1]) + delta_T, resolution)

 rate = np.zeros(len(times))

 # counts the spikes at each time
 pos = find_idx_nearest(times, data[:, 1])
 bins = np.linspace(0, len(times), len(times)+1)
 counts, _ = np.histogram(pos, bins=bins)

 # initialize with delta rate in Hz
 rate += 1000. * counts / (kernel_std*np.sqrt(np.pi))
 fr = _smooth(rate, kernel_size, bin_std, mode='same')

 # translate times
 times += kernel_center

 return fr, times

[docs]def get_spikes(recorder=None, spike_times=None, senders=None, astype="ssp"):
 '''
 Return a 2D sparse matrix, where:

 - each row i contains the spikes of neuron i (in NEST),
 - each column j contains the times of the jth spike for all neurons.

 .. versionchanged:: 1.0
 Neurons are now located in the row corresponding to their NEST GID.

 Parameters

 recorder : tuple, optional (default: None)
 Tuple of NEST gids, where the first one should point to the
 spike_detector which recorded the spikes.
 spike_times : array-like, optional (default: None)
 If `recorder` is not provided, the spikes' data can be passed directly
 through their `spike_times` and the associated `senders`.
 senders : array-like, optional (default: None)
 `senders[i]` corresponds to the neuron which fired at `spike_times[i]`.
 astype : str, optional (default: "ssp")
 Format of the returned data. Default is sparse lil_matrix ("ssp")
 with one row per neuron, otherwise "np" returns a (T, 2) array, with
 T the number of spikes (the first row being the NEST gid, the second
 the spike time).

 Example

 >>> get_spikes()

 >>> get_spikes(recorder)

 >>> times = [1.5, 2.68, 125.6]
 >>> neuron_ids = [12, 0, 65]
 >>> get_spikes(spike_times=times, senders=neuron_ids)

 Note

 If no arguments are passed to the function, the first spike_recorder
 available in NEST will be used.
 Neuron positions correspond to their GIDs in NEST.

 Returns

 CSR matrix containing the spikes sorted by neuron GIDs (rows) and time
 (columns).
 '''
 if recorder is not None:
 import nest
 data = nest.GetStatus(recorder[0])[0]["events"]
 spike_times = data["times"]
 senders = data["senders"]
 elif spike_times is None and senders is None:
 import nest
 nodes = nest.GetNodes(
 (0,), properties={'model': 'spike_detector'})
 data = nest.GetStatus(nodes[0])[0]["events"]
 spike_times = data["times"]
 senders = data["senders"]

 if astype == "np":
 return np.array([senders, spike_times]).T
 elif astype == "ssp":
 if np.any(senders):
 max_sender = np.max(senders)
 # create the sparse matrix
 data = [0 for _ in range(max_sender + 1)]
 row_idx = []
 col_idx = []
 for time, neuron in zip(spike_times, senders):
 row_idx.append(neuron)
 col_idx.append(data[neuron])
 data[neuron] += 1
 return ssp.csr_matrix((spike_times, (row_idx, col_idx)))
 else:
 return ssp.csr_matrix([])

Tools

def _b2_from_data(ids, data):
 b2 = np.full(len(ids), np.NaN)
 if len(data[:, 0]) > 0:
 for i, neuron in enumerate(ids):
 ids = np.where(data[:, 0] == neuron)[0]
 dt1 = np.diff(data[ids, 1])
 dt2 = dt1[1:] + dt1[:-1]
 avg_isi = np.mean(dt1)
 if avg_isi != 0.:
 b2[i] = (2*np.var(dt1) - np.var(dt2)) / (2*avg_isi**2)
 else:
 b2[i] = np.inf
 else:
 _log_message(logger, "WARNING", 'No spikes in the data.')
 return b2

def _fr_from_data(ids, data):
 fr = np.zeros(len(ids))
 T = float(np.max(data[:, 1]) - np.min(data[:, 1]))
 for i, neuron in enumerate(ids):
 ids = np.where(data[:, 0] == neuron)[0]
 fr[i] = len(ids) / T
 return fr

def _set_data_nodes(network, data, nodes):
 if data is None:
 data = [[], []]
 if nodes is None:
 nodes = network.nest_gids
 else:
 nodes = network.nest_gids[nodes]
 return data, nodes

def _set_spike_data(data, spike_detector):
 '''
 Data must be [[], []]
 '''
 import nest
 if not len(data[0]):
 if spike_detector is None:
 spike_detector = nest.GetNodes(
 (0,), properties={'model': 'spike_detector'})[0]
 events = nest.GetStatus(spike_detector, "events")
 for ev_dict in events:
 data[0].extend(ev_dict["senders"])
 data[1].extend(ev_dict["times"])
 sorter = np.argsort(data[1])
 return np.array(data)[:, sorter].T

def _smooth(data, kernel_size, std, mode='same'):
 '''
 Convolve an array by a Gaussian kernel.

 Parameters

 kernel_size : int
 Size of the kernel array in bins.
 std : float
 Width of the Gaussian (also in bins).

 Returns

 convolved array.
 '''
 kernel = sps.gaussian(kernel_size, std)
 kernel /= np.sum(kernel)
 return sps.convolve(data, kernel, mode=mode)

 Source code for nngt.analysis.bayesian_blocks

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
This particular file is taken from the `atroML <http://www.astroml.org/>`
project and is provided under a BSD license.

"""
Bayesian Block implementation
=============================

Dynamic programming algorithm for finding the optimal adaptive-width histogram.

Based on Scargle et al 2012 [1]_

References

.. [1] http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
"""

import numpy as np

class FitnessFunc:

 """
 Base class for fitness functions

 Each fitness function class has the following:
 - fitness(...) : compute fitness function.
 Arguments accepted by fitness must be among [T_k, N_k, a_k, b_k, c_k]
 - prior(N, Ntot) : compute prior on N given a total number of points Ntot
 """

 def __init__(self, p0=0.05, gamma=None):
 self.p0 = p0
 self.gamma = gamma

 def validate_input(self, t, x, sigma):
 """Check that input is valid"""
 pass

 def fitness(**kwargs):
 raise NotImplementedError()

 def prior(self, N, Ntot):
 if self.gamma is None:
 return self.p0_prior(N, Ntot)
 else:
 return self.gamma_prior(N, Ntot)

 def p0_prior(self, N, Ntot):
 # eq. 21 from Scargle 2012
 return 4 - np.log(73.53 * self.p0 * (N ** -0.478))

 def gamma_prior(self, N, Ntot):
 """Basic prior, parametrized by gamma (eq. 3 in Scargle 2012)"""
 if self.gamma == 1:
 return 0
 else:
 return (np.log(1 - self.gamma)
 - np.log(1 - self.gamma ** (Ntot + 1))
 + N * np.log(self.gamma))

 # the fitness_args property will return the list of arguments accepted by
 # the method fitness(). This allows more efficient computation below.
 @property
 def args(self):
 try:
 # Python 2
 return self.fitness.func_code.co_varnames[1:]
 except AttributeError:
 return self.fitness.__code__.co_varnames[1:]

class Events(FitnessFunc):

 """
 Fitness for binned or unbinned events

 Parameters

 p0 : float
 False alarm probability, used to compute the prior on N
 (see eq. 21 of Scargle 2012). Default prior is for p0 = 0.
 gamma : float or None
 If specified, then use this gamma to compute the general prior form,
 p ~ gamma^N. If gamma is specified, p0 is ignored.
 """

 def fitness(self, N_k, T_k):
 # eq. 19 from Scargle 2012
 return N_k * (np.log(N_k) - np.log(T_k))

 def prior(self, N, Ntot):
 if self.gamma is not None:
 return self.gamma_prior(N, Ntot)
 else:
 # eq. 21 from Scargle 2012
 return 4 - np.log(73.53 * self.p0 * (N ** -0.478))

class RegularEvents(FitnessFunc):

 """
 Fitness for regular events

 This is for data which has a fundamental "tick" length, so that all
 measured values are multiples of this tick length. In each tick, there
 are either zero or one counts.

 Parameters

 dt : float
 tick rate for data
 gamma : float
 specifies the prior on the number of bins: p ~ gamma^N
 """

 def __init__(self, dt, p0=0.05, gamma=None):
 self.dt = dt
 self.p0 = p0
 self.gamma = gamma

 def validate_input(self, t, x, sigma):
 unique_x = np.unique(x)
 if list(unique_x) not in ([0], [1], [0, 1]):
 raise ValueError("Regular events must have only 0 and 1 in x")

 def fitness(self, T_k, N_k):
 # Eq. 75 of Scargle 2012
 M_k = T_k / self.dt
 N_over_M = N_k * 1. / M_k

 eps = 1E-8
 if np.any(N_over_M > 1 + eps):
 import warnings
 warnings.warn('regular events: N/M > 1. '
 'Is the time step correct?')

 one_m_NM = 1 - N_over_M
 N_over_M[N_over_M <= 0] = 1
 one_m_NM[one_m_NM <= 0] = 1

 return N_k * np.log(N_over_M) + (M_k - N_k) * np.log(one_m_NM)

class PointMeasures(FitnessFunc):

 """
 Fitness for point measures

 Parameters

 gamma : float
 specifies the prior on the number of bins: p ~ gamma^N
 if gamma is not specified, then a prior based on simulations
 will be used (see sec 3.3 of Scargle 2012)
 """

 def __init__(self, p0=None, gamma=None):
 self.p0 = p0
 self.gamma = gamma

 def fitness(self, a_k, b_k):
 # eq. 41 from Scargle 2012
 return (b_k * b_k) / (4 * a_k)

 def prior(self, N, Ntot):
 if self.gamma is not None:
 return self.gamma_prior(N, Ntot)
 elif self.p0 is not None:
 return self.p0_prior(N, Ntot)
 else:
 # eq. at end of sec 3.3 in Scargle 2012
 return 1.32 + 0.577 * np.log10(N)

[docs]def bayesian_blocks(t, x=None, sigma=None, fitness='events', **kwargs):
 """
 Bayesian Blocks Implementation

 This is a flexible implementation of the Bayesian Blocks algorithm
 described in Scargle 2012 [1]_

 .. versionadded:: 0.7

 Parameters

 t : array_like
 data times (one dimensional, length N)
 x : array_like (optional)
 data values
 sigma : array_like or float (optional)
 data errors
 fitness : str or object
 the fitness function to use.
 If a string, the following options are supported:

 - 'events' : binned or unbinned event data
 extra arguments are `p0`, which gives the false alarm probability
 to compute the prior, or `gamma` which gives the slope of the
 prior on the number of bins.
 - 'regular_events' : non-overlapping events measured at multiples
 of a fundamental tick rate, `dt`, which must be specified as an
 additional argument. The prior can be specified through `gamma`,
 which gives the slope of the prior on the number of bins.
 - 'measures' : fitness for a measured sequence with Gaussian errors
 The prior can be specified using `gamma`, which gives the slope
 of the prior on the number of bins. If `gamma` is not specified,
 then a simulation-derived prior will be used.

 Alternatively, the fitness can be a user-specified object of
 type derived from the FitnessFunc class.

 Returns

 edges : ndarray
 array containing the (N+1) bin edges

 Examples

 Event data:

 >>> t = np.random.normal(size=100)
 >>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

 Event data with repeats:

 >>> t = np.random.normal(size=100)
 >>> t[80:] = t[:20]
 >>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

 Regular event data:

 >>> dt = 0.01
 >>> t = dt * np.arange(1000)
 >>> x = np.zeros(len(t))
 >>> x[np.random.randint(0, len(t), len(t) / 10)] = 1
 >>> bins = bayesian_blocks(t, fitness='regular_events', dt=dt, gamma=0.9)

 Measured point data with errors:

 >>> t = 100 * np.random.random(100)
 >>> x = np.exp(-0.5 * (t - 50) ** 2)
 >>> sigma = 0.1
 >>> x_obs = np.random.normal(x, sigma)
 >>> bins = bayesian_blocks(t, fitness='measures')

 References

 .. [1] Scargle, J `et al.` (2012)
 http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

 See Also

 :func:`astroML.plotting.hist` : histogram plotting function which can make
 use of bayesian blocks.
 """
 # validate array input
 t = np.asarray(t, dtype=float)
 if x is not None:
 x = np.asarray(x)
 if sigma is not None:
 sigma = np.asarray(sigma)

 # verify the fitness function
 if fitness == 'events':
 if x is not None and np.any(x % 1 > 0):
 raise ValueError("x must be integer counts for fitness='events'")
 fitfunc = Events(**kwargs)
 elif fitness == 'regular_events':
 if x is not None and (np.any(x % 1 > 0) or np.any(x > 1)):
 raise ValueError("x must be 0 or 1 for fitness='regular_events'")
 fitfunc = RegularEvents(**kwargs)
 elif fitness == 'measures':
 if x is None:
 raise ValueError("x must be specified for fitness='measures'")
 fitfunc = PointMeasures(**kwargs)
 else:
 if not (hasattr(fitness, 'args') and
 hasattr(fitness, 'fitness') and
 hasattr(fitness, 'prior')):
 raise ValueError("fitness not understood")
 fitfunc = fitness

 # find unique values of t
 t = np.array(t, dtype=float)
 assert t.ndim == 1
 unq_t, unq_ind, unq_inv = np.unique(t, return_index=True,
 return_inverse=True)

 # if x is not specified, x will be counts at each time
 if x is None:
 if sigma is not None:
 raise ValueError("If sigma is specified, x must be specified")

 if len(unq_t) == len(t):
 x = np.ones_like(t)
 else:
 x = np.bincount(unq_inv)

 t = unq_t
 sigma = 1

 # if x is specified, then we need to sort t and x together
 else:
 x = np.asarray(x)

 if len(t) != len(x):
 raise ValueError("Size of t and x does not match")

 if len(unq_t) != len(t):
 raise ValueError("Repeated values in t not supported when "
 "x is specified")
 t = unq_t
 x = x[unq_ind]

 # verify the given sigma value
 N = t.size
 if sigma is not None:
 sigma = np.asarray(sigma)
 if sigma.shape not in [(), (1,), (N,)]:
 raise ValueError('sigma does not match the shape of x')
 else:
 sigma = 1

 # validate the input
 fitfunc.validate_input(t, x, sigma)

 # compute values needed for computation, below
 if 'a_k' in fitfunc.args:
 ak_raw = np.ones_like(x) / sigma / sigma
 if 'b_k' in fitfunc.args:
 bk_raw = x / sigma / sigma
 if 'c_k' in fitfunc.args:
 ck_raw = x * x / sigma / sigma

 # create length-(N + 1) array of cell edges
 edges = np.concatenate([t[:1],
 0.5 * (t[1:] + t[:-1]),
 t[-1:]])
 block_length = t[-1] - edges

 # arrays to store the best configuration
 best = np.zeros(N, dtype=float)
 last = np.zeros(N, dtype=int)

 #---
 # Start with first data cell; add one cell at each iteration
 #---
 for R in range(N):
 # Compute fit_vec : fitness of putative last block (end at R)
 kwds = {}

 # T_k: width/duration of each block
 if 'T_k' in fitfunc.args:
 kwds['T_k'] = block_length[:R + 1] - block_length[R + 1]

 # N_k: number of elements in each block
 if 'N_k' in fitfunc.args:
 kwds['N_k'] = np.cumsum(x[:R + 1][::-1])[::-1]

 # a_k: eq. 31
 if 'a_k' in fitfunc.args:
 kwds['a_k'] = 0.5 * np.cumsum(ak_raw[:R + 1][::-1])[::-1]

 # b_k: eq. 32
 if 'b_k' in fitfunc.args:
 kwds['b_k'] = - np.cumsum(bk_raw[:R + 1][::-1])[::-1]

 # c_k: eq. 33
 if 'c_k' in fitfunc.args:
 kwds['c_k'] = 0.5 * np.cumsum(ck_raw[:R + 1][::-1])[::-1]

 # evaluate fitness function
 fit_vec = fitfunc.fitness(**kwds)

 A_R = fit_vec - fitfunc.prior(R + 1, N)
 A_R[1:] += best[:R]

 i_max = np.argmax(A_R)
 last[R] = i_max
 best[R] = A_R[i_max]

 #---
 # Now find changepoints by iteratively peeling off the last block
 #---
 change_points = np.zeros(N, dtype=int)
 i_cp = N
 ind = N
 while True:
 i_cp -= 1
 change_points[i_cp] = ind
 if ind == 0:
 break
 ind = last[ind - 1]
 change_points = change_points[i_cp:]

 return edges[change_points]

 Source code for nngt.analysis.clustering

#-*- coding:utf-8 -*-
#
clustering.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Tools for directed/weighted clsutering analysis """

import numpy as np

import nngt
from nngt.lib import nonstring_container
from nngt.lib.graph_helpers import _get_matrices

__all__ = [
	"global_clustering",
 "global_clustering_binary_undirected",
 "local_closure",
 "local_clustering",
 "local_clustering_binary_undirected",
 "triplet_count",
 "triangle_count",
]

def global_clustering_binary_undirected(g):
 '''
 Returns the undirected global clustering coefficient.

 This corresponds to the ratio of undirected triangles to the number of
 undirected triads.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 '''
 # Note, this function is overloaded by the library-specific version
 # if igraph, graph-tool, or networkx is used
 triangles = triangle_count(g, weights=None, directed=False)
 triplets = triplet_count(g, weights=None, directed=False)

 return np.sum(triangles) / np.sum(triplets)

[docs]def global_clustering(g, directed=True, weights=None, method="continuous",
 mode="total", combine_weights="mean"):
 '''
 Returns the global clustering coefficient.

 This corresponds to the ratio of triangles to the number of triplets.
 For directed and weighted cases, see definitions of generalized triangles
 and triplets in the associated functions below.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 directed : bool, optional (default: True)
 Whether to compute the directed clustering if the graph is directed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 method : str, optional (default: 'continuous')
 Method used to compute the weighted clustering, either 'barrat'
 [Barrat2004]_, 'continuous', 'onnela' [Onnela2005]_, or 'zhang'
 [Zhang2005]_.
 mode : str, optional (default: "total")
 Type of clustering to use for directed graphs, among "total", "fan-in",
 "fan-out", "middleman", and "cycle" [Fagiolo2007]_.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.

 References

 .. [gt-global-clustering] :gtdoc:`clustering.global_clustering`
 .. [ig-global-clustering] :igdoc:`transitivity_undirected`
 .. [nx-global-clustering] :nxdoc:`algorithms.cluster.transitivity`
 .. [Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
 Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
 :doi:`10.1073/pnas.0400087101`.
 .. [Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
 of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
 065103. :doi:`10.1103/physreve.71.065103`, arxiv:`cond-mat/0408629`.
 .. [Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks.
 Phys. Rev. E 2007, 76 (2), 026107. :doi:`10.1103/PhysRevE.76.026107`,
 :arxiv:`physics/0612169`.
 .. [Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene
 Co-Expression Network Analysis. Statistical Applications in Genetics
 and Molecular Biology 2005, 4 (1). :doi:`10.2202/1544-6115.1128`,
 `PDF <https://dibernardo.tigem.it/files/papers/2008/
 zhangbin-statappsgeneticsmolbio.pdf>`_.

 See also

 :func:`~nngt.analysis.triplet_count`
 :func:`~nngt.analysis.triangle_count`
 '''
 assert method in ("barrat", "continuous", "onnela", "zhang"), \
 "Unknown method '{}'".format(method)

 # check directivity and weights
 directed *= g.is_directed()
 weighted = weights not in (False, None)

 if not directed and not weighted:
 return global_clustering_binary_undirected(g)
 elif not weighted:
 # directed clustering
 triangles = triangle_count(g, mode=mode)
 triplets = triplet_count(g, mode=mode)

 return np.sum(triangles) / np.sum(triplets)

 triangles, triplets = _triangles_and_triplets(g, directed, weights, method,
 mode, combine_weights, None)

 return np.sum(triangles) / np.sum(triplets)

[docs]def local_closure(g, directed=True, weights=None, method=None,
 mode="cycle-out", combine_weights="mean"):
 r'''
 Compute the local closure for each node, as defined in [Yin2019]_ as the
 fraction of 2-walks that are closed.

 For undirected binary or weighted adjacency matrices
 :math:`W = \{ w_{ij} \}`, the normal (or Zhang-like) definition is given
 by:

 .. math::

 H_i^0 = \frac{\sum_{j\neq k} w_{ij} w_{jk} w_{ki}}
 {\sum_{j\neq k\neq i} w_{ij}w_{jk}}
 = \frac{W^3_{ii}}{\sum_{j \neq i} W^2_{ij}}

 While a continuous version of the local closure is also proposed as:

 .. math::

 H_i = \frac{\sum_{j\neq k} \sqrt[3]{w_{ij} w_{jk} w_{ki}}^2}
 {\sum_{j\neq k\neq i} \sqrt{w_{ij}w_{jk}}}
 = \frac{\left(W^{\left[\frac{2}{3} \right]} \right)_{ii}^3}
 {\sum_{j \neq i} \left(W^{\left[\frac{1}{2} \right]}
 \right)^2_{ij}}

 with :math:`W^{[\alpha]} = \{ w^\alpha_{ij} \}`.

 Directed versions of the local closure where defined as follow for a node
 :math:`i` connected to nodes :math:`j` and :math:`k`:

 * "cycle-out" is given by the pattern [(i, j), (j, k), (k, i)],
 * "cycle-in" is given by the pattern [(k, j), (j, i), (i, k)],
 * "fan-in" is given by the pattern [(k, j), (j, i), (k, i)],
 * "fan-out" is given by the pattern [(i, j), (j, k), (i, k)].

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 directed : bool, optional (default: True)
 Whether to compute the directed clustering if the graph is directed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 method : str, optional (default: 'continuous')
 Method used to compute the weighted clustering, either 'normal'/'zhang'
 or 'continuous'.
 mode : str, optional (default: "circle-out")
 Type of clustering to use for directed graphs, among "circle-out",
 "circle-in", "fan-in", or "fan-out".
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.

 References

 .. [Yin2019] Yin, Benson, and Leskovec. The Local Closure Coefficient: A
 New Perspective On Network Clustering. Proceedings of the Twelfth ACM
 International Conference on Web Search and Data Mining 2019, 303-311.
 :doi:`10.1145/3289600.3290991`, `PDF <https://www.cs.cornell.edu/~arb/
 papers/closure-coefficients-WSDM-2019.pdf>`_.
 '''
 directed *= g.is_directed()
 weighted = weights not in (False, None)

 mat, numer, denom = None, None, None

 if not directed and g.is_directed():
 _, mat = _get_matrices(g, directed, weights, weighted, combine_weights,
 normed=True)
 else:
 mat = g.adjacency_matrix(weights=weights).astype(float)
 mat /= mat.max()
 mat.setdiag(0)

 mat2, mat3 = None, None

 if directed:
 # set correct matrix
 if mode.endswith("-in"):
 mat = mat.T

 if method == "continuous" and weights is not None:
 sqmat = mat.sqrt()
 cbmat = mat.power(2/3)

 mat2 = sqmat*sqmat

 if mode in ("cycle-in", "cycle-out"):
 mat3 = cbmat*cbmat*cbmat
 elif mode in ("fan-in", "fan-out"):
 mat3 = cbmat*cbmat*cbmat.T
 else:
 raise ValueError("Unknown `mode`: '" + mode + "'.'")
 elif method in ("normal", "zhang", None):
 mat2 = mat*mat

 if mode in ("cycle-in", "cycle-out"):
 mat3 = mat2*mat
 elif mode in ("fan-in", "fan-out"):
 mat3 = mat2*mat.T
 else:
 raise ValueError("Unknown `mode`: '" + mode + "'.'")
 else:
 raise ValueError("Unknown `method`: '" + method + "'.'")
 else:
 # undirected
 if method == "continuous" and weights is not None:
 sqmat = mat.sqrt()
 cbmat = mat.power(2/3)

 mat2 = sqmat*sqmat
 mat3 = cbmat*cbmat*cbmat
 elif method in ("normal", "zhang", None):
 mat2 = mat*mat
 mat3 = mat2*mat
 else:
 raise ValueError("Unknown `method`: '" + method + "'.'")

 numer = mat3.diagonal()
 denom = mat2.sum(axis=1).A1 - mat2.diagonal()

 denom[denom == 0] = 1

 return numer / denom

def local_clustering_binary_undirected(g, nodes=None):
 r'''
 Returns the undirected local clustering coefficient of some `nodes`.

 .. math::

 C_i = \frac{A^3_{ii}}{d_i(d_i - 1)} = \frac{\Delta_i}{T_i}

 with :math:`A` the adjacency matrix, :math:`d_i` the degree of node
 :math:`i`, :math:`\Delta_i` is the number of triangles, and :math:`T_i` is
 the number of triplets to which :math:`i` belongs.

 If `g` is directed, then it is converted to a simple undirected graph
 (no parallel edges), both directed and reciprocal edges are merged into
 a single edge.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 nodes : list, optional (default: all nodes)
 The list of nodes for which the clustering will be returned

 Returns

 lc : :class:`numpy.ndarray`
 The list of clustering coefficients, on per node.

 References

 .. [gt-local-clustering] :gtdoc:`clustering.local_clustering`
 .. [ig-local-clustering] :igdoc:`transitivity_local_undirected`
 .. [nx-local-clustering] :nxdoc:`algorithms.cluster.clustering`
 '''
 # Note, this function is overloaded by the library-specific version
 # if igraph, graph-tool, or networkx is used
 triangles = triangle_count(g, weights=None, nodes=nodes, directed=False)
 triplets = triplet_count(g, weights=None, nodes=nodes, directed=False)

 if nonstring_container(triangles):
 triplets[triangles == 0] = 1
 elif triangles == 0:
 return 0

 return triangles / triplets

[docs]def local_clustering(g, nodes=None, directed=True, weights=None,
 method="continuous", mode="total", combine_weights="mean"):
 r'''
 Local (weighted directed) clustering coefficient of the nodes, ignoring
 self-loops.

 If no weights are requested and the graph is undirected, returns the
 undirected binary clustering.

 For all weighted cases, the weights are assumed to be positive and they are
 normalized to dimensionless values between 0 and 1 through a division by
 the highest weight.

 The default `method` for weighted networks is based on a modification of
 the proposal in [Zhang2005]_ with:

 .. math::

 C_i = \frac{\sum_{jk} \sqrt[3]{w_{ij} w_{ik} w_{jk}}}
 {\sum_{j\neq k} \sqrt{w_{ij} w_{ik}}}
 = \frac{\left(W^{\left[\frac{2}{3}\right]}\right)^3_{ii}}
 {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2 - s_i}

 for undirected networks, with
 :math:`W = \{ w_{ij}\} = \tilde{W} / \max(\tilde{W})` the normalized
 weight matrix, :math:`s_i` the normalized strength of node :math:`i`, and
 :math:`s^{[\frac{1}{2}]}_i = \sum_k \sqrt{w_{ik}}` the strength associated
 to the matrix :math:`W^{[\frac{1}{2}]} = \{\sqrt{w_{ij}}\}`.

 For directed networks, we used the total clustering defined in
 [Fagiolo2007]_ by default, hence the second equation becomes:

 .. math::

 C_i = \frac{\frac{1}{2}\left(W^{\left[\frac{2}{3}\right]}
 + W^{\left[\frac{2}{3}\right],T}\right)^3_{ii}}
 {\left(s^{\left[\frac{1}{2}\right]}_i\right)^2
 - 2s^{\leftrightarrow}_i - s_i}

 with :math:`s^{\leftrightarrow} = \sum_k \sqrt{w_{ik}w_{ki}}` the
 reciprocal strength (associated to reciprocal connections).

 For the other modes, see the generalized definitions in [Fagiolo2007]_.

 Contrary to 'barrat' and 'onnela' [Saramaki2007]_, this method displays
 all following properties:

 * fully continuous (no jump in clustering when weights go to zero),
 * equivalent to binary clustering when all weights are 1,
 * equivalence between no-edge and zero-weight edge cases,
 * normalized (always between zero and 1).

 Using either 'continuous' or 'zhang' is recommended for weighted graphs.

 Parameters

 g : :class:`~nngt.Graph` object
 Graph to analyze.
 nodes : array-like container with node ids, optional (default = all nodes)
 Nodes for which the local clustering coefficient should be computed.
 directed : bool, optional (default: True)
 Whether to compute the directed clustering if the graph is directed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 method : str, optional (default: 'continuous')
 Method used to compute the weighted clustering, either 'barrat'
 [Barrat2004]_/[Clemente2018]_, 'continuous', 'onnela' [Onnela2005]_/
 [Fagiolo2007]_, or 'zhang' [Zhang2005]_.
 mode : str, optional (default: "total")
 Type of clustering to use for directed graphs, among "total", "fan-in",
 "fan-out", "middleman", and "cycle" [Fagiolo2007]_.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "sum": equivalent to mean due to weight normalization.

 Returns

 lc : :class:`numpy.ndarray`
 The list of clustering coefficients, on per node.

 References

 .. [Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
 Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
 :doi:`10.1073/pnas.0400087101`.
 .. [Clemente2018] Clemente, Grassi. Directed Clustering in Weighted
 Networks: A New Perspective. Chaos, Solitons & Fractals 2018, 107,
 26–38. :doi:`10.1016/j.chaos.2017.12.007`, :arxiv:`1706.07322`.
 .. [Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks.
 Phys. Rev. E 2007, 76, (2), 026107. :doi:`10.1103/PhysRevE.76.026107`,
 :arxiv:`physics/0612169`.
 .. [Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
 of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
 065103. :doi:`10.1103/physreve.71.065103`, :arxiv:`cond-mat/0408629`.
 .. [Saramaki2007] Saramäki, Kivelä, Onnela, Kaski, Kertész. Generalizations
 of the Clustering Coefficient to Weighted Complex Networks.
 Phys. Rev. E 2007, 75 (2), 027105. :doi:`10.1103/PhysRevE.75.027105`,
 :arxiv:`cond-mat/0608670`.
 .. [Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene
 Co-Expression Network Analysis. Statistical Applications in Genetics
 and Molecular Biology 2005, 4 (1). :doi:`10.2202/1544-6115.1128`,
 `PDF <https://dibernardo.tigem.it/files/papers/2008/
 zhangbin-statappsgeneticsmolbio.pdf>`_.

 See also

 :func:`undirected_binary_clustering`
 :func:`global_clustering`
 '''
 # check directivity and weights
 directed *= g.is_directed()
 weighted = weights not in (None, False)

 triplets, triangles = None, None

 if not directed and not weighted:
 # undirected binary clustering uses the library method
 return local_clustering_binary_undirected(g, nodes=nodes)
 elif not weighted:
 # directed clustering
 triangles = triangle_count(g, nodes=nodes, mode=mode)
 triplets = triplet_count(g, nodes, mode=mode).astype(float)
 else:
 triangles, triplets = _triangles_and_triplets(
 g, directed, weights, method, mode, combine_weights, nodes)

 if nonstring_container(triplets):
 triplets[triangles == 0] = 1
 elif triangles == 0:
 return 0

 return triangles / triplets

[docs]def triangle_count(g, nodes=None, directed=True, weights=None,
 method="normal", mode="total", combine_weights="mean"):
 '''
 Returns the number or the strength (also called intensity) of triangles
 for each node.

 Parameters

 g : :class:`~nngt.Graph` object
 Graph to analyze.
 nodes : array-like container with node ids, optional (default = all nodes)
 Nodes for which the local clustering coefficient should be computed.
 directed : bool, optional (default: True)
 Whether to compute the directed clustering if the graph is directed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 method : str, optional (default: 'normal')
 Method used to compute the weighted triangles, either 'normal', where
 the weights are directly used, or the definitions associated to the
 weighted clustering: 'barrat' [Barrat2004]_, 'continuous', 'onnela'
 [Onnela2005]_, or 'zhang' [Zhang2005]_.
 mode : str, optional (default: "total")
 Type of clustering to use for directed graphs, among "total", "fan-in",
 "fan-out", "middleman", and "cycle" [Fagiolo2007]_.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.

 Returns

 tr : array
 Number or weight of triangles to which each node belongs.

 References

 .. [Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
 Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
 :doi:`10.1073/pnas.0400087101`.
 .. [Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks.
 Phys. Rev. E 2007, 76, (2), 026107. :doi:`10.1103/PhysRevE.76.026107`,
 :arxiv:`physics/0612169`.
 .. [Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
 of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
 065103. :doi:`10.1103/physreve.71.065103`, :arxiv:`cond-mat/0408629`.
 .. [Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene
 Co-Expression Network Analysis. Statistical Applications in Genetics
 and Molecular Biology 2005, 4 (1). :doi:`10.2202/1544-6115.1128`,
 `PDF <https://dibernardo.tigem.it/files/papers/2008/
 zhangbin-statappsgeneticsmolbio.pdf>`_.
 '''
 directed *= g.is_directed()
 weighted = weights not in (False, None)

 exponent = None

 if method == "onnela":
 exponent = 1/3
 elif method == "continuous":
 exponent = 2/3

 # get relevant matrices (use directed=False to get both dir/undir mat)
 mat, matsym = _get_matrices(
 g, directed, weights, weighted, combine_weights, exponent=exponent,
 normed=True)

 # if unweighted, adj is mat, adjsym is matsym
 adj, adjsym = mat, matsym

 # for barrat, we need both weighted and binary matrices
 if method == "barrat" and weighted:
 adj, adjsym = _get_matrices(g, directed, None, False, combine_weights)

 return _triangle_count(mat, matsym, adj, adjsym, method, mode, weighted,
 directed, nodes)

[docs]def triplet_count(g, nodes=None, directed=True, weights=None,
 method="normal", mode="total", combine_weights="mean"):
 r'''
 Returns the number or the strength (also called intensity) of triplets for
 each node.

 For binary networks, the triplets of node :math:`i` are defined as:

 .. math::

 T_i = \sum_{j,k} a_{ij}a_{ik}

 Parameters

 g : :class:`~nngt.Graph` object
 Graph to analyze.
 nodes : array-like container with node ids, optional (default = all nodes)
 Nodes for which the local clustering coefficient should be computed.
 directed : bool, optional (default: True)
 Whether to compute the directed clustering if the graph is directed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 method : str, optional (default: 'continuous')
 Method used to compute the weighted triplets, either 'normal', where
 the edge weights are directly used, or the definitions used for
 weighted clustering coefficients, 'barrat' [Barrat2004]_,
 'continuous', 'onnela' [Onnela2005]_, or 'zhang' [Zhang2005]_.
 mode : str, optional (default: "total")
 Type of clustering to use for directed graphs, among "total", "fan-in",
 "fan-out", "middleman", and "cycle" [Fagiolo2007]_.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.

 Returns

 tr : array
 Number or weight of triplets to which each node belongs.

 References

 .. [Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
 Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
 :doi:`10.1073/pnas.0400087101`.
 .. [Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks.
 Phys. Rev. E 2007, 76, (2), 026107. :doi:`10.1103/PhysRevE.76.026107`,
 :arxiv:`physics/0612169`.
 .. [Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene
 Co-Expression Network Analysis. Statistical Applications in Genetics
 and Molecular Biology 2005, 4 (1). :doi:`10.2202/1544-6115.1128`,
 `PDF <https://dibernardo.tigem.it/files/papers/2008/
 zhangbin-statappsgeneticsmolbio.pdf>`_.
 '''
 directed *= g.is_directed()
 weighted = weights not in (False, None)

 # simple binary cases
 if not weighted or method == "onnela":
 # undirected
 if not directed:
 deg = None

 if g.is_directed():
 _, adjsym = _get_matrices(g, directed, None, False,
 combine_weights)

 if nodes is None:
 deg = adjsym.sum(axis=0).A1
 else:
 deg = adjsym.sum(axis=0).A1[nodes]
 else:
 deg = g.get_degrees(nodes=nodes)

 if nodes is None or nonstring_container(nodes):
 return (0.5*deg*(deg - 1)).astype(int)

 return 0.5*deg*(deg - 1)

 # directed
 if mode in ("total", "cycle", "middleman"):
 adj = g.adjacency_matrix()

 d_recip = (adj*adj).diagonal()

 if nodes is not None:
 d_recip = d_recip[nodes]

 din = g.get_degrees("in", nodes=nodes)
 dout = g.get_degrees("out", nodes=nodes)

 if mode == "total":
 dtot = din + dout

 return dtot*(dtot - 1) - 2*d_recip

 return din*dout - d_recip
 else:
 assert mode in ("fan-in", "fan-out"), \
 "Unknown mode '{}'".format(mode)

 deg = g.get_degrees(mode[4:], nodes=nodes)

 return deg*(deg - 1)

 # check method for weighted
 W, Wu, A, Au = None, None, None, None

 if method in ("continuous", "normal", "zhang"):
 # we need only the weighted matrices
 W, Wu = _get_matrices(g, directed, weights, weighted,
 combine_weights=combine_weights, normed=True)
 elif method == "barrat":
 # we need only the (potentially) directed matrices
 W = g.adjacency_matrix(weights=weights)
 A = g.adjacency_matrix()
 else:
 raise ValueError("`method` must be either 'barrat', 'onnela', "
 "'zhang', or 'continuous'/'normal' (identical "
 "options).")

 return _triplet_count_weighted(
 g, W, Wu, A, Au, method, mode, directed, weights, nodes)

--
Overwrite binary clusterings with library-specific version
--

if nngt._config["backend"] == "networkx":
 from .nx_functions import (global_clustering_binary_undirected,
 local_clustering_binary_undirected)

if nngt._config["backend"] == "igraph":
 from .ig_functions import (global_clustering_binary_undirected,
 local_clustering_binary_undirected)

if nngt._config["backend"] == "graph-tool":
 from .gt_functions import (global_clustering_binary_undirected,
 local_clustering_binary_undirected)

Tool functions

def _triangles_and_triplets(g, directed, weights, method, mode,
 combine_weights, nodes):
 ''' Return the triangles and triplets '''
 # weighted clustering
 W, Wu, A, Au = None, None, None, None
 triplets = None

 # check the method to get the relevant matrices
 if method == "continuous":
 W, Wu = _get_matrices(g, directed, weights, True, combine_weights,
 exponent=2/3, normed=True)

 Wtr, Wtru = _get_matrices(g, directed, weights, True, combine_weights,
 normed=True)

 triplets = _triplet_count_weighted(
 g, Wtr, Wtru, A, Au, method, mode, directed, weights, nodes)
 if method == "zhang":
 W, Wu = _get_matrices(g, directed, weights, True, combine_weights,
 normed=True)

 triplets = _triplet_count_weighted(
 g, W, Wu, A, Au, method, mode, directed, weights, nodes)
 elif method == "onnela":
 W, Wu = _get_matrices(g, directed, weights, True, combine_weights,
 exponent=1/3, normed=True)

 # onnela uses the binary triplets
 triplets = triplet_count(g, nodes=nodes, directed=directed,
 mode=mode, weights=None)
 elif method == "barrat":
 # we need all matrices
 W, Wu = _get_matrices(g, directed, weights, True, combine_weights,
 normed=True)
 A, Au = _get_matrices(g, directed, None, False, combine_weights)

 triplets = _triplet_count_weighted(
 g, W, Wu, A, Au, method, mode, directed, weights, nodes)

 # get triangles and triplet strength
 triangles = _triangle_count(W, Wu, A, Au, method, mode, weighted=True,
 directed=directed, nodes=nodes)

 return triangles, triplets

def _triangle_count(mat, matsym, adj, adjsym, method, mode, weighted, directed,
 nodes):
 '''
 (Un)weighted (un)directed triangle count.
 '''
 tr = None

 if method == "barrat":
 if mode == "total":
 tr = 0.5*(matsym*adjsym*adjsym).diagonal()
 elif mode == "cycle":
 tr = 0.5*(mat*adj*adj + mat.T*adj.T*adj.T).diagonal()
 elif mode == "middleman":
 tr = 0.5*(mat.T*adj*adj.T + mat*adj.T*adj).diagonal()
 elif mode == "fan-in":
 tr = 0.5*(mat.T*adjsym*adj).diagonal()
 elif mode == "fan-out":
 tr = 0.5*(mat*adjsym*adj.T).diagonal()
 else:
 raise ValueError("Unknown mode ''.".format(mode))
 else:
 if not weighted:
 mat, matsym = adj, adjsym
 elif method not in ("continuous", "zhang", "normal", "onnela"):
 raise ValueError("Invalid `method`: '{}'".format(method))

 if mode == "total":
 tr = 0.5*(matsym*matsym*matsym).diagonal()
 elif mode == "cycle":
 tr = (mat*mat*mat).diagonal()
 elif mode == "middleman":
 tr = (mat*mat.T*mat).diagonal()
 elif mode == "fan-in":
 tr = (mat.T*mat*mat).diagonal()
 elif mode == "fan-out":
 tr = (mat*mat*mat.T).diagonal()
 else:
 raise ValueError("Unknown mode ''.".format(mode))

 if nodes is None:
 return tr

 return tr[nodes]

def _triplet_count_weighted(g, mat, matsym, adj, adjsym, method, mode,
 directed, weights, nodes):
 '''
 triplet count, weighted only.
 '''
 tr = None

 if method == "normal":
 pass
 elif method == "continuous":
 if directed:
 sqmat = mat.sqrt()

 if mode == "total":
 s2_sq_tot = np.square(sqmat.sum(axis=0).A1 +
 sqmat.sum(axis=1).A1)
 s_tot = mat.sum(axis=0).A1 + mat.sum(axis=1).A1
 s_recip = 2*(sqmat*sqmat).diagonal()

 tr = s2_sq_tot - s_tot - s_recip
 elif mode in ("cycle", "middleman"):
 s_sq_out = sqmat.sum(axis=0).A1
 s_sq_in = sqmat.sum(axis=1).A1
 s_recip = (sqmat*sqmat).diagonal()

 tr = s_sq_in*s_sq_out - s_recip
 elif mode in ("fan-in", "fan-out"):
 axis = 0 if mode == "fan-in" else 1
 s2_sq = np.square(sqmat.sum(axis=axis).A1)
 sgth = mat.sum(axis=axis).A1

 tr = s2_sq - sgth
 else:
 raise ValueError("Unknown mode ''.".format(mode))
 else:
 sqmat = matsym.sqrt()

 s2_sq = np.square(sqmat.sum(axis=0).A1)
 s = matsym.sum(axis=0).A1

 tr = 0.5*(s2_sq - s)
 elif method == "zhang":
 if directed:
 mat2 = mat.power(2)

 if mode == "total":
 s2_sq_tot = np.square(mat.sum(axis=0).A1 +
 mat.sum(axis=1).A1)
 s_tot = mat2.sum(axis=0).A1 + mat2.sum(axis=1).A1
 s_recip = 2*(mat*mat).diagonal()

 tr = s2_sq_tot - s_tot - s_recip
 elif mode in ("cycle", "middleman"):
 s_sq_out = mat.sum(axis=0).A1
 s_sq_in = mat.sum(axis=1).A1
 s_recip = (mat*mat).diagonal()

 tr = s_sq_in*s_sq_out - s_recip
 elif mode in ("fan-in", "fan-out"):
 axis = 0 if mode == "fan-in" else 1
 s2_sq = np.square(mat.sum(axis=axis).A1)
 sgth = mat2.sum(axis=axis).A1

 tr = s2_sq - sgth
 else:
 raise ValueError("Unknown mode ''.".format(mode))
 else:
 mat2 = matsym.power(2)

 s2_sq = np.square(matsym.sum(axis=0).A1)
 s = mat2.sum(axis=0).A1

 tr = 0.5*(s2_sq - s)
 elif method == "barrat":
 if directed:
 # specifc definition of the reciprocal strength from Clemente
 if mode == "total":
 s_recip = 0.5*(mat*adj + adj*mat).diagonal()

 dtot = g.get_degrees("total")
 wmax = np.max(g.get_weights())
 stot = g.get_degrees("total", weights=weights) / wmax

 tr = stot*(dtot - 1) - 2*s_recip
 elif mode in ("cycle", "middleman"):
 s_recip = 0.5*(mat*adj + adj*mat).diagonal()
 s_in = mat.sum(axis=0).A1
 s_out = mat.sum(axis=1).A1
 d_in = g.get_degrees("in")
 d_out = g.get_degrees("out")

 tr = 0.5*(s_in*d_out + s_out*d_in) - s_recip
 elif mode in ("fan-in", "fan-out"):
 axis = 0 if mode == "fan-in" else 1
 sgth = mat.sum(axis=axis).A1
 deg = g.get_degrees(mode[4:])

 tr = sgth*(deg - 1)
 else:
 raise ValueError("Unknown mode ''.".format(mode))
 elif g.is_directed():
 d = adjsym.sum(axis=0).A1
 s = matsym.sum(axis=0).A1

 tr = 0.5*s*(d - 1)
 else:
 d = g.get_degrees()
 s = matsym.sum(axis=0).A1

 tr = 0.5*s*(d - 1)
 else:
 raise ValueError(
 "Invalid `method` for triplet count: '{}'".format(method))

 if nodes is None:
 return tr

 return tr[nodes]

 Source code for nngt.analysis.graph_analysis

#-*- coding:utf-8 -*-
#
graph_analysis.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Tools for graph analysis using the graph libraries """

import numpy as np
import scipy.sparse.linalg as spl

import nngt
import nngt.generation as ng

from nngt.lib import InvalidArgument, nonstring_container, is_integer
from . import clustering
from .activity_analysis import get_b2, get_firing_rate
from .bayesian_blocks import bayesian_blocks
from .clustering import *

implemented function; import from proper backend is done at the bottom

__all__ = [
 "adjacency_matrix",
 "all_shortest_paths",
 "assortativity",
 "average_path_length",
 "betweenness",
 "betweenness_distrib",
 "binning",
	"closeness",
	"connected_components",
 "degree_distrib",
	"diameter",
 "node_attributes",
	"num_iedges",
	"reciprocity",
 "shortest_distance",
 "shortest_path",
 "small_world_propensity",
	"spectral_radius",
 "subgraph_centrality",
 "transitivity",
]

__all__.extend(clustering.__all__)

_backend_required = "Please install either networkx, igraph, or graph-tool " \
 "to use this function."

Graph properties

def assortativity(g, degree, weights=None):
 '''
 Returns the assortativity of the graph.
 This tells whether nodes are preferentially connected together depending
 on their degree.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 degree : str
 The type of degree that should be considered.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.

 References

 .. [newman-mixing-2003] M. E. J. Newman, "Mixing patterns in networks",
 Phys. Rev. E 67, 026126 (2003), see graph-tool below for links.
 .. [gt-assortativity] :gtdoc:`correlations.scalar_assortativity`
 .. [ig-assortativity] :igdoc:`assortativity`
 .. [nx-assortativity]
 :nxdoc:`algorithms.assortativity.degree_assortativity_coefficient`
 '''
 raise NotImplementedError(_backend_required)

def reciprocity(g):
 '''
 Calculate the edge reciprocity of the graph.

 The reciprocity is defined as the number of edges that have a reciprocal
 edge (an edge between the same nodes but in the opposite direction)
 divided by the total number of edges.
 This is also the probability for any given edge, that its reciprocal edge
 exists.
 By definition, the reciprocity of undirected graphs is 1.

 @todo: check whether we can get this for single nodes for all libraries.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.

 References

 .. [wasserman-1994] S. Wasserman and K. Faust, "Social Network Analysis".
 (Cambridge University Press, Cambridge, 1994)
 .. [lopez-2007] Gorka Zamora-López, Vinko Zlatić, Changsong
 Zhou, Hrvoje Štefančić, and Jürgen Kurths "Reciprocity of networks with
 degree correlations and arbitrary degree sequences", Phys. Rev. E 77,
 016106 (2008) :doi:`10.1103/PhysRevE.77.016106`, :arxiv:`0706.3372`
 .. [gt-reciprocity] :gtdoc:`topology.edge_reciprocity`
 .. [ig-reciprocity] :igdoc:`reciprocity`
 .. [nx-reciprocity] :nxdoc:`algorithms.reciprocity.overall_reciprocity`
 '''
 raise NotImplementedError(_backend_required)

[docs]def transitivity(g, directed=True, weights=None):
 '''
 Same as :func:`~nngt.analysis.global_clustering`.
 '''
 return global_clustering(g, directed=directed, weights=weights)

[docs]def num_iedges(graph):
 '''
 Returns the number of inhibitory connections.

 For :class:`~nngt.Network` objects, this corresponds to the number of edges
 stemming from inhibitory nodes (given by
 :meth:`nngt.NeuralPop.inhibitory`).
 Otherwise, counts the edges where the type attribute is -1.
 '''
 if graph.is_network():
 inhib_nodes = graph.population.inhibitory

 return np.sum(graph.get_degrees("out", node_list=inhib_nodes))

 if "type" in graph.edge_attributes:
 return np.sum(graph.get_edge_attributes(name="type") < 0)

 return 0.

def connected_components(g, ctype=None):
 '''
 Returns the connected component to which each node belongs.

 .. versionadded:: 2.0

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 ctype : str, optional (default 'scc')
 Type of component that will be searched: either strongly connected
 ('scc', by default) or weakly connected ('wcc').

 Returns

 cc, hist : :class:`numpy.ndarray`
 The component associated to each node (`cc`) and the number of nodes in
 each of the component (`hist`).

 References

 .. [gt-cc] :gtdoc:`topology.label_components`
 .. [ig-cc] :igdoc:`clusters`
 .. [nx-ucc] :nxdoc:`algorithms.components.connected_components`
 .. [nx-scc] :nxdoc:`algorithms.components.strongly_connected_components`
 .. [nx-wcc] :nxdoc:`algorithms.components.weakly_connected_components`
 '''
 raise NotImplementedError(_backend_required)

def diameter(g, directed=True, weights=False, is_connected=False):
 '''
 Returns the diameter of the graph.

 .. versionchanged:: 2.0
 Added `directed` and `is_connected` arguments.

 It returns infinity if the graph is not connected (strongly connected for
 directed graphs) unless `is_connected` is True, in which case it returns
 the longest existing shortest distance.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 directed : bool, optional (default: True)
 Whether to compute the directed diameter if the graph is directed.
 If False, then the graph is treated as undirected. The option switches
 to False automatically if `g` is undirected.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 is_connected : bool, optional (default: False)
 If False, check whether the graph is connected or not and return
 infinite diameter if graph is unconnected. If True, the graph is
 assumed to be connected.

 Warning

 For graph-tool, the [pseudo-diameter]_ is returned, which may sometime
 lead to inexact results.

 See also

 :func:`nngt.analysis.shortest_distance`

 References

 .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
 .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
 graphs." Numerische Mathematik, 1:269-271, 1959.
 .. [gt-diameter] :gtdoc:`topology.pseudo_diameter`
 .. [ig-diameter] :igdoc:`diameter`
 .. [nx-diameter] :nxdoc:`algorithms.distance_measures.diameter`
 .. [nx-dijkstra] :nxdoc:`algorithms.shortest_paths.weighted.all_pairs_dijkstra`
 '''
 raise NotImplementedError(_backend_required)

[docs]def small_world_propensity(g, directed=None, use_global_clustering=False,
 use_diameter=False, weights=None,
 combine_weights="mean", clustering="continuous",
 lattice=None, random=None, return_deviations=False):
 r'''
 Returns the small-world propensity of the graph as first defined in
 [Muldoon2016]_.

 .. versionadded: 2.0

 .. math::

 \phi = 1 - \sqrt{\frac{\Pi_{[0, 1]}(\Delta_C^2) + \Pi_{[0, 1]}(\Delta_L^2)}{2}}

 with :math:`\Delta_C` the clustering deviation, i.e. the relative global or
 average clustering of `g` compared to two reference graphs

 .. math::

 \Delta_C = \frac{C_{latt} - C_g}{C_{latt} - C_{rand}}

 and :math:`Delta_L` the deviation of the average path length or diameter,
 i.e. the relative average path length of `g` compared to that of the
 reference graphs

 .. math::

 \Delta_L = \frac{L_g - L_{rand}}{L_{latt} - L_{rand}}.

 In both cases, *latt* and *rand* refer to the equivalent lattice and
 Erdos-Renyi (ER) graphs obtained by rewiring `g` to obtain respectively the
 highest and lowest combination of clustering and average path length.

 Both deviations are clipped to the [0, 1] range in case some graphs have a
 higher clustering than the lattice or a lower average path length than the
 ER graph.

 Parameters

 g : :class:`~nngt.Graph` object
 Graph to analyze.
 directed : bool, optional (default: True)
 Whether to compute the directed clustering if the graph is directed.
 If False, then the graph is treated as undirected. The option switches
 to False automatically if `g` is undirected.
 use_global_clustering : bool, optional (default: True)
 If False, then the average local clustering is used instead of the
 global clustering.
 use_diameter : bool, optional (default: False)
 Use the diameter instead of the average path length to have more global
 information. Ccan also be much faster in some cases, especially using
 graph-tool as the backend.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.
 clustering : str, optional (default: 'continuous')
 Method used to compute the weighted clustering coefficients, either
 'barrat' [Barrat2004]_, 'continuous' (recommended), or 'onnela'
 [Onnela2005]_.
 lattice : :class:`nngt.Graph`, optional (default: generated from `g`)
 Lattice to use as reference (since its generation is deterministic,
 enables to avoid multiple generations when running the algorithm
 several times with the same graph)
 random : :class:`nngt.Graph`, optional (default: generated from `g`)
 Random graph to use as reference. Can be useful for reproducibility or
 for very sparse graphs where ER algorithm would statistically lead to
 a disconnected graph.
 return_deviations : bool, optional (default: False)
 If True, the deviations are also returned, in addition to the
 small-world propensity.

 Note

 If `weights` are provided, the distance calculation uses the inverse of
 the weights.
 This implementation differs slightly from the `original implementation
 <https://github.com/KordingLab/nctpy>`_ as it can also use the global
 instead of the average clustering coefficient, the diameter instead of
 the avreage path length, and it is generalized to directed networks.

 References

 .. [Muldoon2016] Muldoon, Bridgeford, Bassett. Small-World Propensity and
 Weighted Brain Networks. Sci Rep 2016, 6 (1), 22057.
 :doi:`10.1038/srep22057`, :arxiv:`1505.02194`.
 .. [Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The
 Architecture of Complex Weighted Networks. PNAS 2004, 101 (11).
 :doi:`10.1073/pnas.0400087101`.
 .. [Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence
 of Motifs in Weighted Complex Networks. Phys. Rev. E 2005, 71 (6),
 065103. :doi:`10.1103/physreve.71.065103`, arxiv:`cond-mat/0408629`.

 Returns

 phi : float in [0, 1]
 The small-world propensity.
 delta_l : float
 The average path-length deviation (if `return_deviations` is True).
 delta_c : float
 The clustering deviation (if `return_deviations` is True).

 See also

 :func:`nngt.analysis.average_path_length`
 :func:`nngt.analysis.diameter`
 :func:`nngt.analysis.global_clustering`
 :func:`nngt.analysis.local_clustering`
 :func:`nngt.generation.lattice_rewire`
 :func:`nngt.generation.random_rewire`
 '''
 # special case for too sparse (unconnected) graphs
 if g.edge_nb() < g.node_nb():
 if return_deviations:
 return np.NaN, np.NaN, np.NaN

 return np.NaN

 # check graph directedness
 directed = g.is_directed() if directed is None else directed

 if g.is_directed() and not directed:
 g = g.to_undirected(combine_weights)

 # rewired graph
 latt = ng.lattice_rewire(g, weight=weights) if lattice is None else lattice
 rand = ng.random_rewire(g) if random is None else random

 # compute average path-length using the inverse of the weights
 inv_w, inv_wl, inv_wr = None, None, None

 if weights not in (None, False):
 inv_w = 1 / g.edge_attributes[weights]
 inv_wl = 1 / latt.edge_attributes[weights]
 inv_wr = 1 / rand.edge_attributes[weights]

 l_latt, l_rand, l_g = None, None, None

 if use_diameter:
 l_latt = diameter(latt, directed=directed, weights=inv_wl)
 l_rand = diameter(rand, directed=directed, weights=inv_wr)
 l_g = diameter(g, directed=directed, weights=inv_w)
 else:
 l_latt = average_path_length(latt, directed=directed, weights=inv_wl)
 l_rand = average_path_length(rand, directed=directed, weights=inv_wr)
 l_g = average_path_length(g, directed=directed, weights=inv_w)

 # compute clustering
 c_latt, c_rand, c_g = None, None, None

 if use_global_clustering:
 c_latt = global_clustering(
 latt, directed=directed, weights=weights, method=clustering)

 c_rand = global_clustering(
 rand, directed=directed, weights=weights, method=clustering)

 c_g = global_clustering(
 g, directed=directed, weights=weights, method=clustering)
 else:
 c_latt = np.average(local_clustering(
 latt, directed=directed, weights=weights, method=clustering))

 c_rand = np.average(local_clustering(
 rand, directed=directed, weights=weights, method=clustering))

 c_g = np.average(local_clustering(
 g, directed=directed, weights=weights, method=clustering))

 # compute deltas
 delta_l = (l_g - l_rand) / (l_latt - l_rand) if l_latt != l_rand \
 else float(l_g > l_rand)
 delta_c = (c_latt - c_g) / (c_latt - c_rand)

 if return_deviations:
 return 1 - np.sqrt(
 0.5*(np.clip(delta_l**2, 0, 1) + np.clip(delta_c**2, 0, 1))), \
 delta_l, delta_c
 else:
 return 1 - np.sqrt(
 0.5*(np.clip(delta_l**2, 0, 1) + np.clip(delta_c**2, 0, 1)))

def shortest_path(g, source, target, directed=True, weights=None):
 '''
 Returns a shortest path between `source`and `target`.
 The algorithms returns an empty list if there is no path between the nodes.

 .. versionadded:: 2.0

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 source : int
 Node from which the path starts.
 target : int
 Node where the path ends.
 directed : bool, optional (default: True)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str or array, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.

 Returns

 path : array of ints
 Order of the nodes making up the path from `source` to `target`.

 References

 .. [gt-sd] :gtdoc:`topology.shortest_distance`
 .. [ig-sp] :igdoc:`shortest_paths`
 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.generic.shortest_path`
 '''
 raise NotImplementedError(_backend_required)

def all_shortest_paths(g, source, target, directed=True, weights=None):
 '''
 Yields all shortest paths from `source` to `target`.
 The algorithms returns an empty generator if there is no path between the
 nodes.

 .. versionadded:: 2.0

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 source : int
 Node from which the paths starts.
 target : int, optional (default: all nodes)
 Node where the paths ends.
 directed : bool, optional (default: True)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str or array, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.

 Returns

 all_paths : generator
 Generator yielding paths as lists of ints.

 References

 .. [gt-sd] :gtdoc:`topology.all_shortest_paths`
 .. [ig-sp] :igdoc:`get_all_shortest_paths`
 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.generic.all_shortest_paths`
 '''
 raise NotImplementedError(_backend_required)

def shortest_distance(g, sources=None, targets=None, directed=True,
 weights=None):
 '''
 Returns the length of the shortest paths between `sources`and `targets`.
 The algorithms return infinity if there are no paths between nodes.

 .. versionadded:: 2.0

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 sources : list of nodes, optional (default: all)
 Nodes from which the paths must be computed.
 targets : list of nodes, optional (default: all)
 Nodes to which the paths must be computed.
 directed : bool, optional (default: True)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str or array, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.

 Returns

 distance : float, or 1d/2d numpy array of floats
 Distance (if single source and single target) or distance array.
 For multiple sources and targets, the shape of the matrix is (S, T),
 with S the number of sources and T the number of targets; for a single
 source or target, return a 1d-array of length T or S.

 References

 .. [gt-sd] :gtdoc:`topology.shortest_distance`
 .. [ig-sp] :igdoc:`shortest_paths`
 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.weighted.multi_source_dijkstra`
 '''
 raise NotImplementedError(_backend_required)

def average_path_length(g, sources=None, targets=None, directed=None,
 weights=None, unconnected=False):
 r'''
 Returns the average shortest path length between `sources` and `targets`.
 The algorithms raises an error if all nodes are not connected unless
 `unconnected` is set to True.

 .. versionadded:: 2.0

 The average path length is defined as

 .. math::

 L = \frac{1}{N_p} \sum_{u,v} d(u, v),

 where :math:`N_p` is the number of paths between `sources` and `targets`,
 and :math:`d(u, v)` is the shortest path distance from u to v.

 If `sources` and `targets` are both None, then the total number of paths is
 :math:`N_p = N(N - 1)`, with :math:`N` the number of nodes in the graph.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 sources : list of nodes, optional (default: all)
 Nodes from which the paths must be computed.
 targets : list of nodes, optional (default: all)
 Nodes to which the paths must be computed.
 directed : bool, optional (default: True)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.
 unconnected : bool, optional (default: False)
 If set to true, ignores unconnected nodes and returns the average path
 length of the existing paths.

 References

 .. [gt-sd] :gtdoc:`topology.shortest_distance`
 .. [ig-sp] :igdoc:`shortest_paths`
 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.generic.average_shortest_path_length`

 See also

 :func:`nngt.analysis.shortest_distance`
 '''
 raise NotImplementedError(_backend_required)

Centralities

def closeness(g, weights=None, nodes=None, mode="out", harmonic=False,
 default=np.NaN):
 r'''
 Returns the closeness centrality of some `nodes`.

 .. versionadded:: 2.0

 Closeness centrality of a node `u` is defined, for the harmonic version,
 as the sum of the reciprocal of the shortest path distance :math:`d_{uv}`
 from `u` to the N - 1 other nodes in the graph (if `mode` is "out",
 reciprocally :math:`d_{vu}`, the distance to `u` from another node v,
 if `mode` is "in"):

 .. math::

 C(u) = \frac{1}{N - 1} \sum_{v \neq u} \frac{1}{d_{uv}},

 or, using the arithmetic definition, as the reciprocal of the
 average shortest path distance to/from `u` over to all other nodes:

 .. math::

 C(u) = \frac{n - 1}{\sum_{v \neq u} d_{uv}},

 where `d_{uv}` is the shortest-path distance from `u` to `v`,
 and `n` is the number of nodes in the component.

 By definition, the distance is infinite when nodes are not connected by
 a path in the harmonic case (such that :math:`\frac{1}{d(v, u)} = 0`),
 while the distance itself is taken as zero for unconnected nodes in the
 first equation.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 nodes : list, optional (default: all nodes)
 The list of nodes for which the clutering will be returned
 mode : str, optional (default: "out")
 For directed graphs, whether the distances are computed from ("out") or
 to ("in") each of the nodes.
 harmonic : bool, optional (default: False)
 Whether the arithmetic (default) or the harmonic (recommended) version
 of the closeness should be used.

 Returns

 c : :class:`numpy.ndarray`
 The list of closeness centralities, on per node.

 .. warning ::
 For compatibility reasons (harmonic closeness is not implemented for
 igraph), the arithmetic version is used by default; however, it is
 recommended to use the harmonic version instead whenever possible.

 References

 .. [gt-closeness] :gtdoc:`centrality.closeness`
 .. [ig-closeness] :igdoc:`closeness`
 .. [nx-harmonic] :nxdoc:`algorithms.centrality.harmonic_centrality`
 .. [nx-closeness] :nxdoc:`algorithms.centrality.closeness_centrality`
 '''
 raise NotImplementedError(_backend_required)

def betweenness(g, btype="both", weights=None):
 '''
 Returns the normalized betweenness centrality of the nodes and edges.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 btype : str, optional (default 'both')
 The centrality that should be returned (either 'node', 'edge', or
 'both'). By default, both betweenness centralities are computed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.

 Returns

 nb : :class:`numpy.ndarray`
 The nodes' betweenness if `btype` is 'node' or 'both'
 eb : :class:`numpy.ndarray`
 The edges' betweenness if `btype` is 'edge' or 'both'

 References

 .. [wiki-betw] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
 .. [gt-betw] :gtdoc:`centrality.betweenness`
 .. [ig-ebetw] :igdoc:`edge_betweenness`
 .. [ig-nbetw] :igdoc:`betweenness`
 .. [nx-ebetw] :nxdoc:`algorithms.centrality.edge_betweenness_centrality`
 .. [nx-nbetw] :nxdoc:`networkx.algorithms.centrality.betweenness_centrality`
 '''
 raise NotImplementedError(_backend_required)

[docs]def subgraph_centrality(graph, weights=True, nodes=None,
 normalize="max_centrality"):
 '''
 Returns the subgraph centrality for each node in the graph.

 Defined according to [Estrada2005]_ as:

 .. math::

 sc(i) = e^{W}_{ii}

 where :math:`W` is the (potentially weighted and normalized) adjacency
 matrix.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Network to analyze.
 weights : bool or string, optional (default: True)
 Whether weights should be taken into account; if True, then connections
 are weighed by their synaptic strength, if False, then a binary matrix
 is returned, if `weights` is a string, then the ponderation is the
 correponding value of the edge attribute (e.g. "distance" will return
 an adjacency matrix where each connection is multiplied by its length).
 nodes : array-like container with node ids, optional (default = all nodes)
 Nodes for which the subgraph centrality should be returned (all
 centralities are computed anyway in the algorithm).
 normalize : str or False, optional (default: "max_centrality")
 Whether the centrality should be normalized. Accepted normalizations
 are "max_eigenvalue" (the matrix is divided by its largest eigenvalue),
 "max_centrality" (the largest centrality is one), and ``False`` to get
 the non-normalized centralities.

 Returns

 centralities : :class:`numpy.ndarray`
 The subgraph centrality of each node.

 References

 .. [Estrada2005] Ernesto Estrada and Juan A. Rodríguez-Velázquez,
 Subgraph centrality in complex networks, PHYSICAL REVIEW E 71, 056103
 (2005), :doi:`10.1103/PhysRevE.71.056103`, :arxiv:`cond-mat/0504730`.
 '''
 adj_mat = graph.adjacency_matrix(types=False, weights=weights).tocsc()

 centralities = None

 if normalize == "max_centrality":
 centralities = spl.expm(adj_mat / adj_mat.max()).diagonal()
 centralities /= centralities.max()
 elif normalize == "max_eigenvalue":
 norm, _ = spl.eigs(adj_mat, k=1)
 centralities = spl.expm(adj_mat / norm).diagonal()
 elif normalize is False:
 centralities = spl.expm(adj_mat).diagonal()
 else:
 raise InvalidArgument('`normalize` should be either False, "eigenmax",'
 ' or "centralmax".')

 if nodes is None:
 return centralities

 return centralities[nodes]

Spectral properties

[docs]def spectral_radius(graph, typed=True, weights=True):
 '''
 Spectral radius of the graph, defined as the eigenvalue of greatest module.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Network to analyze.
 typed : bool, optional (default: True)
 Whether the excitatory/inhibitory type of the connnections should be
 considered.
 weights : bool, optional (default: True)
 Whether weights should be taken into account, defaults to the "weight"
 edge attribute if present.

 Returns

 the spectral radius as a float.
 '''
 mat_adj = graph.adjacency_matrix(types=typed, weights=weights)
 eigenval = []

 try:
 eigenval = spl.eigs(mat_adj, return_eigenvectors=False)
 except spl.eigen.arpack.ArpackNoConvergence as err:
 eigenval = err.eigenvalues

 if len(eigenval):
 return np.amax(np.absolute(eigenval))

 raise spl.eigen.arpack.ArpackNoConvergence()

[docs]def adjacency_matrix(graph, types=False, weights=False):
 '''
 Adjacency matrix of the graph.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Network to analyze.
 types : bool, optional (default: False)
 Whether the excitatory/inhibitory type of the connnections should be
 considered (only if the weighing factor is the synaptic strength).
 weights : bool or string, optional (default: False)
 Whether weights should be taken into account; if True, then connections
 are weighed by their synaptic strength, if False, then a binary matrix
 is returned, if `weights` is a string, then the ponderation is the
 correponding value of the edge attribute (e.g. "distance" will return
 an adjacency matrix where each connection is multiplied by its length).

 Returns

 a :class:`~scipy.sparse.csr_matrix`.

 References

 .. [gt-adjacency] :gtdoc:`spectral.adjacency`
 .. [nx-adjacency] :nxdoc:`.convert_matrix.to_scipy_sparse_matrix`
 '''
 return graph.adjacency_matrix(types=types, weights=weights)

Node properties

[docs]def node_attributes(network, attributes, nodes=None, data=None):
 '''
 Return node `attributes` for a set of `nodes`.

 Parameters

 network : :class:`~nngt.Graph`
 The graph where the `nodes` belong.
 attributes : str or list
 Attributes which should be returned, among:
 * "betweenness"
 * "clustering"
 * "closeness"
 * "in-degree", "out-degree", "total-degree"
 * "subgraph_centrality"
 nodes : list, optional (default: all nodes)
 Nodes for which the attributes should be returned.
 data : :class:`numpy.array` of shape (N, 2), optional (default: None)
 Potential data on the spike events; if not None, it must contain the
 sender ids on the first column and the spike times on the second.

 Returns

 values : array-like or dict
 Returns the attributes, either as an array if only one attribute is
 required (`attributes` is a :obj:`str`) or as a :obj:`dict` of arrays.
 '''
 if nonstring_container(attributes):
 values = {}

 for attr in attributes:
 values[attr] = _get_attribute(network, attr, nodes, data)

 return values

 return _get_attribute(network, attributes, nodes, data)

def find_nodes(network, attributes, equal=None, upper_bound=None,
 lower_bound=None, upper_fraction=None, lower_fraction=None,
 data=None):
 '''
 Return the nodes in the graph which fulfill the given conditions.

 Parameters

 network : :class:`~nngt.Graph`
 The graph where the `nodes` belong.
 attributes : str or list
 Properties on which the conditions apply, among:
 * "B2" (requires NEST or `data` entry)
 * "betweenness"
 * "clustering"
 * "firing_rate" (requires NEST or `data` entry)
 * "in-degree", "out-degree", "total-degree"
 * "subgraph_centrality"
 * any custom property formerly set by the user
 equal : optional (default: None)
 Value to which `attributes` should be equal. For a given
 property, this entry is cannot be used together with any of the
 others.
 upper_bound : optional (default: None)
 Value which should strictly major `attributes` in the desired
 nodes. Can be combined with all other entries, except `equal`.
 lower_bound : optional (default: None)
 Value which should minor or be equal to the value of `attributes`
 in the desired nodes. Can be combined with all other entries,
 except `equal`.
 upper_fraction : optional (default: None)
 Only the nodes that belong to the `upper_fraction` with the highest
 values for `attributes` are kept.
 lower_fraction : optional (default: None)
 Only the nodes that belong to the `lower_fraction` with the lowest
 values for `attributes` are kept.
 data : :class:`numpy.array` of shape (N, 2), optional (default: None)
 Potential data on the spike events; if not None, it must contain the
 sender ids on the first column and the spike times on the second.

 Notes

 When combining both `*_fraction` and `*_bound` entries, their effects
 are cumulated, i.e. only the nodes belonging to the fraction AND
 displaying a value that is consistent with the boundary are kept.

 Examples

 nodes = g.find("in-degree", upper_bound=15, lower_bound=10)
 nodes2 = g.find(["total-degree", "clustering"], equal=[20, None],
 lower=[None, 0.1])
 '''
 if not nonstring_container(attributes):
 attributes = [attributes]
 equal = [equal]
 upper_bound = [upper_bound]
 lower_bound = [lower_bound]
 upper_fraction = [upper_fraction]
 lower_fraction = [lower_fraction]
 assert not np.any([
 len(attributes)-len(equal), len(upper_bound)-len(equal),
 len(lower_bound)-len(equal), len(upper_fraction)-len(equal),
 len(lower_fraction)-len(equal)])

 nodes = set(range(self.node_nb()))

 # find the nodes
 di_attr = node_attributes(self, attributes)
 keep = np.ones(self.node_nb(), dtype=bool)

 for i in range(len(attributes)):
 attr, eq = attributes[i], equal[i]
 ub, lb = upper_bound[i], lower_bound[i]
 uf, lf = upper_fraction[i], lower_fraction[i]
 # check that the combination is valid
 if eq is not None:
 assert (ub is None)*(lb is None)*(uf is None)*(lf is None), \
 "`equal` entry is incompatible with all other entries."
 keep *= (_get_attribute(self, attr) == eq)
 if ub is not None:
 keep *= (_get_attribute(self, attr) < ub)
 if lb is not None:
 keep *= (_get_attribute(self, attr) >= lb)
 values = None
 if uf is not None or lf is not None:
 values = _get_attribute(self, attr)
 if uf is not None:
 num_keep = int(self.node_nb()*uf)
 sort = np.argsort(values)[:-num_keep]
 keep_tmp = np.ones(self.node_nb(), dtype=bool)
 keep_tmp[sort] = 0
 keep *= keep_tmp
 if lf is not None:
 num_keep = int(self.node_nb()*lf)
 sort = np.argsort(values)[:num_keep]
 keep_tmp = np.zeros(self.node_nb(), dtype=bool)
 keep_tmp[sort] = 1
 keep *= keep_tmp

 nodes = nodes.intersection_update(np.array(nodes)[keep])

 return nodes

Distributions

[docs]def degree_distrib(graph, deg_type="total", nodes=None, weights=None,
 log=False, num_bins='bayes'):
 '''
 Degree distribution of a graph.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 the graph to analyze.
 deg_type : string, optional (default: "total")
 type of degree to consider ("in", "out", or "total").
 nodes : list of ints, optional (default: None)
 Restrict the distribution to a set of nodes (default: all nodes).
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 log : bool, optional (default: False)
 use log-spaced bins.
 num_bins : int, list or str, optional (default: 'bayes')
 Any of the automatic methodes from :func:`numpy.histogram`, or 'bayes'
 will provide automatic bin optimization. Otherwise, an int for the
 number of bins can be provided, or the direct bins list.

 See also

 :func:`numpy.histogram`, :func:`~nngt.analysis.binning`

 Returns

 counts : :class:`numpy.array`
 number of nodes in each bin
 deg : :class:`numpy.array`
 bins
 '''
 degrees = graph.get_degrees(deg_type, nodes, weights)

 if num_bins == 'bayes' or is_integer(num_bins):
 num_bins = binning(degrees, bins=num_bins, log=log)

 return np.histogram(degrees, num_bins)

[docs]def betweenness_distrib(graph, weights=None, nodes=None, num_nbins='bayes',
 num_ebins='bayes', log=False):
 '''
 Betweenness distribution of a graph.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 the graph to analyze.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 nodes : list or numpy.array of ints, optional (default: all nodes)
 Restrict the distribution to a set of nodes (only impacts the node
 attribute).
 log : bool, optional (default: False)
 use log-spaced bins.
 num_bins : int, list or str, optional (default: 'bayes')
 Any of the automatic methodes from :func:`numpy.histogram`, or 'bayes'
 will provide automatic bin optimization. Otherwise, an int for the
 number of bins can be provided, or the direct bins list.

 Returns

 ncounts : :class:`numpy.array`
 number of nodes in each bin
 nbetw : :class:`numpy.array`
 bins for node betweenness
 ecounts : :class:`numpy.array`
 number of edges in each bin
 ebetw : :class:`numpy.array`
 bins for edge betweenness
 '''
 ia_nbetw, ia_ebetw = betweenness(graph, btype="both", weights=weights)

 if nodes is not None:
 ia_nbetw = ia_nbetw[nodes]

 ra_nbins, ra_ebins = None, None

 if num_ebins == 'bayes' or log:
 ra_ebins = binning(ia_ebetw, bins=num_ebins, log=log)
 else:
 ra_ebins = num_ebins

 if num_nbins == 'bayes' or log:
 ra_nbins = binning(ia_nbetw, bins=num_nbins, log=log)
 else:
 ra_nbins = num_nbins

 ncounts, nbetw = np.histogram(ia_nbetw, ra_nbins)
 ecounts, ebetw = np.histogram(ia_ebetw, ra_ebins)

 return ncounts, nbetw, ecounts, ebetw

Tools

[docs]def binning(x, bins='bayes', log=False):
 """
 Binning function providing automatic binning using Bayesian blocks in
 addition to standard linear and logarithmic uniform bins.

 .. versionadded:: 0.7

 Parameters

 x : array-like
 Array of data to be histogrammed
 bins : int, list or 'auto', optional (default: 'bayes')
 If `bins` is 'bayes', in use bayesian blocks for dynamic bin widths; if
 it is an int, the interval will be separated into
 log : bool, optional (default: False)
 Whether the bins should be evenly spaced on a logarithmic scale.
 """
 x = np.asarray(x)
 new_bins = None

 if bins == 'bayes':
 return bayesian_blocks(x)
 elif nonstring_container(bins) or bins == "auto":
 if log:
 ordered = np.sort(x)
 nonzero_min = ordered[ordered > 0][0]
 return np.logspace(np.log10(nonzero_min), np.log10(x.max()), 20)
 return bins
 elif is_integer(bins):
 if log:
 ordered = np.sort(x)
 nonzero_min = ordered[ordered > 0][0]
 return np.logspace(np.log10(nonzero_min), np.log10(x.max()), bins)
 else:
 return np.linspace(x.min(), x.max(), bins)

 raise ValueError("unrecognized bin code: '" + str(bins) + "'.")

def _get_attribute(network, attribute, nodes=None, data=None):
 '''
 If data is not None, must be an np.array of shape (N, 2).
 '''
 if attribute.lower() == "b2":
 return get_b2(network, nodes=nodes, data=data)
 elif attribute == "betweenness":
 betw = network.get_betweenness("node")
 if nodes is not None:
 return betw[nodes]
 return betw
 elif attribute == "closeness":
 return closeness(network, nodes=nodes)
 elif attribute == "clustering":
 return local_clustering(network, nodes=nodes)
 elif "degree" in attribute.lower():
 dtype = attribute[:attribute.index("-")]
 if dtype.startswith("w"):
 return network.get_degrees(
 dtype[1:], nodes=nodes, weights=True)
 else:
 return network.get_degrees(dtype, nodes=nodes)
 elif "strength" in attribute.lower():
 dtype = attribute[:attribute.index("-")]
 return network.get_degrees(dtype, nodes=nodes, weights=True)
 elif attribute == "firing_rate":
 return get_firing_rate(network, nodes=nodes, data=data)
 elif attribute == "subgraph_centrality":
 sc = subgraph_centrality(network)
 if nodes is not None:
 return sc[nodes]
 return sc
 elif attribute in network.node_attributes:
 return network.get_node_attributes(nodes=nodes, name=attribute)

 raise RuntimeError("Attribute '{}' is not available.".format(attribute))

Importing backend-specific functions

if nngt._config["backend"] == "networkx":
 from .nx_functions import *

if nngt._config["backend"] == "igraph":
 from .ig_functions import *

if nngt._config["backend"] == "graph-tool":
 from .gt_functions import *

if nngt._config["backend"] == "nngt":
 from .nngt_functions import *

update analyze_graph dict
for func in __all__:
 nngt.analyze_graph[func] = locals()[func]

 Source code for nngt.analysis.nx_functions

#-*- coding:utf-8 -*-
#
nx_functions.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Tools to analyze graphs with the networkx backend """

import numpy as np
import scipy.sparse as ssp

from ..lib.test_functions import nonstring_container, is_integer
from ..lib.graph_helpers import _get_nx_weights, _get_nx_graph

import networkx as nx

[docs]def global_clustering_binary_undirected(g):
 '''
 Returns the undirected global clustering coefficient.

 This corresponds to the ratio of undirected triangles to the number of
 undirected triads.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.

 References

 .. [nx-global-clustering] :nxdoc:`algorithms.cluster.transitivity`
 '''
 return nx.transitivity(g.graph.to_undirected(as_view=True))

[docs]def local_clustering_binary_undirected(g, nodes=None):
 '''
 Returns the undirected local clustering coefficient of some `nodes`.

 If `g` is directed, then it is converted to a simple undirected graph
 (no parallel edges).

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 nodes : list, optional (default: all nodes)
 The list of nodes for which the clustering will be returned

 Returns

 lc : :class:`numpy.ndarray`
 The list of clustering coefficients, on per node.

 References

 .. [nx-local-clustering] :nxdoc:`algorithms.cluster.clustering`
 '''
 num_nodes = g.node_nb()

 if nonstring_container(nodes):
 num_nodes = len(nodes)
 elif nodes is not None:
 num_nodes = 1

 lc = nx.clustering(g.graph.to_undirected(as_view=True), nodes=nodes,
 weight=None)

 if num_nodes == 1:
 return lc

 if nodes is None:
 nodes = list(range(num_nodes))

 return np.array([lc[n] for n in nodes], dtype=float)

[docs]def assortativity(g, degree, weights=None):
 '''
 Returns the assortativity of the graph.
 This tells whether nodes are preferentially connected together depending
 on their degree.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 degree : str
 The type of degree that should be considered.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.

 References

 .. [nx-assortativity]
 :nxdoc:`algorithms.assortativity.degree_assortativity_coefficient`
 '''
 if weights is not None:
 raise NotImplementedError("Weighted assortatibity is not yet "
 "implemented for networkx backend.")

 w = _get_nx_weights(g, weights)

 return nx.degree_assortativity_coefficient(g.graph, x=degree, y=degree,
 weight=w)

[docs]def reciprocity(g):
 '''
 Calculate the edge reciprocity of the graph.

 The reciprocity is defined as the number of edges that have a reciprocal
 edge (an edge between the same nodes but in the opposite direction)
 divided by the total number of edges.
 This is also the probability for any given edge, that its reciprocal edge
 exists.
 By definition, the reciprocity of undirected graphs is 1.

 @todo: check whether we can get this for single nodes for all libraries.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.

 References

 .. [nx-reciprocity] :nxdoc:`algorithms.reciprocity.overall_reciprocity`
 '''
 if not g.is_directed():
 return 1.

 return nx.overall_reciprocity(g.graph)

[docs]def closeness(g, weights=None, nodes=None, mode="out", harmonic=False,
 default=np.NaN):
 r'''
 Returns the closeness centrality of some `nodes`.

 Closeness centrality of a node `u` is defined, for the harmonic version,
 as the sum of the reciprocal of the shortest path distance :math:`d_{uv}`
 from `u` to the N - 1 other nodes in the graph (if `mode` is "out",
 reciprocally :math:`d_{vu}`, the distance to `u` from another node v,
 if `mode` is "in"):

 .. math::

 C(u) = \frac{1}{N - 1} \sum_{v \neq u} \frac{1}{d_{uv}},

 or, using the arithmetic definition, as the reciprocal of the
 average shortest path distance to/from `u` over to all other nodes:

 .. math::

 C(u) = \frac{n - 1}{\sum_{v \neq u} d_{uv}},

 where `d_{uv}` is the shortest-path distance from `u` to `v`,
 and `n` is the number of nodes in the component.

 By definition, the distance is infinite when nodes are not connected by
 a path in the harmonic case (such that :math:`\frac{1}{d(v, u)} = 0`),
 while the distance itself is taken as zero for unconnected nodes in the
 first equation.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 nodes : list, optional (default: all nodes)
 The list of nodes for which the clutering will be returned
 mode : str, optional (default: "out")
 For directed graphs, whether the distances are computed from ("out") or
 to ("in") each of the nodes.
 harmonic : bool, optional (default: False)
 Whether the arithmetic (default) or the harmonic (recommended) version
 of the closeness should be used.

 Returns

 c : :class:`numpy.ndarray`
 The list of closeness centralities, on per node.

 .. warning ::
 For compatibility reasons (harmonic closeness is not implemented for
 igraph), the arithmetic version is used by default; however, it is
 recommended to use the harmonic version instead whenever possible.

 References

 .. [nx-harmonic] :nxdoc:`algorithms.centrality.harmonic_centrality`
 .. [nx-closeness] :nxdoc:`algorithms.centrality.closeness_centrality`
 '''
 w = _get_nx_weights(g, weights)

 graph = g.graph

 if graph.is_directed() and mode == "out":
 graph = g.graph.reverse(copy=False)

 c = None

 if harmonic:
 c = nx.harmonic_centrality(graph, distance=w)
 else:
 c = nx.closeness_centrality(graph, distance=w, wf_improved=False)

 c = np.array([v for _, v in c.items()])

 # normalize
 if harmonic:
 c *= 1 / (len(graph) - 1)
 elif default != 0:
 c[c == 0.] = default

 if nodes is None:
 return c

 return c[nodes]

[docs]def betweenness(g, btype="both", weights=None):
 '''
 Returns the normalized betweenness centrality of the nodes and edges.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 btype : str, optional (default 'both')
 The centrality that should be returned (either 'node', 'edge', or
 'both'). By default, both betweenness centralities are computed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.

 Returns

 nb : :class:`numpy.ndarray`
 The nodes' betweenness if `btype` is 'node' or 'both'
 eb : :class:`numpy.ndarray`
 The edges' betweenness if `btype` is 'edge' or 'both'

 References

 .. [nx-ebetw] :nxdoc:`algorithms.centrality.edge_betweenness_centrality`
 .. [nx-nbetw] :nxdoc:`networkx.algorithms.centrality.betweenness_centrality`
 '''
 w = _get_nx_weights(g, weights)

 nb, eb = None, None

 if btype in ("both", "node"):
 di_nb = nx.betweenness_centrality(g.graph, weight=w)
 nb = np.array([di_nb[i] for i in g.get_nodes()])

 if btype in ("both", "edge"):
 di_eb = nx.edge_betweenness_centrality(g.graph, weight=w)
 eb = np.array([di_eb[tuple(e)] for e in g.edges_array])

 if btype == "node":
 return nb
 elif btype == "edge":
 return eb

 return nb, eb

[docs]def connected_components(g, ctype=None):
 '''
 Returns the connected component to which each node belongs.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 ctype : str, optional (default 'scc')
 Type of component that will be searched: either strongly connected
 ('scc', by default) or weakly connected ('wcc').

 Returns

 cc, hist : :class:`numpy.ndarray`
 The component associated to each node (`cc`) and the number of nodes in
 each of the component (`hist`).

 References

 .. [nx-ucc] :nxdoc:`algorithms.components.connected_components`
 .. [nx-scc] :nxdoc:`algorithms.components.strongly_connected_components`
 .. [nx-wcc] :nxdoc:`algorithms.components.weakly_connected_components`
 '''
 if ctype is None:
 ctype = "scc" if g.is_directed() else "wcc"

 res = None

 if not g.is_directed():
 res = nx.connected_components(g.graph)
 elif ctype == "scc":
 res = nx.strongly_connected_components(g.graph)
 elif ctype == "wcc":
 res = nx.weakly_connected_components(g.graph)
 else:
 raise ValueError("Invalid `ctype`, only 'scc' and 'wcc' are allowed.")

 cc = np.zeros(g.node_nb(), dtype=int)
 hist = []

 for i, nodes in enumerate(res):
 cc[list(nodes)] = i

 hist.append(len(nodes))

 return cc, np.array(hist, dtype=int)

[docs]def shortest_path(g, source, target, directed=None, weights=None,
 combine_weights="mean"):
 '''
 Returns a shortest path between `source`and `target`.
 The algorithms returns an empty list if there is no path between the nodes.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 source : int
 Node from which the path starts.
 target : int
 Node where the path ends.
 directed : bool, optional (default: ``g.is_directed()``)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str or array, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.

 Returns

 path : list of ints
 Order of the nodes making up the path from `source` to `target`.

 References

 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.generic.shortest_path`
 '''
 g, graph, w = _get_nx_graph(g, directed, weights, combine_weights,
 return_all=True)

 w = _get_nx_weights(g, w)

 try:
 return nx.shortest_path(graph, source, target, weight=w)
 except nx.NetworkXNoPath:
 return []

[docs]def all_shortest_paths(g, source, target, directed=None, weights=None,
 combine_weights="mean"):
 '''
 Yields all shortest paths from `source` to `target`.
 The algorithms returns an empty generator if there is no path between the
 nodes.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 source : int
 Node from which the paths starts.
 target : int, optional (default: all nodes)
 Node where the paths ends.
 directed : bool, optional (default: ``g.is_directed()``)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str or array, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.

 Returns

 all_paths : generator
 Generator yielding paths as lists of ints.

 References

 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.generic.all_shortest_paths`
 '''
 g, graph, w = _get_nx_graph(g, directed, weights, combine_weights,
 return_all=True)

 w = _get_nx_weights(g, w)

 try:
 return nx.all_shortest_paths(graph, source, target, weight=w)
 except nx.NetworkXNoPath:
 return (_ for _ in [])

[docs]def shortest_distance(g, sources=None, targets=None, directed=None,
 weights=None, combine_weights="mean"):
 '''
 Returns the length of the shortest paths between `sources`and `targets`.
 The algorithms return infinity if there are no paths between nodes.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 sources : list of nodes, optional (default: all)
 Nodes from which the paths must be computed.
 targets : list of nodes, optional (default: all)
 Nodes to which the paths must be computed.
 directed : bool, optional (default: ``g.is_directed()``)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str or array, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.

 Returns

 distance : float, or 1d/2d numpy array of floats
 Distance (if single source and single target) or distance array.
 For multiple sources and targets, the shape of the matrix is (S, T),
 with S the number of sources and T the number of targets; for a single
 source or target, return a 1d-array of length T or S.

 References

 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.weighted.multi_source_dijkstra`
 '''
 num_nodes = g.node_nb()

 # check consistency for weights and directed
 g, graph, w = _get_nx_graph(g, directed, weights, combine_weights,
 return_all=True)

 w = _get_nx_weights(g, w)

 # check for single source/target case and convert sources and targets
 if is_integer(sources):
 if is_integer(targets):
 try:
 return nx.shortest_path_length(graph, sources, targets,
 weight=w)
 except Exception as e:
 return np.inf

 sources = [sources]
 elif sources is None:
 sources = range(num_nodes)

 if is_integer(targets):
 targets = [targets]

 # compute distances
 data, ii, jj = [], [], []

 def _nx_sp(nx_graph, s, weight):
 if weight is None:
 return nx.single_source_shortest_path_length(nx_graph, s)

 dist, _ = nx.multi_source_dijkstra(graph, [s], weight=weight)

 return dist

 for s in sources:
 dist = _nx_sp(graph, s, w)

 if targets is None:
 data.extend(dist.values())
 ii.extend((s for _ in range(len(dist))))
 jj.extend(dist.keys())
 else:
 for t in targets:
 if t in dist:
 data.append(dist[t])
 ii.append(s)
 jj.append(t)

 num_sources = num_nodes if sources is None else len(sources)
 num_targets = num_nodes if targets is None else len(targets)

 mat_dist = np.full((num_sources, num_targets), np.inf)
 mat_dist[ii, jj] = data

 if num_sources == 1:
 return mat_dist[0]

 if num_targets == 1:
 return mat_dist.T[0]

 return mat_dist

[docs]def average_path_length(g, sources=None, targets=None, directed=None,
 weights=None, combine_weights="mean",
 unconnected=False):
 r'''
 Returns the average shortest path length between `sources` and `targets`.
 The algorithms raises an error if all nodes are not connected unless
 `unconnected` is set to True.

 The average path length is defined as

 .. math::

 L = \frac{1}{N_p} \sum_{u,v} d(u, v),

 where :math:`N_p` is the number of paths between `sources` and `targets`,
 and :math:`d(u, v)` is the shortest path distance from u to v.

 If `sources` and `targets` are both None, then the total number of paths is
 :math:`N_p = N(N - 1)`, with :math:`N` the number of nodes in the graph.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 sources : list of nodes, optional (default: all)
 Nodes from which the paths must be computed.
 targets : list of nodes, optional (default: all)
 Nodes to which the paths must be computed.
 directed : bool, optional (default: ``g.is_directed()``)
 Whether the edges should be considered as directed or not
 (automatically set to False if `g` is undirected).
 weights : str or array, optional (default: binary)
 Whether to use weighted edges to compute the distances. By default,
 all edges are considered to have distance 1.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.
 unconnected : bool, optional (default: False)
 If set to true, ignores unconnected nodes and returns the average path
 length of the existing paths.

 References

 .. [nx-sp] :nxdoc:`algorithms.shortest_paths.generic.average_shortest_path_length`
 '''
 directed = g.is_directed() if directed is None else directed

 if sources is None and targets is None and not unconnected:
 g, graph, w = _get_nx_graph(g, directed, weights, combine_weights,
 return_all=True)

 w = _get_nx_weights(g, w)

 return nx.average_shortest_path_length(graph, weight=w)

 mat_dist = shortest_distance(g, sources=sources, targets=targets,
 directed=directed, weights=weights)

 if not unconnected and np.any(np.isinf(mat_dist)):
 raise nx.NetworkXNoPath("`sources` and `target` do not belong to the "
 "same connected component.")

 # compute the number of path
 num_paths = np.sum(mat_dist != 0)

 # compute average path length
 if unconnected:
 num_paths -= np.sum(np.isinf(mat_dist))

 return np.nansum(mat_dist) / num_paths

 return np.sum(mat_dist) / num_paths

[docs]def diameter(g, directed=None, weights=None, combine_weights="mean",
 is_connected=False):
 '''
 Returns the diameter of the graph.

 .. versionchanged:: 2.3
 Added `combine_weights` argument.

 .. versionchanged:: 2.0
 Added `directed` and `is_connected` arguments.

 It returns infinity if the graph is not connected (strongly connected for
 directed graphs) unless `is_connected` is True, in which case it returns
 the longest existing shortest distance.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 directed : bool, optional (default: ``g.is_directed()``)
 Whether to compute the directed diameter if the graph is directed.
 If False, then the graph is treated as undirected. The option switches
 to False automatically if `g` is undirected.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 combine_weights : str, optional (default: 'mean')
 How to combine the weights of reciprocal edges if the graph is directed
 but `directed` is set to False. It can be:

 * "sum": the sum of the edge attribute values will be used for the new
 edge.
 * "mean": the mean of the edge attribute values will be used for the
 new edge.
 * "min": the minimum of the edge attribute values will be used for the
 new edge.
 * "max": the maximum of the edge attribute values will be used for the
 new edge.
 is_connected : bool, optional (default: False)
 If False, check whether the graph is connected or not and return
 infinite diameter if graph is unconnected. If True, the graph is
 assumed to be connected.

 See also

 :func:`nngt.analysis.shortest_distance`

 References

 .. [nx-diameter] :nxdoc:`algorithms.distance_measures.diameter`
 .. [nx-dijkstra] :nxdoc:`algorithms.shortest_paths.weighted.all_pairs_dijkstra`
 '''
 w = _get_nx_weights(g, weights)

 # weighted or "connected" cases
 if w is not None or is_connected:
 dist = shortest_distance(g, directed=directed, weights=weights,
 combine_weights=combine_weights)

 if is_connected:
 return np.max(dist[~np.isinf(dist)])

 return np.max(dist)

 # unweighted case
 graph = _get_nx_graph(g, directed, w, combine_weights)

 try:
 return nx.diameter(graph)
 except nx.exception.NetworkXError:
 return np.inf

def adj_mat(g, weights=None, mformat="csr"):
 r'''
 Returns the adjacency matrix :math:`A` of the graph.
 With edge :math:`i \leftarrow j` corresponding to entry :math:`A_{ij}`.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then returns the binary adjacency matrix; if ``True``, returns the
 weighted matrix, otherwise fills the matrix with any valid edge
 attribute values.
 mformat : str, optional (default: "csr")
 Type of :mod:`scipy.sparse` matrix that will be returned, by
 default :class:`scipy.sparse.csr_matrix`.

 Returns

 The adjacency matrix as a :class:`scipy.sparse.csr_matrix`.

 References

 .. [nx-adjacency] :nxdoc:`.convert_matrix.to_scipy_sparse_matrix`
 '''
 w = _get_nx_weights(g, weights)

 return nx.to_scipy_sparse_matrix(g.graph, weight=w, format=mformat)

def get_edges(g):
 '''
 Returns the edges in the graph by order of creation.
 '''
 return g.edges_array

 Source code for nngt.core.graph

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
graph.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Graph class for graph generation and management """

import logging
import weakref

from collections import defaultdict
from copy import deepcopy

import numpy as np
import scipy.sparse as ssp

import nngt
import nngt.analysis as na

from nngt import save_to_file
from nngt.io.graph_loading import _load_from_file, _library_load
from nngt.io.io_helpers import _get_format
from nngt.io.graph_saving import _as_string
from nngt.lib import InvalidArgument, nonstring_container
from nngt.lib.connect_tools import _set_degree_type, _unique_rows
from nngt.lib.graph_helpers import _edge_prop, _get_matrices
from nngt.lib.logger import _log_message
from nngt.lib.test_functions import graph_tool_check, is_integer

from .connections import Connections

logger = logging.getLogger(__name__)

Graph

[docs]class Graph(nngt.core.GraphObject):

 """
 The basic graph class, which inherits from a library class such as
 :class:`graph_tool.Graph`, :class:`networkx.DiGraph`, or ``igraph.Graph``.

 The objects provides several functions to easily access some basic
 properties.
 """

 #---#
 # Class properties

 __num_graphs = 0
 __max_id = 0

[docs] @classmethod
 def num_graphs(cls):
 ''' Returns the number of alive instances. '''
 return cls.__num_graphs

[docs] @classmethod
 def from_library(cls, library_graph, name="ImportedGraph", weighted=True,
 directed=True, **kwargs):
 '''
 Create a :class:`~nngt.Graph` by wrapping a graph object from one of
 the supported libraries.

 Parameters

 library_graph : object
 Graph object from one of the supported libraries (graph-tool,
 igraph, networkx).
 name : str, optional (default: "ImportedGraph")
 **kwargs
 Other standard arguments (see :func:`~nngt.Graph.__init__`)
 '''
 graph = cls(name=name, weighted=False, **kwargs)

 graph._from_library_graph(library_graph, copy=False)

 return graph

[docs] @classmethod
 def from_matrix(cls, matrix, weighted=True, directed=True, population=None,
 shape=None, positions=None, name=None, **kwargs):
 '''
 Creates a :class:`~nngt.Graph` from a :mod:`scipy.sparse` matrix or
 a dense matrix.

 Parameters

 matrix : :mod:`scipy.sparse` matrix or :class:`numpy.ndarray`
 Adjacency matrix.
 weighted : bool, optional (default: True)
 Whether the graph edges have weight properties.
 directed : bool, optional (default: True)
 Whether the graph is directed or undirected.
 population : :class:`~nngt.NeuralPop`
 Population to associate to the new :class:`~nngt.Network`.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape to associate to the new :class:`~nngt.SpatialGraph`.
 positions : (N, 2) array
 Positions, in a 2D space, of the N neurons.
 name : str, optional
 Graph name.

 Returns

 :class:`~nngt.Graph`
 '''
 mshape = matrix.shape

 graph_name = "FromYMatrix_Z"

 nodes = max(mshape[0], mshape[1])

 if issubclass(matrix.__class__, ssp.spmatrix):
 graph_name = graph_name.replace('Y', 'Sparse')
 if not directed:
 if mshape[0] != mshape[1] or not (matrix.T != matrix).nnz == 0:
 raise InvalidArgument('Incompatible `directed=False` '
 'option provided for non symmetric '
 'matrix.')

 matrix = ssp.tril(matrix, format=matrix.format)
 else:
 graph_name = graph_name.replace('Y', 'Dense')
 if not directed:
 if mshape[0] != mshape[1] or not (matrix.T == matrix).all():
 raise InvalidArgument('Incompatible `directed=False` '
 'option provided for non symmetric '
 'matrix.')
 matrix = np.tril(matrix)

 edges = np.array(matrix.nonzero()).T

 graph_name = graph_name.replace("Z", str(cls.__num_graphs))

 # overwrite default name if necessary
 if name is not None:
 graph_name = name

 graph = cls(nodes, name=graph_name, weighted=weighted,
 directed=directed, **kwargs)

 if population is not None:
 cls.make_network(graph, population)

 if shape is not None or positions is not None:
 cls.make_spatial(graph, shape, positions)

 weights = None

 if weighted:
 if issubclass(matrix.__class__, ssp.spmatrix):
 weights = np.array(matrix[edges[:, 0], edges[:, 1]])[0]
 else:
 weights = matrix[edges[:, 0], edges[:, 1]]

 if len(weights.shape) == 2:
 weights = weights.A1

 attributes = {"weight": weights} if weighted else None

 graph.new_edges(edges, attributes, check_self_loops=False,
 ignore_invalid=True)

 return graph

[docs] @staticmethod
 def from_file(filename, fmt="auto", separator=" ", secondary=";",
 attributes=None, attributes_types=None, notifier="@",
 ignore="#", from_string=False, name=None,
 directed=True, cleanup=False):
 '''
 Import a saved graph from a file.

 .. versionchanged :: 2.0
 Added optional `attributes_types` and `cleanup` arguments.

 Parameters

 filename: str
 The path to the file.
 fmt : str, optional (default: deduced from filename)
 The format used to save the graph. Supported formats are:
 "neighbour" (neighbour list), "ssp" (scipy.sparse), "edge_list"
 (list of all the edges in the graph, one edge per line,
 represented by a ``source target``-pair), "gml" (gml format,
 default if `filename` ends with '.gml'), "graphml" (graphml format,
 default if `filename` ends with '.graphml' or '.xml'), "dot" (dot
 format, default if `filename` ends with '.dot'), "gt" (only
 when using `graph_tool <http://graph-tool.skewed.de/>`_ as library,
 detected if `filename` ends with '.gt').
 separator : str, optional (default " ")
 separator used to separate inputs in the case of custom formats
 (namely "neighbour" and "edge_list")
 secondary : str, optional (default: ";")
 Secondary separator used to separate attributes in the case of
 custom formats.
 attributes : list, optional (default: [])
 List of names for the attributes present in the file. If a
 `notifier` is present in the file, names will be deduced from it;
 otherwise the attributes will be numbered.
 For "edge_list", attributes may also be present as additional
 columns after the source and the target.
 attributes_types : dict, optional (default: str)
 Backup information if the type of the attributes is not specified
 in the file. Values must be callables (types or functions) that
 will take the argument value as a string input and convert it to
 the proper type.
 notifier : str, optional (default: "@")
 Symbol specifying the following as meaningfull information.
 Relevant information are formatted ``@info_name=info_value``, where
 ``info_name`` is in ("attributes", "directed", "name", "size") and
 associated ``info_value`` are of type (``list``, ``bool``, ``str``,
 ``int``).
 Additional notifiers are
 ``@type=SpatialGraph/Network/SpatialNetwork``, which must be
 followed by the relevant notifiers among ``@shape``,
 ``@population``, and ``@graph``.
 from_string : bool, optional (default: False)
 Load from a string instead of a file.
 ignore : str, optional (default: "#")
 Ignore lines starting with the `ignore` string.
 name : str, optional (default: from file information or 'LoadedGraph')
 The name of the graph.
 directed : bool, optional (default: from file information or True)
 Whether the graph is directed or not.
 cleanup : bool, optional (default: False)
 If true, removes nodes before the first one that appears in the
 edges and after the last one and renumber the nodes from 0.

 Returns

 graph : :class:`~nngt.Graph` or subclass
 Loaded graph.
 '''
 fmt = _get_format(fmt, filename)

 if fmt not in ("neighbour", "edge_list", "gml"):
 # only partial support for these formats, relying on backend
 libgraph = _library_load(filename, fmt)

 name = "LoadedGraph" if name is None else name

 graph = Graph.from_library(libgraph, name=name, directed=directed)

 return graph

 info, edges, nattr, eattr, struct, shape, pos = _load_from_file(
 filename=filename, fmt=fmt, separator=separator, ignore=ignore,
 secondary=secondary, attributes=attributes,
 attributes_types=attributes_types, notifier=notifier,
 cleanup=cleanup)

 # create the graph
 name = info.get("name", "LoadedGraph") if name is None else name

 graph = Graph(nodes=info["size"], name=name,
 directed=info.get("directed", directed))

 # make the nodes attributes
 lst_attr, dtpes, lst_values = [], [], []

 if info["node_attributes"]: # node attributes to add to the graph
 lst_attr = info["node_attributes"]
 dtpes = info["node_attr_types"]
 lst_values = [nattr[name] for name in info["node_attributes"]]

 for nattr, dtype, values in zip(lst_attr, dtpes, lst_values):
 graph.new_node_attribute(nattr, dtype, values=values)

 # make the edges and their attributes
 lst_attr, dtpes, lst_values = [], [], []

 if info["edge_attributes"]: # edge attributes to add to the graph
 lst_attr = info["edge_attributes"]
 dtpes = info["edge_attr_types"]
 lst_values = [eattr[name] for name in info["edge_attributes"]]

 if len(edges):
 graph.new_edges(edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 for eattr, dtype, values in zip(lst_attr, dtpes, lst_values):
 graph.new_edge_attribute(eattr, dtype, values=values)

 if struct is not None:
 if isinstance(struct, nngt.NeuralPop):
 nngt.Network.make_network(graph, struct)
 else:
 graph.structure = struct

 struct._parent = weakref.ref(graph)

 for g in struct.values():
 g._struct = weakref.ref(struct)
 g._net = weakref.ref(graph)

 if pos is not None or shape is not None:
 nngt.SpatialGraph.make_spatial(graph, shape=shape, positions=pos)

 return graph

[docs] @staticmethod
 def make_spatial(graph, shape=None, positions=None, copy=False):
 '''
 Turn a :class:`~nngt.Graph` object into a :class:`~nngt.SpatialGraph`,
 or a :class:`~nngt.Network` into a :class:`~nngt.SpatialNetwork`.

 Parameters

 graph : :class:`~nngt.Graph` or :class:`~nngt.SpatialGraph`
 Graph to convert.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape to associate to the new :class:`~nngt.SpatialGraph`.
 positions : (N, 2) array
 Positions, in a 2D space, of the N neurons.
 copy : bool, optional (default: ``False``)
 Whether the operation should be made in-place on the object or if a
 new object should be returned.

 Notes

 In-place operation that directly converts the original graph if `copy`
 is ``False``, else returns the copied :class:`~nngt.Graph` turned into
 a :class:`~nngt.SpatialGraph`.
 The `shape` argument can be skipped if `positions` are given; in that
 case, the neurons will be embedded in a rectangle that contains them
 all.
 '''
 if copy:
 graph = graph.copy()

 if isinstance(graph, nngt.Network):
 graph.__class__ = nngt.SpatialNetwork
 else:
 graph.__class__ = nngt.SpatialGraph

 graph._init_spatial_properties(shape, positions)

 if copy:
 return graph

[docs] @staticmethod
 def make_network(graph, neural_pop, copy=False, **kwargs):
 '''
 Turn a :class:`~nngt.Graph` object into a :class:`~nngt.Network`, or a
 :class:`~nngt.SpatialGraph` into a :class:`~nngt.SpatialNetwork`.

 Parameters

 graph : :class:`~nngt.Graph` or :class:`~nngt.SpatialGraph`
 Graph to convert
 neural_pop : :class:`~nngt.NeuralPop`
 Population to associate to the new :class:`~nngt.Network`
 copy : bool, optional (default: ``False``)
 Whether the operation should be made in-place on the object or if a
 new object should be returned.

 Notes

 In-place operation that directly converts the original graph if `copy`
 is ``False``, else returns the copied :class:`~nngt.Graph` turned into
 a :class:`~nngt.Network`.
 '''
 if copy:
 graph = graph.copy()

 if isinstance(graph, nngt.SpatialGraph):
 graph.__class__ = nngt.SpatialNetwork
 else:
 graph.__class__ = nngt.Network

 # set delays to 1. or to provided value if they are not already set
 if "delays" not in kwargs and not hasattr(graph, '_d'):
 graph._d = {"distribution": "constant", "value": 1.}
 elif "delays" in kwargs and not hasattr(graph, '_d'):
 graph._d = kwargs["delays"]
 elif "delays" in kwargs:
 _log_message(logger, "WARNING",
 'Graph already had delays set, ignoring new ones.')

 graph._init_bioproperties(neural_pop)

 if copy:
 return graph

 #---#
 # Constructor/destructor and properties

 def __init__(self, nodes=None, name="Graph", weighted=True, directed=True,
 copy_graph=None, structure=None, **kwargs):
 '''
 Initialize Graph instance

 .. versionchanged:: 2.0
 Renamed `from_graph` to `copy_graph`.

 .. versionchanged:: 2.2
 Added `structure` argument.

 Parameters

 nodes : int, optional (default: 0)
 Number of nodes in the graph.
 name : string, optional (default: "Graph")
 The name of this :class:`Graph` instance.
 weighted : bool, optional (default: True)
 Whether the graph edges have weight properties.
 directed : bool, optional (default: True)
 Whether the graph is directed or undirected.
 copy_graph : :class:`~nngt.Graph`, optional
 An optional :class:`~nngt.Graph` that will be copied.
 structure : :class:`~nngt.Structure`, optional (default: None)
 A structure dividing the graph into specific groups, which can
 be used to generate specific connectivities and visualise the
 connections in a more coarse-grained manner.
 kwargs : optional keywords arguments
 Optional arguments that can be passed to the graph, e.g. a dict
 containing information on the synaptic weights
 (``weights={"distribution": "constant", "value": 2.3}`` which is
 equivalent to ``weights=2.3``), the synaptic `delays`, or a
 ``type`` information.

 Note

 When using `copy_graph`, only the topological properties are
 copied (nodes, edges, and attributes), spatial and biological
 properties are ignored.
 To copy a graph exactly, use :func:`~nngt.Graph.copy`.

 Returns

 self : :class:`~nngt.Graph`
 '''
 self.__id = self.__class__.__max_id
 self._name = name
 self._graph_type = kwargs["type"] if "type" in kwargs else "custom"

 # check the structure
 if structure is not None:
 if nodes is None:
 nodes = structure.size
 else:
 assert nodes == structure.size, \
 "`nodes` and `structure.size` must be the same."
 else:
 nodes = 0 if nodes is None else nodes

 self._struct = structure

 # Init the core.GraphObject
 super().__init__(nodes=nodes, copy_graph=copy_graph,
 directed=directed, weighted=weighted)

 # take care of the weights and delays
 if copy_graph is None:
 if weighted:
 self.new_edge_attribute('weight', 'double')
 self._w = _edge_prop(kwargs.get("weights", None))
 if "delays" in kwargs:
 self.new_edge_attribute('delay', 'double')
 self._d = _edge_prop(kwargs.get("delays", None))
 if 'inh_weight_factor' in kwargs:
 self._iwf = kwargs['inh_weight_factor']
 else:
 self._w = getattr(copy_graph, "_w", None)
 self._d = getattr(copy_graph, "_d", None)
 self._iwf = getattr(copy_graph, "_iwf", None)

 self._eattr._num_values_set = \
 copy_graph._eattr._num_values_set.copy()

 # update the counters
 self.__class__.__num_graphs += 1
 self.__class__.__max_id += 1

 def __del__(self):
 ''' Graph deletion (update graph count) '''
 self.__class__.__num_graphs -= 1

 def __repr__(self):
 ''' Provide unambiguous informations regarding the object. '''
 d = "directed" if self.is_directed() else "undirected"
 w = "weighted" if self.is_weighted() else "binary"
 t = self.type
 n = self.node_nb()
 e = self.edge_nb()

 return "<{directed}/{weighted} {obj} object of type '{net_type}' " \
 "with {nodes} nodes and {edges} edges at 0x{obj_id}>".format(
 directed=d, weighted=w, obj=type(self).__name__,
 net_type=t, nodes=n, edges=e, obj_id=id(self))

 def __str__(self):
 '''
 Return the full string description of the object as would be stored
 inside a file when saving the graph.
 '''
 return _as_string(self)

 @property
 def graph(self):
 '''
 Returns the underlying library object.

 .. warning ::
 Do not add or remove edges directly through this object.

 See also

 :ref:`graph_attr`
 :ref:`graph-analysis`.
 '''
 return self._graph

 @property
 def structure(self):
 '''
 Object structuring the graph into specific groups.

 .. versionadded: 2.2

 Note

 Points to :py:obj:`~nngt.Network.population` if the graph is a
 :class:`~nngt.Network`.
 '''
 if self.is_network():
 return self.population

 return self._struct

 @structure.setter
 def structure(self, structure):
 if self.is_network():
 self.population = structure
 else:
 if issubclass(structure.__class__, nngt.Structure):
 if self.node_nb() == structure.size:
 if structure.is_valid:
 self._struct = structure
 else:
 raise AttributeError(
 "Structure is not valid (not all nodes are "
 "associated to a group).")
 else:
 raise AttributeError("Graph and Structure must have same "
 "number of nodes.")
 else:
 raise AttributeError(
 "Expecting Structure but received '{}'.".format(
 structure.__class__.__name__))

 @property
 def graph_id(self):
 ''' Unique :class:`int` identifying the instance. '''
 return self.__id

 @property
 def name(self):
 ''' Name of the graph. '''
 return self._name

 @property
 def type(self):
 ''' Type of the graph. '''
 return self._graph_type

 #---#
 # Graph actions

[docs] def copy(self):
 '''
 Returns a deepcopy of the current :class:`~nngt.Graph`
 instance
 '''
 if nngt.get_config("mpi"):
 raise NotImplementedError("`copy` is not MPI-safe yet.")
 gc_instance = Graph(name=self._name + '_copy',
 weighted=self.is_weighted(), copy_graph=self,
 directed=self.is_directed())

 if self.is_spatial():
 nngt.SpatialGraph.make_spatial(
 gc_instance, shape=self.shape.copy(),
 positions=deepcopy(self._pos))

 if self.is_network():
 nngt.Network.make_network(gc_instance, self.population.copy())

 return gc_instance

[docs] def to_file(self, filename, fmt="auto", separator=" ", secondary=";",
 attributes=None, notifier="@"):
 '''
 Save graph to file; options detailed below.

 See also

 :py:func:`nngt.lib.save_to_file` function for options.
 '''
 save_to_file(self, filename, fmt=fmt, separator=separator,
 secondary=secondary, attributes=attributes,
 notifier=notifier)

 #~ def inhibitory_subgraph(self):
 #~ ''' Create a :class:`~nngt.Graph` instance which graph
 #~ contains only the inhibitory edges of the current instance's
 #~ :class:`graph_tool.Graph` '''
 #~ eprop_b_type = self.new_edge_property(
 #~ "bool",-self.edge_properties[TYPE].a+1)
 #~ self.set_edge_filter(eprop_b_type)
 #~ inhib_graph = Graph(name=self._name + '_inhib',
 #~ weighted=self._weighted,
 #~ from_graph=core.GraphObject(self.prune=True))
 #~ self.clear_filters()
 #~ return inhib_graph

 #~ def excitatory_subgraph(self):
 #~ '''
 #~ Create a :class:`~nngt.Graph` instance which graph contains only the
 #~ excitatory edges of the current instance's :class:`core.GraphObject`.
 #~ .. warning ::
 #~ Only works for graph_tool
 #~ .. todo ::
 #~ Make this method library independant!
 #~ '''
 #~ eprop_b_type = self.new_edge_property(
 #~ "bool",self.edge_properties[TYPE].a+1)
 #~ self.set_edge_filter(eprop_b_type)
 #~ exc_graph = Graph(name=self._name + '_exc',
 #~ weighted=self._weighted,
 #~ graph=core.GraphObject(self.prune=True))
 #~ self.clear_filters()
 #~ return exc_graph

[docs] def to_undirected(self, combine_numeric_eattr="sum"):
 '''
 Convert the graph to its undirected variant.

 .. note::
 All non-numeric edge attributes will be discarded from the returned
 undirected graph.

 Parameters

 combine_numeric_eattr : str, optional (default: "sum")
 How to combine numeric attributes from reciprocal edges.
 Can be either:

 - "sum" (attributes are summed)
 - "min" (smallest value is kept)
 - "max" (largest value is kept)
 - "mean" (the average of both attributes is taken)

 In addition, `combine_numeric_eattr` can be a dictionary with one
 entry for each edge attribute.
 '''
 shape = self.shape if self.is_spatial() else None
 pos = self.get_positions() if self.is_spatial() else None

 g = self.__class__(self.node_nb(), structure=self.structure,
 positions=pos, shape=shape,
 weighted=self.is_weighted(), directed=False)

 # replicate node attributes
 for nattr in self.node_attributes:
 g.new_node_attribute(nattr, self.get_attribute_type(nattr, "node"),
 self.node_attributes[nattr])

 # prepare edges
 eattrs = set(self.edge_attributes)

 # prepare combine method
 if isinstance(combine_numeric_eattr, str):
 val = str(combine_numeric_eattr)
 combine_numeric_eattr = defaultdict(lambda: val)
 elif isinstance(combine_numeric_eattr, dict):
 combine_numeric_eattr = defaultdict(
 lambda: "sum", **combine_numeric_eattr)

 # find integer eattr
 integer_eattr = "weight" if "weight" in eattrs else None
 integer_types = ("int", "double")

 if integer_eattr is None:
 for eattr in eattrs:
 if self.get_attribute_type(eattr, "edge") in integer_types:
 integer_eattr = eattr
 break

 if integer_eattr is not None:
 eattrs.discard(integer_eattr)

 combine = combine_numeric_eattr[integer_eattr]

 _, umat = _get_matrices(
 self, directed=False, weights=integer_eattr, weighted=True,
 combine_weights=combine)

 umat = ssp.tril(umat, format="csr")

 # create the initial edge attribute
 g.new_edge_attribute(
 integer_eattr, self.get_attribute_type(integer_eattr, "edge"))

 indptr = umat.indptr

 diff = np.diff(indptr)
 keep = np.where(diff)[0]
 sources = np.repeat(keep, diff[keep])

 # make and add the edges and the first eattr
 edges = np.array((sources, umat.indices)).T

 g.new_edges(edges, attributes={"weight": umat.data},
 check_self_loops=False)

 # add all other edge attributes
 for eattr in eattrs:
 if self.get_attribute_type(eattr, "edge") in integer_types:
 combine = combine_numeric_eattr[eattr]

 _, umat = _get_matrices(
 self, directed=False, weights=eattr, weighted=True,
 combine_weights=combine)

 umat = ssp.tril(umat, format="csr")

 g.new_edge_attribute(
 eattr, self.get_attribute_type(eattr, "edge"),
 values=umat.data)
 else:
 # hide existing edge warning
 from nngt.lib.connect_tools import logger as lg

 old_loglevel = lg.level
 lg.setLevel(logging.ERROR)

 g.new_edges(self.edges_array, ignore_invalid=True)

 # restore previous logging level
 lg.setLevel(old_loglevel)

 return g

[docs] def get_structure_graph(self):
 '''
 Return a coarse-grained version of the graph containing one node
 per :class:`nngt.Group`.
 Connections between groups are associated to the sum of all connection
 weights.
 If no structure is present, returns an empty Graph.
 '''
 struct = self.structure

 if struct is None:
 return Graph()

 names = list(struct.keys())
 nodes = len(struct)

 g = nngt.Graph(nodes,
 name="Structure-graph of '{}'".format(self.name))

 eattr = {"weight": []}

 if self.is_network():
 eattr["delay"] = []

 new_edges = []

 for i, n1 in enumerate(names):
 g1 = struct[n1]

 for j, n2 in enumerate(names):
 g2 = struct[n2]

 edges = self.get_edges(source_node=g1.ids, target_node=g2.ids)

 if len(edges):
 weights = self.get_weights(edges=edges)
 w = np.sum(weights)
 eattr["weight"].append(w)

 if self.is_network():
 delays = self.get_delays(edges=edges)
 d = np.average(delays)
 eattr["delay"].append(d)

 new_edges.append((i, j))

 # add edges and attributes
 if self.is_network():
 g.new_edge_attribute("delay", "double")

 g.new_edges(new_edges, attributes=eattr, check_self_loops=False)

 # set node attributes
 g.new_node_attribute("name", "string", values=names)

 return g

 #---#
 # Getters

[docs] def adjacency_matrix(self, types=False, weights=False, mformat="csr"):
 '''
 Return the graph adjacency matrix.

 .. versionchanged: 2.0
 Added matrix format option (`mformat`).

 Note

 Source nodes are represented by the rows, targets by the
 corresponding columns.

 Parameters

 types : bool, optional (default: False)
 Wether the edge types should be taken into account (negative values
 for inhibitory connections).
 weights : bool or string, optional (default: False)
 Whether the adjacecy matrix should be weighted. If True, all
 connections are multiply bythe associated synaptic strength; if
 weight is a string, the connections are scaled bythe corresponding
 edge attribute.
 mformat : str, optional (default: "csr")
 Type of :mod:`scipy.sparse` matrix that will be returned, by
 default :class:`scipy.sparse.csr_matrix`.

 Returns

 mat : :mod:`scipy.sparse` matrix
 The adjacency matrix of the graph.
 '''
 weights = "weight" if weights is True else weights

 mat = None

 if types:
 if self.is_network():
 # use inhibitory nodes
 mat = nngt.analyze_graph["adjacency"](self, weights)
 inh = self.population.inhibitory

 if np.any(inh):
 mat[inh, :] *= -1

 elif 'type' in self.node_attributes:
 mat = nngt.analyze_graph["adjacency"](self, weights)
 tarray = np.where(self.node_attributes['type'] < 0)[0]
 if np.any(tarray):
 mat[tarray] *= -1
 elif types and 'type' in self.edge_attributes:
 data = None

 if nonstring_container(weights):
 data = weights
 elif weights in {None, False}:
 data = np.ones(self.edge_nb())
 else:
 data = self.get_edge_attributes(name=weights)

 data *= self.get_edge_attributes(name="type")

 edges = self.edges_array
 num_nodes = self.node_nb()
 mat = ssp.coo_matrix(
 (data, (edges[:, 0], edges[:, 1])),
 shape=(num_nodes, num_nodes)).tocsr()

 if not self.is_directed():
 mat += mat.T

 return mat.asformat(mformat)

 # untyped
 mat = nngt.analyze_graph["adjacency"](self, weights, mformat=mformat)

 return mat

 @property
 def node_attributes(self):
 '''
 Access node attributes.

 See also

 :attr:`~nngt.Graph.edge_attributes`,
 :attr:`~nngt.Graph.get_node_attributes`,
 :attr:`~nngt.Graph.new_node_attribute`,
 :attr:`~nngt.Graph.set_node_attribute`.
 '''
 return self._nattr

 @property
 def edge_attributes(self):
 '''
 Access edge attributes.

 See also

 :attr:`~nngt.Graph.node_attributes`,
 :attr:`~nngt.Graph.get_edge_attributes`,
 :attr:`~nngt.Graph.new_edge_attribute`,
 :attr:`~nngt.Graph.set_edge_attribute`.
 '''
 return self._eattr

[docs] def get_nodes(self, attribute=None, value=None):
 '''
 Return the nodes in the network fulfilling a given condition.

 Parameters

 attribute : str, optional (default: all nodes)
 Whether the `attribute` of the returned nodes should have a specific
 value.
 value : object, optional (default : None)
 If an `attribute` name is passed, then only nodes with `attribute`
 being equal to `value` will be returned.

 See also

 :func:`~nngt.Graph.get_edges`, :attr:`~nngt.Graph.node_attributes`
 '''
 if attribute is None:
 return [i for i in range(self.node_nb())]

 vtype = self._nattr.value_type(attribute)

 if value is None and vtype != "object":
 raise ValueError("`value` cannot be None for attribute '" +
 attribute + "'.")

 return np.where(
 self.get_node_attributes(name=attribute) == value)[0]

[docs] def get_edges(self, attribute=None, value=None, source_node=None,
 target_node=None):
 '''
 Return the edges in the network fulfilling a given condition.

 Parameters

 attribute : str, optional (default: all nodes)
 Whether the `attribute` of the returned edges should have a specific
 value.
 value : object, optional (default : None)
 If an `attribute` name is passed, then only edges with `attribute`
 being equal to `value` will be returned.
 source_node : int or list of ints, optional (default: all nodes)
 Retrict the edges to those stemming from `source_node`.
 target_node : int or list of ints, optional (default: all nodes)
 Retrict the edges to those arriving at `target_node`.

 See also

 :func:`~nngt.Graph.get_nodes`, :attr:`~nngt.Graph.edge_attributes`
 '''
 edges = None

 if source_node is None and target_node is None:
 edges = self.edges_array
 elif is_integer(source_node) and is_integer(target_node):
 # check that the edge exists, throw error otherwise
 self.edge_id((source_node, target_node))
 edges = np.array([[source_node, target_node]])
 else:
 if source_node is None or target_node is None:
 # backend-specific implementation for source or target
 edges = self._get_edges(source_node=source_node,
 target_node=target_node)
 else:
 # we need to use the adjacency matrix, get its subparts,
 # then use the list of nodes to get the original ids back
 # to do that we first convert source/target_node to lists
 # (note that this has no significant speed impact)
 src, tgt = None, None

 if source_node is None:
 src = np.array(
 [i for i in range(self.node_nb())], dtype=int)
 elif is_integer(source_node):
 src = np.array([source_node], dtype=int)
 else:
 src = np.sort(source_node)

 if target_node is None:
 tgt = np.array(
 [i for i in range(self.node_nb())], dtype=int)
 elif is_integer(target_node):
 tgt = np.array([target_node], dtype=int)
 else:
 tgt = np.sort(target_node)

 mat = self.adjacency_matrix()

 nnz = mat[src].tocsc()[:, tgt].nonzero()

 edges = np.array([src[nnz[0]], tgt[nnz[1]]], dtype=int).T

 # remove reciprocal if graph is undirected
 if not self.is_directed():
 edges.sort()

 edges = _unique_rows(edges)

 # check attributes
 if attribute is None:
 return edges

 vtype = self._eattr.value_type(attribute)

 if value is None and vtype != "object":
 raise ValueError("`value` cannot be None for attribute '" +
 attribute + "'.")

 desired = (self.get_edge_attributes(edges, attribute) == value)

 return self.edges_array[desired]

[docs] def get_edge_attributes(self, edges=None, name=None):
 '''
 Attributes of the graph's edges.

 .. versionchanged:: 1.0
 Returns the full dict of edges attributes if called without
 arguments.

 .. versionadded:: 0.8

 Parameters

 edge : tuple or list of tuples, optional (default: ``None``)
 Edge whose attribute should be displayed.
 name : str, optional (default: ``None``)
 Name of the desired attribute.

 Returns

 Dict containing all graph's attributes (synaptic weights, delays...)
 by default. If `edge` is specified, returns only the values for these
 edges. If `name` is specified, returns value of the attribute for each
 edge.

 Note

 The attributes values are ordered as the edges in
 :func:`~nngt.Graph.edges_array` if `edges` is None.

 See also

 :func:`~nngt.Graph.get_node_attributes`,
 :func:`~nngt.Graph.new_edge_attribute`,
 :func:`~nngt.Graph.set_edge_attribute`,
 :func:`~nngt.Graph.new_node_attribute`,
 :func:`~nngt.Graph.set_node_attribute`
 '''
 if name is not None and edges is not None:
 if isinstance(edges, slice):
 return self._eattr[name][edges]
 elif len(edges):
 return self._eattr[edges][name]
 return np.array([])
 elif name is None and edges is None:
 return {k: self._eattr[k]
 for k in self._eattr.keys()}
 elif name is None:
 return self._eattr[edges]
 else:
 return self._eattr[name]

[docs] def get_node_attributes(self, nodes=None, name=None):
 '''
 Attributes of the graph's edges.

 .. versionchanged:: 1.0.1
 Corrected default behavior and made it the same as
 :func:`~nngt.Graph.get_edge_attributes`.

 .. versionadded:: 0.9

 Parameters

 nodes : list of ints, optional (default: ``None``)
 Nodes whose attribute should be displayed.
 name : str, optional (default: ``None``)
 Name of the desired attribute.

 Returns

 Dict containing all nodes attributes by default. If `nodes` is
 specified, returns a ``dict`` containing only the attributes of these
 nodes. If `name` is specified, returns a list containing the values of
 the specific attribute for the required nodes (or all nodes if
 unspecified).

 See also

 :func:`~nngt.Graph.get_edge_attributes`,
 :func:`~nngt.Graph.new_node_attribute`,
 :func:`~nngt.Graph.set_node_attribute`,
 :func:`~nngt.Graph.new_edge_attributes`,
 :func:`~nngt.Graph.set_edge_attribute`
 '''
 res = None

 if name is None:
 res = {k: self._nattr[k] for k in self._nattr.keys()}
 else:
 res = self._nattr[name]

 if nodes is None:
 return res

 if isinstance(nodes, (slice, int)) or nonstring_container(nodes):
 if isinstance(res, dict):
 return {k: v[nodes] for k, v in res.items()}
 return res[nodes]
 else:
 raise ValueError("Invalid `nodes`: "
 "{}, use slice, int, or list".format(nodes))

[docs] def get_attribute_type(self, attribute_name, attribute_class=None):
 '''
 Return the type of an attribute (e.g. string, double, int).

 Parameters

 attribute_name : str
 Name of the attribute.
 attribute_class : str, optional (default: both)
 Whether `attribute_name` is a "node" or an "edge" attribute.

 Returns

 type : str
 Type of the attribute.
 '''
 if attribute_class is None:
 is_eattr = attribute_name in self._eattr
 is_nattr = attribute_name in self._nattr
 if is_eattr and is_nattr:
 raise RuntimeError("Both edge and node attributes with name '"
 + attribute_name + "' exist, please "
 "specify `attribute_class`")
 elif is_eattr:
 return self._eattr.value_type(attribute_name)
 elif is_nattr:
 return self._nattr.value_type(attribute_name)
 else:
 raise KeyError("No '{}' attribute.".format(attribute_name))
 else:
 if attribute_class == "edge":
 return self._eattr.value_type(attribute_name)
 elif attribute_class == "node":
 return self._nattr.value_type(attribute_name)
 else:
 raise InvalidArgument(
 "Unknown attribute class '{}'.".format(attribute_class))

[docs] def get_density(self):
 '''
 Density of the graph: :math:`\\frac{E}{N^2}`, where `E` is the number
 of edges and `N` the number of nodes.
 '''
 return self.edge_nb() / self.node_nb()**2

[docs] def is_weighted(self):
 ''' Whether the edges have weights '''
 return "weight" in self.edge_attributes

[docs] def is_directed(self):
 ''' Whether the graph is directed or not '''
 return self._graph.is_directed()

[docs] def is_connected(self, mode="strong"):
 '''
 Return whether the graph is connected.

 Parameters

 mode : str, optional (default: "strong")
 Whether to test connectedness with directed ("strong") or
 undirected ("weak") connections.

 References

 .. [ig-connected] :igdoc:`is_connected`
 '''
 return super().is_connected()

[docs] def get_degrees(self, mode="total", nodes=None, weights=None,
 edge_type="all"):
 '''
 Degree sequence of all the nodes.

 .. versionchanged:: 2.0
 Changed `deg_type` to `mode`, `node_list` to `nodes`, `use_weights`
 to `weights`, and `edge_type` to `edge_type`.

 Parameters

 mode : string, optional (default: "total")
 Degree type (among 'in', 'out' or 'total').
 nodes : list, optional (default: None)
 List of the nodes which degree should be returned
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge
 attribute, otherwise uses any valid edge attribute required.
 edge_type : int or str, optional (default: all)
 Restrict to a given synaptic type ("excitatory", 1, or
 "inhibitory", -1), using either the "type" edge attribute for
 non-:class:`~nngt.Network` or the
 :py:attr:`~nngt.NeuralPop.inhibitory` nodes.

 Returns

 degrees : :class:`numpy.array`

 .. warning ::
 When using MPI with "nngt" (distributed) backend, returns only the
 degrees associated to local edges. "Complete" degrees are obtained
 by taking the sum of the results on all MPI processes.
 '''
 mode = _set_degree_type(mode)

 if edge_type == "all":
 return super().get_degrees(
 mode=mode, nodes=nodes, weights=weights)
 elif edge_type in {"excitatory", 1}:
 edge_type = 1
 elif edge_type in {"inhibitory", -1}:
 edge_type = -1
 else:
 raise InvalidArgument(
 "Invalid edge type '{}'".format(edge_type))

 degrees = np.zeros(self.node_nb())

 if isinstance(self, nngt.Network):
 neurons = []
 for g in self.population.values():
 if g.neuron_type == edge_type:
 neurons.extend(g.ids)

 if mode in {"in", "all"} or not self.is_directed():
 degrees += self.adjacency_matrix(
 weights=weights,
 types=False)[neurons, :].sum(axis=0).A1

 if mode in {"out", "all"} and self.is_directed():
 degrees += self.adjacency_matrix(
 weights=weights,
 types=False)[neurons, :].sum(axis=1).A1
 else:
 edges = np.where(
 self.get_edge_attributes(name="type") == edge_type)[0]

 w = None

 if weights is None:
 w = np.ones(len(edges))
 elif weights in self.edge_attributes:
 w = self.edge_attributes[weights]
 elif nonstring_container(weights):
 w = np.array(weights)
 else:
 raise InvalidArgument(
 "Invalid `weights` '{}'".format(weights))

 # count in-degrees
 if mode in {"in", "all"} or not self.is_directed():
 np.add.at(degrees, edges[1], weights)

 if mode in {"out", "all"} and self.is_directed():
 np.add.at(degrees, edges[0], weights)

 if nodes is None:
 return degrees

 return degrees[nodes]

[docs] def get_betweenness(self, btype="both", weights=None):
 '''
 Returns the normalized betweenness centrality of the nodes and edges.

 Parameters

 g : :class:`~nngt.Graph`
 Graph to analyze.
 btype : str, optional (default 'both')
 The centrality that should be returned (either 'node', 'edge', or
 'both'). By default, both betweenness centralities are computed.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or
 ``False`` then use binary edges; if ``True``, uses the 'weight'
 edge attribute, otherwise uses any valid edge attribute required.

 Returns

 nb : :class:`numpy.ndarray`
 The nodes' betweenness if `btype` is 'node' or 'both'
 eb : :class:`numpy.ndarray`
 The edges' betweenness if `btype` is 'edge' or 'both'

 See also

 :func:`~nngt.analysis.betweenness`
 '''
 from nngt.analysis import betweenness
 return betweenness(self, btype=btype, weights=weights)

[docs] def get_edge_types(self, edges=None):
 '''
 Return the type of all or a subset of the edges.

 .. versionchanged:: 1.0.1
 Added the possibility to ask for a subset of edges.

 Parameters

 edges : (E, 2) array, optional (default: all edges)
 Edges for which the type should be returned.

 Returns

 the list of types (1 for excitatory, -1 for inhibitory)
 '''
 if TYPE in self.edge_attributes:
 return self.get_edge_attributes(name=TYPE, edges=edges)
 else:
 size = self.edge_nb() if edges is None else len(edges)
 return np.ones(size)

[docs] def get_weights(self, edges=None):
 '''
 Returns the weights of all or a subset of the edges.

 .. versionchanged:: 1.0.1
 Added the possibility to ask for a subset of edges.

 Parameters

 edges : (E, 2) array, optional (default: all edges)
 Edges for which the type should be returned.

 Returns

 the list of weights
 '''
 if self.is_weighted():
 if edges is None:
 return self._eattr["weight"]
 else:
 if len(edges) == 0:
 return np.array([])

 return np.asarray(self._eattr[edges]["weight"])
 else:
 size = self.edge_nb() if edges is None else len(edges)
 return np.ones(size)

[docs] def get_delays(self, edges=None):
 '''
 Returns the delays of all or a subset of the edges.

 .. versionchanged:: 1.0.1
 Added the possibility to ask for a subset of edges.

 Parameters

 edges : (E, 2) array, optional (default: all edges)
 Edges for which the type should be returned.

 Returns

 the list of delays
 '''
 if edges is None:
 return self._eattr["delay"]
 else:
 return self._eattr[edges]["delay"]

[docs] def neighbours(self, node, mode="all"):
 '''
 Return the neighbours of `node`.

 Parameters

 node : int
 Index of the node of interest.
 mode : string, optional (default: "all")
 Type of neighbours that will be returned: "all" returns all the
 neighbours regardless of directionality, "in" returns the
 in-neighbours (also called predecessors) and "out" retruns the
 out-neighbours (or successors).

 Returns

 neighbours : set
 The neighbours of `node`.
 '''
 return super().neighbours(node, mode=mode)

[docs] def is_spatial(self):
 '''
 Whether the graph is embedded in space (i.e. is a subclass of
 :class:`~nngt.SpatialGraph`).
 '''
 return issubclass(self.__class__, nngt.SpatialGraph)

[docs] def is_network(self):
 '''
 Whether the graph is a subclass of :class:`~nngt.Network` (i.e. if it
 has a :class:`~nngt.NeuralPop` attribute).
 '''
 return issubclass(self.__class__, nngt.Network)

 #---#
 # Setters

[docs] def set_name(self, name=""):
 ''' set graph name '''
 if name != "":
 self._name = name
 else:
 self._name = "Graph_" + str(self.__id)

[docs] def new_edge_attribute(self, name, value_type, values=None, val=None):
 '''
 Create a new attribute for the edges.

 Parameters

 name : str
 The name of the new attribute.
 value_type : str
 Type of the attribute, among 'int', 'double', 'string', or 'object'
 values : array, optional (default: None)
 Values with which the edge attribute should be initialized.
 (must have one entry per node in the graph)
 val : int, float or str , optional (default: None)
 Identical value for all edges.
 '''
 assert name != "eid", "`eid` is a reserved internal edge-attribute."

 self._eattr.new_attribute(
 name, value_type, values=values, val=val)

[docs] def new_node_attribute(self, name, value_type, values=None, val=None):
 '''
 Create a new attribute for the nodes.

 Parameters

 name : str
 The name of the new attribute.
 value_type : str
 Type of the attribute, among 'int', 'double', 'string', or 'object'
 values : array, optional (default: None)
 Values with which the node attribute should be initialized.
 (must have one entry per node in the graph)
 val : int, float or str , optional (default: None)
 Identical value for all nodes.

 See also

 :func:`~nngt.Graph.new_edge_attribute`,
 :func:`~nngt.Graph.set_node_attribute`,
 :func:`~nngt.Graph.get_node_attributes`,
 :func:`~nngt.Graph.set_edge_attribute`,
 :func:`~nngt.Graph.get_edge_attributes`
 '''
 self._nattr.new_attribute(
 name, value_type, values=values, val=val)

[docs] def set_edge_attribute(self, attribute, values=None, val=None,
 value_type=None, edges=None):
 '''
 Set attributes to the connections between neurons.

 .. warning ::
 The special "type" attribute cannot be modified when using graphs
 that inherit from the :class:`~nngt.Network` class. This is because
 for biological networks, neurons make only one kind of synapse,
 which is determined by the :class:`nngt.NeuralGroup` they
 belong to.

 Parameters

 attribute : str
 The name of the attribute.
 value_type : str
 Type of the attribute, among 'int', 'double', 'string'
 values : array, optional (default: None)
 Values with which the edge attribute should be initialized.
 (must have one entry per node in the graph)
 val : int, float or str , optional (default: None)
 Identical value for all edges.
 value_type : str, optional (default: None)
 Type of the attribute, among 'int', 'double', 'string'. Only used
 if the attribute does not exist and must be created.
 edges : list of edges or array of shape (E, 2), optional (default: all)
 Edges whose attributes should be set. Others will remain unchanged.

 See also

 :func:`~nngt.Graph.set_node_attribute`,
 :func:`~nngt.Graph.get_edge_attributes`,
 :func:`~nngt.Graph.new_edge_attribute`,
 :func:`~nngt.Graph.new_node_attribute`,
 :func:`~nngt.Graph.get_node_attributes`
 '''
 if attribute not in self.edge_attributes:
 assert value_type is not None, "`value_type` is necessary for " +\
 "new attributes."
 self.new_edge_attribute(name=attribute, value_type=value_type,
 values=values, val=val)
 else:
 num_edges = self.edge_nb() if edges is None else len(edges)
 if values is None:
 if val is not None:
 values = [deepcopy(val) for _ in range(num_edges)]
 else:
 raise InvalidArgument("At least one of the `values` and "
 "`val` arguments should not be ``None``.")
 self._eattr.set_attribute(attribute, values, edges=edges)

[docs] def set_node_attribute(self, attribute, values=None, val=None,
 value_type=None, nodes=None):
 '''
 Set attributes to the connections between neurons.

 Parameters

 attribute : str
 The name of the attribute.
 value_type : str
 Type of the attribute, among 'int', 'double', 'string'
 values : array, optional (default: None)
 Values with which the edge attribute should be initialized.
 (must have one entry per node in the graph)
 val : int, float or str , optional (default: None)
 Identical value for all edges.
 value_type : str, optional (default: None)
 Type of the attribute, among 'int', 'double', 'string'. Only used
 if the attribute does not exist and must be created.
 nodes : list of nodes, optional (default: all)
 Nodes whose attributes should be set. Others will remain unchanged.

 See also

 :func:`~nngt.Graph.set_edge_attribute`,
 :func:`~nngt.Graph.new_node_attribute`,
 :func:`~nngt.Graph.get_node_attributes`,
 :func:`~nngt.Graph.new_edge_attribute`,
 :func:`~nngt.Graph.get_edge_attributes`,
 '''
 if attribute not in self.node_attributes:
 assert value_type is not None, "`value_type` is necessary for " +\
 "new attributes."
 self.new_node_attribute(name=attribute, value_type=value_type,
 values=values, val=val)
 else:
 num_nodes = self.node_nb() if nodes is None else len(nodes)
 if values is None:
 if val is not None:
 values = [deepcopy(val) for _ in range(num_nodes)]
 else:
 raise InvalidArgument("At least one of the `values` and "
 "`val` arguments should not be ``None``.")
 self._nattr.set_attribute(attribute, values, nodes=nodes)

[docs] def set_weights(self, weight=None, elist=None, distribution=None,
 parameters=None, noise_scale=None):
 '''
 Set the synaptic weights.

 Parameters

 weight : float or class:`numpy.array`, optional (default: None)
 Value or list of the weights (for user defined weights).
 elist : class:`numpy.array`, optional (default: None)
 List of the edges (for user defined weights).
 distribution : class:`string`, optional (default: None)
 Type of distribution (choose among "constant", "uniform",
 "gaussian", "lognormal", "lin_corr", "log_corr").
 parameters : dict, optional (default: {})
 Dictionary containing the properties of the weight distribution.
 Properties are as follow for the distributions

 - 'constant': 'value'
 - 'uniform': 'lower', 'upper'
 - 'gaussian': 'avg', 'std'
 - 'lognormal': 'position', 'scale'

 noise_scale : class:`int`, optional (default: None)
 Scale of the multiplicative Gaussian noise that should be applied
 on the weights.

 Note

 If `distribution` and `parameters` are provided and the weights are set
 for the whole graph (`elist` is None), then the distribution properties
 will be kept as the new default for subsequent edges. That is, if new
 edges are created without specifying their weights, then these new
 weights will automatically be drawn from this previous distribution.
 '''
 if isinstance(weight, float):
 size = self.edge_nb() if elist is None else len(elist)
 self._w = {"distribution": "constant", "value": weight}
 weight = np.repeat(weight, size)
 elif not nonstring_container(weight) and weight is not None:
 raise AttributeError("Invalid `weight` value: must be either "
 "float, array-like or None.")
 elif weight is not None:
 self._w = {"distribution": "custom"}
 elif None not in (distribution, parameters) and elist is None:
 self._w = {"distribution": distribution}
 self._w.update(parameters)

 if distribution is None:
 distribution = self._w.get("distribution", None)

 if parameters is None:
 parameters = self._w

 Connections.weights(
 self, elist=elist, wlist=weight, distribution=distribution,
 parameters=parameters, noise_scale=noise_scale)

[docs] def set_types(self, edge_type, nodes=None, fraction=None):
 '''
 Set the synaptic/connection types.

 .. versionchanged :: 2.0
 Changed `syn_type` to `edge_type`.

 .. warning ::
 The special "type" attribute cannot be modified when using graphs
 that inherit from the :class:`~nngt.Network` class. This is because
 for biological networks, neurons make only one kind of synapse,
 which is determined by the :class:`nngt.NeuralGroup` they
 belong to.

 Parameters

 edge_type : int, string, or array of ints
 Type of the connection among 'excitatory' (also `1`) or
 'inhibitory' (also `-1`).
 nodes : int, float or list, optional (default: `None`)
 If `nodes` is an int, number of nodes of the required type that
 will be created in the graph (all connections from inhibitory nodes
 are inhibitory); if it is a float, ratio of `edge_type` nodes in the
 graph; if it is a list, ids of the `edge_type` nodes.
 fraction : float, optional (default: `None`)
 Fraction of the selected edges that will be set as `edge_type` (if
 `nodes` is not `None`, it is the fraction of the specified nodes'
 edges, otherwise it is the fraction of all edges in the graph).

 Returns

 t_list : :class:`numpy.ndarray`
 List of the types in an order that matches the `edges` attribute of
 the graph.
 '''
 inhib_nodes = None

 if nonstring_container(edge_type):
 return Connections.types(self, values=edge_type)
 elif edge_type in ('excitatory', 1):
 if is_integer(nodes):
 inhib_nodes = self.node_nb() - nodes
 elif nonstring_container(nodes):
 inhib_nodes = list(range(self.node_nb()))
 nodes.sort()
 for node in nodes[::-1]:
 del inhib_nodes[node]
 elif nodes is not None:
 raise ValueError("`nodes` should be integer or array of ids.")
 elif edge_type in ('inhibitory', -1):
 if is_integer(nodes) or nonstring_container(nodes):
 inhib_nodes = nodes
 elif nodes is not None:
 raise ValueError("`nodes` should be integer or array of ids.")

 return Connections.types(self, inhib_nodes, fraction)

[docs] def set_delays(self, delay=None, elist=None, distribution=None,
 parameters=None, noise_scale=None):
 '''
 Set the delay for spike propagation between neurons.

 Parameters

 delay : float or class:`numpy.array`, optional (default: None)
 Value or list of delays (for user defined delays).
 elist : class:`numpy.array`, optional (default: None)
 List of the edges (for user defined delays).
 distribution : class:`string`, optional (default: None)
 Type of distribution (choose among "constant", "uniform",
 "gaussian", "lognormal", "lin_corr", "log_corr").
 parameters : dict, optional (default: {})
 Dictionary containing the properties of the delay distribution.
 noise_scale : class:`int`, optional (default: None)
 Scale of the multiplicative Gaussian noise that should be applied
 on the delays.
 '''
 # check special cases and set self._d
 if isinstance(delay, float):
 size = self.edge_nb() if elist is None else len(elist)
 self._d = {"distribution": "constant", "value": delay}
 delay = np.repeat(delay, size)
 elif not nonstring_container(delay) and delay is not None:
 raise AttributeError("Invalid `delay` value: must be either "
 "float, array-like or None")
 elif delay is not None:
 self._d = {"distribution": "custom"}
 elif None not in (distribution, parameters):
 self._d = {"distribution": distribution}
 self._d.update(parameters)

 if distribution is None:
 if hasattr(self, "_d"):
 distribution = self._d["distribution"]
 else:
 raise AttributeError(
 "Invalid `distribution` value: cannot be None if "
 "default delays were not set at graph creation.")

 if parameters is None:
 if hasattr(self, "_d"):
 parameters = self._d
 else:
 raise AttributeError(
 "Invalid `parameters` value: cannot be None if default"
 " delays were not set at graph creation.")

 return Connections.delays(
 self, elist=elist, dlist=delay, distribution=distribution,
 parameters=parameters, noise_scale=noise_scale)

 Source code for nngt.core.group_structure

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Graph data strctures in NNGT """

from collections import OrderedDict
import logging
import weakref
from copy import deepcopy

import numpy as np

import nngt
from nngt.lib import InvalidArgument
from nngt.lib.test_functions import deprecated, is_integer, nonstring_container
from nngt.lib.logger import _log_message

__all__ = [
 'Group',
 'MetaGroup',
 'Structure',
]

logger = logging.getLogger(__name__)

Structure

[docs]class Structure(OrderedDict):

 """
 The basic class that contains groups of nodes and their properties.

 .. versionadded: 2.2

 :ivar ~nngt.Structure.ids: :obj:`lst`,
 Returns the ids of nodes in the structure.
 :ivar ~nngt.Structure.is_valid: :obj:`bool`,
 Whether the structure is consistent with its associated network.
 :ivar ~nngt.Structure.parent: :class:`~nngt.Network`,
 Parent network.
 :ivar ~nngt.Structure.size: :obj:`int`,
 Returns the number of nodes in the structure.
 """

 # number of created populations
 __num_created = 0

 # store weakrefs to created populations
 __structs = weakref.WeakValueDictionary()

 #---#
 # Class attributes and methods

[docs] @classmethod
 def from_groups(cls, groups, names=None, parent=None, meta_groups=None):
 '''
 Make a :class:`~nngt.Structure` object from a (list of)
 :class:`~nngt.Group` object(s).

 Parameters

 groups : list of :class:`~nngt.Group` objects
 Groups that will be used to form the structure. Note that a given
 node can only belong to a single group, so the groups should form
 pairwise disjoints complementary sets.
 names : list of str, optional (default: None)
 Names that can be used as keys to retreive a specific group. If not
 provided, keys will be the group name (if not empty) or the position
 of the group in `groups`, stored as a string.
 In the latter case, the first group in a structure named `struct`
 will be retreived by either `struct[0]` or `struct['0']`.
 parent : :class:`~nngt.Graph`, optional (default: None)
 Parent if the structure is created from an exiting graph.
 meta_groups : list or dict of str/:class:`~nngt.Group` items
 Additional set of groups which can overlap: a node can belong to
 several different meta groups. Contrary to the primary groups, meta
 groups do therefore no need to be disjoint.
 If all meta-groups have a name, they can be passed directly through
 a list; otherwise a dict is necessary.

 Example

 For synaptic properties, if provided in `syn_spec`, all connections
 between groups will be set according to the values.
 Keys can be either group names or types (1 for excitatory, -1 for
 inhibitory). Because of this, several combination can be available for
 the connections between two groups. Because of this, priority is given
 to source (presynaptic properties), i.e. NNGT will look for the entry
 matching the first group name as source before looking for entries
 matching the second group name as target.

 .. code-block:: python

 # we already created groups `g1`, `g2`, and `g3`
 struct = Structure.from_groups([g1, g2, g3],
 names=['g1', 'g2', 'g3'])

 Note

 If the structure is not generated from an existing
 :class:`~nngt.Graph` and the groups do not contain explicit ids, then
 the ids will be generated upon structure creation: the first group, of
 size N0, will be associated the indices 0 to N0 - 1, the second group
 (size N1), will get N0 to N0 + N1 - 1, etc.
 '''
 if not nonstring_container(groups):
 groups = [groups]

 gsize = len(groups)
 names = [] if names is None else list(names)

 if not names:
 for i, g in enumerate(groups):
 if g.name:
 names.append(g.name)
 else:
 names.append(str(i))

 assert len(names) == gsize, "`names` and `groups` must have " +\
 "the same size."

 for n in names:
 assert isinstance(n, str), "Group names must be strings."

 current_size = 0

 for g in groups:
 # generate the node ids if necessary
 ids = g.ids
 if len(ids) == 0:
 ids = list(range(current_size, current_size + g.size))
 g.ids = ids
 current_size += len(ids)

 struct = cls(current_size, parent=parent, meta_groups=meta_groups)

 for name, g in zip(names, groups):
 struct[name] = g
 g._struct = weakref.ref(struct)
 g._net = weakref.ref(parent) if parent is not None else None

 return struct

 #---#
 # Contructor and instance attributes

 def __init__(self, size=None, parent=None, meta_groups=None, **kwargs):
 '''
 Initialize Structure instance.

 Parameters

 size : int, optional (default: 0)
 Number of nodes that the structure will contain.
 parent : :class:`~nngt.Network`, optional (default: None)
 Network associated to this structure.
 meta_groups : dict of str/:class:`~nngt.Group` items
 Optional set of groups. Contrary to the primary groups which
 define the structure and must be disjoint, meta groups can
 overlap: a neuron can belong to several different meta
 groups.
 **kwargs : :obj:`dict`

 Returns

 struct : :class:`~nngt.Structure` object.
 '''
 # check meta groups
 meta_groups = {} if meta_groups is None else meta_groups

 if not isinstance(meta_groups, dict):
 for g in meta_groups:
 if not g.name:
 raise ValueError(
 "When providing a list for `meta_groups`, "
 "all meta groups should be named")
 meta_groups = {g.name: g for g in meta_groups}

 # set main properties
 self._is_valid = False
 self._desired_size = size if parent is None else parent.node_nb()
 self._size = 0
 self._parent = None if parent is None else weakref.ref(parent)
 self._meta_groups = {}

 # create `_groups`: an array containing the id of the group
 # associated to the index of each neuron, which 'maps' nodes to the
 # primary group they belong to
 if self._desired_size is None:
 self._groups = None
 self._max_id = 0
 else:
 self._groups = np.repeat(-1, self._desired_size)
 self._max_id = len(self._groups) - 1

 # add meta groups
 for nmg, mg in meta_groups.items():
 self.add_meta_group(mg, nmg)

 if parent is not None and 'group_prop' in kwargs:
 dic = _make_groups(parent, kwargs["group_prop"])
 self._is_valid = True
 self.update(dic)

 # init the OrderedDict
 super().__init__()

 # update class properties
 self.__id = self.__class__.__num_created
 self.__class__.__num_created += 1
 self.__class__.__structs[self.__id] = self

 def __reduce__(self):
 '''
 Overwrite this function to make Structure pickable.
 OrderedDict.__reduce__ returns a 3 to 5 tuple:
 - the first is the class
 - the second is the init args in Py2, empty sequence in Py3
 - the third can be used to store attributes
 - the fourth is None and needs to stay None
 - the last must be kept unchanged: odict_iterator in Py3
 '''
 state = super().__reduce__()
 last = state[4] if len(state) == 5 else None
 dic = state[2]
 args = (dic.get("_size", None), dic.get("_parent", None),
 dic.get("_meta_groups", {}))

 newstate = (Structure, args, dic, None, last)

 return newstate

 def __contains__(self, key):
 return super().__contains__(key) or key in self._meta_groups

 def __getitem__(self, key):
 if isinstance(key, (int, np.integer)):
 assert key >= 0, "Index must be positive, not {}.".format(key)
 new_key = tuple(self.keys())[key]
 return OrderedDict.__getitem__(self, new_key)
 else:
 if key in self._meta_groups:
 return self._meta_groups[key]
 elif key in self:
 return OrderedDict.__getitem__(self, key)
 else:
 raise KeyError("Not (meta) group named '{}'.".format(key))

 def __setitem__(self, key, value):
 self._validity_check(key, value)

 int_key = None

 if is_integer(key):
 new_key = tuple(self.keys())[key]
 int_key = key
 OrderedDict.__setitem__(self, new_key, value)
 else:
 OrderedDict.__setitem__(self, key, value)
 int_key = list(super(Structure, self).keys()).index(key)

 # set name and parents
 value._name = key
 value._struct = weakref.ref(self)
 value._net = self._parent

 # update struct size/max_id
 group_size = len(value.ids)
 max_id = np.max(value.ids) if group_size != 0 else 0

 _update_max_id_and_size(self, max_id)

 self._groups[value.ids] = int_key

 if -1 in list(self._groups):
 self._is_valid = False
 else:
 if self._desired_size is not None:
 self._is_valid = (self._desired_size == self._size)
 else:
 self._is_valid = True

[docs] def copy(self):
 '''
 Return a deep copy of the structure.
 '''
 # copy groups and metagroups
 groups = {k: v.copy() for k, v in self.items()}
 metagroups = {k: v.copy() for k, v in self._meta_groups.items()}

 # generate new structure
 copy = Structure.from_groups(groups.values(), groups.keys(),
 parent=None, meta_groups=metagroups)

 return copy

 @property
 def size(self):
 '''
 Number of nodes in this structure.
 '''
 return self._size

 @property
 def ids(self):
 '''
 Return all the ids of the nodes inside the structure.

 .. versionadded:: 1.2
 '''
 ids = []

 for g in self.values():
 ids.extend(g.ids)

 return ids

 @property
 def parent(self):
 '''
 Parent :class:`~nngt.Network`, if it exists, otherwise ``None``.
 '''
 return None if self._parent is None else self._parent()

 @property
 def meta_groups(self):
 return self._meta_groups.copy()

 @property
 def is_valid(self):
 '''
 Whether the structure is consistent with the associated network.
 '''
 return self._is_valid

 #---#
 # Methods

[docs] def create_group(self, nodes, name, properties=None, replace=False):
 '''
 Create a new group in the structure.

 Parameters

 nodes : int or array-like
 Desired number of nodes or list of the nodes indices.
 name : str
 Name of the group.
 properties : dict, optional (default: None)
 Properties associated to the nodes in this group.
 replace : bool, optional (default: False)
 Whether to override previous exiting meta group with same name.
 '''
 assert isinstance(name, str), "Group `name` must be a string."

 if name in self and not replace:
 raise KeyError("Group with name '" + name + "' already " +\
 "exists. Use `replace=True` to overwrite it.")

 properties = {} if properties is None else properties.copy()

 group = Group(nodes, properties=properties, name=name)

 self[name] = group

[docs] def create_meta_group(self, nodes, name, properties=None, replace=False):
 '''
 Create a new meta group and add it to the structure.

 Parameters

 nodes : int or array-like
 Desired number of nodes or list of the nodes indices.
 name : str
 Name of the group.
 properties : dict, optional (default: None)
 Properties associated to the nodes in this group.
 replace : bool, optional (default: False)
 Whether to override previous exiting meta group with same name.
 '''
 neuron_param = {} if neuron_param is None else neuron_param.copy()

 group = MetaGroup(nodes, name=name, neuron_param=neuron_param)

 self.add_meta_group(group, replace=replace)

 return group

[docs] def add_meta_group(self, group, name=None, replace=False):
 '''
 Add an existing meta group to the structure.

 Parameters

 group : :class:`Group`
 Meta group.
 name : str, optional (default: group name)
 Name of the meta group.
 replace : bool, optional (default: False)
 Whether to override previous exiting meta group with same name.

 Note

 The name of the group is automatically updated to match the `name`
 argument.
 '''
 name = name if name else group.name

 if not name:
 raise ValueError("Group is not named, but no `name` entry was "
 "provided.")

 if name in self._meta_groups and not replace:
 raise KeyError("Cannot add meta group with name '" + name +\
 "': primary group with that name already exists.")

 if name in self._meta_groups and not replace:
 raise KeyError("Meta group with name '" + name + "' already " +\
 "exists. Use `replace=True` to overwrite it.")

 if not group.is_metagroup:
 raise ValueError("`Group '" + group.name + "' is no meta-group.")

 # check that meta_groups are compatible with the structure size
 if group.ids:
 assert np.max(group.ids) <= self._max_id, \
 "The meta group contains ids larger than the structure size."

 group._name = name
 group._struct = weakref.ref(self)
 group._net = self._parent

 self._meta_groups[name] = group

[docs] def set_properties(self, props, nodes=None, group=None):
 '''
 Set the parameters of specific nodes or of a whole group.

 .. versionadded:: 2.2

 Parameters

 props : dict
 Dictionary containing parameters for the nodes. Entries can be
 either a single number (same for all nodes) or a list (one entry
 per nodes).
 nodes : list of ints, optional (default: None)
 Ids of the nodes whose parameters should be modified.
 group : list of strings, optional (default: None)
 List of strings containing the names of the groups whose parameters
 should be updated. When modifying nodes from a single group, it
 is still usefull to specify the group name to speed up the pace.

 Note

 If both `nodes` and `group` are None, all nodes will be modified.
 '''
 # specific neuron ids
 if nodes is not None:
 groups = []

 # get the groups they could belong to
 if group is not None:
 if nonstring_container(group):
 groups.extend((self[g] for g in group))
 else:
 groups.append(self[group])
 else:
 groups.extend(self.values())

 # update the groups parameters
 for g in groups:
 idx = np.where(np.in1d(g.ids, nodes, assume_unique=True))[0]

 # set the properties of the nodes for each entry in props
 for k, v in props.items():
 default = np.NaN

 if k in g.properties:
 default = g.properties[k]

 vv = np.repeat(default, g.size)
 vv[idx] = v

 # update
 g.properties[k] = vv
 else: # all nodes in one or several groups
 group = self.keys() if group is None else group
 if not nonstring_container(group):
 group = [group]
 start = 0
 for name in group:
 g = self[name]
 for k, v in props.items():
 if nonstring_container(v):
 g.properties[k] = v[start:start+g.size]
 else:
 g.properties[k] = v
 start += g.size

[docs] def get_properties(self, key=None, groups=None, nodes=None):
 '''
 Return the properties of nodes or groups of nodes in the structure.

 Parameters

 groups : ``str``, ``int`` or array-like, optional (default: ``None``)
 Names or numbers of the groups for which the neural properties
 should be returned.
 nodes : int or array-like, optional (default: ``None``)
 IDs of the nodes for which parameters should be returned.

 Returns

 props : ``list``
 List of all dictionaries with properties.
 '''
 if nodes is not None:
 groups = self._groups[nodes]
 elif groups is None:
 groups = tuple(self.keys())

 if isinstance(groups, (str, int, np.integer)):
 if key is None:
 return self[groups].properties

 return self[groups].properties[key]
 else:
 props = []
 for group in groups:
 if key is None:
 props.append(self[group].properties)
 else:
 props.append(self[group].properties[key])
 return props

[docs] def get_group(self, nodes, numbers=False):
 '''
 Return the group of the nodes.

 Parameters

 nodes : int or array-like
 IDs of the nodes for which the group should be returned.
 numbers : bool, optional (default: False)
 Whether the group identifier should be returned as a number; if
 ``False``, the group names are returned.
 '''
 names = np.array(tuple(self.keys()), dtype=object)

 if numbers:
 return self._groups[nodes]
 else:
 if self._is_valid:
 return names[self._groups[nodes]]
 else:
 groups = []
 for i in self._groups[nodes]:
 if i >= 0:
 groups.append(names[i])
 else:
 groups.append(None)
 return groups

[docs] def add_to_group(self, group_name, ids):
 '''
 Add nodes to a specific group.

 Parameters

 group_name : str or int
 Name or index of the group.
 ids : list or 1D-array
 Node ids.
 '''
 idx = None

 if is_integer(group_name):
 assert 0 <= group_name < len(self), "Group index does not exist."
 idx = group_name
 else:
 idx = list(self.keys()).index(group_name)

 if ids:
 self[group_name]._ids.update(ids)

 # update number of nodes
 max_id = np.max(self[group_name].ids)
 _update_max_id_and_size(self, max_id)
 self._groups[np.array(ids)] = idx

 if -1 not in list(self._groups):
 self._is_valid = True

 def _validity_check(self, name, group):
 # check pairwise disjoint property for groups
 for n, g in self.items():
 assert set(g.ids).isdisjoint(group.ids), \
 "New group overlaps with existing group '{}'".format(n)

Group and GroupProperty

[docs]class Group:

 """
 Class defining groups of nodes.

 .. versionadded: 2.2

 Its main variables are:

 :ivar ~nngt.Group.ids: :obj:`list` of :obj:`int`
 the ids of the nodes in this group.
 :ivar ~nngt.Group.properties: dict, optional (default: {})
 properties associated to the nodes
 :ivar ~nngt.Group.is_metagroup: :obj:`bool`
 whether the group is a meta-group or not.

 Note

 A :class:`Group` contains a set of nodes that are unique;
 the size of the group is the number of unique nodes contained in the group.
 Passing non-unique nodes will automatically convert them to a unique set.

 Warning

 Equality between :class:`~nngt.properties.Group`s only compares
 the size and ``properties`` attributes.
 This means that groups differing only by their ``ids`` will register as
 equal.
 """

 __num_created = 0

 def __new__(cls, *args, **kwargs):
 obj = super().__new__(cls)

 metagroup = \
 kwargs.get("metagroup", False) or issubclass(cls, MetaGroup)

 if metagroup:
 obj.__class__ = nngt.MetaGroup

 obj._metagroup = metagroup

 return obj

 def __init__(self, nodes=None, properties=None, name=None, **kwargs):
 '''
 Calling the class creates a group of nodes.
 The default is an empty group but it is not a valid object for
 most use cases.

 Parameters

 nodes : int or array-like, optional (default: None)
 Desired size of the group or, a posteriori, NNGT indices of the
 nodes in an existing graph.
 properties : dict, optional (default: {})
 Dictionary containing the properties associated to the nodes.

 Returns

 A new :class:`~nngt.Group` instance.
 '''
 self._props = {} if properties is None else properties.copy()

 if nodes is None:
 self._desired_size = None
 self._ids = set()
 elif nonstring_container(nodes):
 self._desired_size = None
 self._ids = set(nodes)
 elif is_integer(nodes):
 self._desired_size = nodes
 self._ids = set()
 else:
 raise InvalidArgument('`nodes` must be either array-like or int.')

 group_num = Group.__num_created + 1
 self._name = "Group {}".format(group_num) if name is None \
 else name

 # parents
 self._struct = None
 self._net = None

 Group.__num_created += 1

 def __eq__ (self, other):
 if isinstance(other, Group):
 same_size = self.size == other.size
 same_prop = (self.properties == other.properties)

 return same_size*same_prop

 return False

 def __len__(self):
 return len(self.ids)

 def __str__(self):
 return "Group({}size={})".format(
 self._name + ": " if self._name else "", self.size)

 def _repr_pretty_(self, p, cycle):
 return p.text(str(self))

[docs] def copy(self):
 '''
 Return a deep copy of the group.
 '''
 copy = Group(nodes=self._ids, properties=self._props, name=self._name)

 return copy

[docs] def add_nodes(self, nodes):
 '''
 Add nodes to the group.

 Parameters

 nodes : list of ids
 '''
 if not nonstring_container(nodes):
 raise ValueError("`nodes` must be a list of ids.")

 parent = self.parent

 if parent is not None:
 parent.add_to_group(self.name, nodes)
 else:
 self._ids.update(nodes)

 @property
 def name(self):
 return self._name

 @property
 def parent(self):
 '''
 Return the parent :class:`~nngt.Structure` of the group
 '''
 if self._struct is not None:
 return self._struct()

 return None

 @property
 def size(self):
 if self._desired_size is not None:
 return self._desired_size

 return len(self._ids)

 @property
 def ids(self):
 return list(self._ids)

 @ids.setter
 def ids(self, value):
 data = set(value)

 if self._desired_size is not None and self._desired_size != len(data):
 _log_message(logger, "WARNING",
 'The number of unique `ids` passed is not the same '
 'as the initial size that was declared: {} before '
 'vs {} now. Setting `ids` anyway, but check your '
 'code!'.format(self._desired_size, len(value)))
 self._ids = data
 self._desired_size = None

 @property
 @deprecated("2.2", reason="it is not useful", removal="3.0")
 def is_valid(self):
 '''
 Whether the group can be used in a structure: i.e. if it has
 either a size or some ids associated to it.
 '''
 return True

 @property
 def is_metagroup(self):
 return self._metagroup

 @property
 def properties(self):
 return self._props

[docs]class MetaGroup(Group):

 """
 Class defining a meta-group of nodes.

 Its main variables are:

 :ivar ~nngt.MetaGroup.ids: :obj:`list` of :obj:`int`
 the ids of the nodes in this group.
 """

 __num_created = 0

 def __init__(self, nodes=None, name=None, **kwargs):
 '''
 Calling the class creates a group of nodes.
 The default is an empty group but it is not a valid object for
 most use cases.

 Parameters

 nodes : int or array-like, optional (default: None)
 Desired size of the group or, a posteriori, NNGT indices of
 the nodes in an existing graph.
 name : str, optional (default: "Group N")
 Name of the meta-group.

 Returns

 A new :class:`~nngt.MetaGroup` object.
 '''
 group_num = MetaGroup.__num_created + 1
 name = "MetaGroup {}".format(group_num) if name is None \
 else name

 super().__init__(nodes=nodes, name=name, **kwargs)

 MetaGroup.__num_created += 1

 def __str__(self):
 return "MetaGroup({}size={})".format(
 self._name + ": " if self._name else "", self.size)

Tools

def _update_max_id_and_size(neural_pop, max_id):
 '''
 Update Structure after modification of a Group ids.
 '''
 old_max_id = neural_pop._max_id

 neural_pop._max_id = max(neural_pop._max_id, max_id)

 # update size
 neural_pop._size = 0

 for g in neural_pop.values():
 neural_pop._size += g.size

 # update the group node property
 if neural_pop._groups is None:
 neural_pop._groups = np.repeat(-1, neural_pop._max_id + 1)
 elif neural_pop._max_id >= len(neural_pop._groups):
 ngroup_tmp = np.repeat(-1, neural_pop._max_id + 1)
 ngroup_tmp[:old_max_id + 1] = neural_pop._groups
 neural_pop._groups = ngroup_tmp

 Source code for nngt.core.networks

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
networks.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Network and SpatialNetwork classes for neuroscience integration """

import numpy as np

import nngt
from nngt.lib import (InvalidArgument, nonstring_container, default_neuron,
 default_synapse)
from .graph import Graph
from .spatial_graph import SpatialGraph

Network

[docs]class Network(Graph):

 """
 The detailed class that inherits from :class:`~nngt.Graph` and implements
 additional properties to describe various biological functions
 and interact with the NEST simulator.
 """

 #---#
 # Class attributes and methods

 __num_networks = 0
 __max_id = 0

[docs] @classmethod
 def num_networks(cls):
 ''' Returns the number of alive instances. '''
 return cls.__num_networks

[docs] @classmethod
 def from_gids(cls, gids, get_connections=True, get_params=False,
 neuron_model=default_neuron, neuron_param=None,
 syn_model=default_synapse, syn_param=None, **kwargs):
 '''
 Generate a network from gids.

 Warning

 Unless `get_connections` and `get_params` is True, or if your
 population is homogeneous and you provide the required information, the
 information contained by the network and its `population` attribute
 will be erroneous!
 To prevent conflicts the :func:`~nngt.Network.to_nest` function is not
 available. If you know what you are doing, you should be able to find a
 workaround...

 Parameters

 gids : array-like
 Ids of the neurons in NEST or simply user specified ids.
 get_params : bool, optional (default: True)
 Whether the parameters should be obtained from NEST (can be very
 slow).
 neuron_model : string, optional (default: None)
 Name of the NEST neural model to use when simulating the activity.
 neuron_param : dict, optional (default: {})
 Dictionary containing the neural parameters; the default value will
 make NEST use the default parameters of the model.
 syn_model : string, optional (default: 'static_synapse')
 NEST synaptic model to use when simulating the activity.
 syn_param : dict, optional (default: {})
 Dictionary containing the synaptic parameters; the default value
 will make NEST use the default parameters of the model.

 Returns

 net : :class:`~nngt.Network` or subclass
 Uniform network of disconnected neurons.
 '''
 from nngt.lib.errors import not_implemented

 if neuron_param is None:
 neuron_param = {}
 if syn_param is None:
 syn_param = {}

 # create the population
 size = len(gids)
 nodes = [i for i in range(size)]

 group = nngt.NeuralGroup(
 nodes, neuron_type=1, neuron_model=neuron_model,
 neuron_param=neuron_param)

 pop = nngt.NeuralPop.from_groups([group])

 # create the network
 net = cls(population=pop, **kwargs)
 net.nest_gids = np.array(gids)
 net._id_from_nest_gid = {gid: i for i, gid in enumerate(gids)}
 net.to_nest = not_implemented

 if get_connections:
 from nngt.simulation import get_nest_adjacency
 converter = {gid: i for i, gid in enumerate(gids)}
 mat = get_nest_adjacency(converter)
 edges = np.array(mat.nonzero()).T
 w = mat.data
 net.new_edges(edges, {'weight': w}, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 if get_params:
 raise NotImplementedError('`get_params` not implemented yet.')

 return net

[docs] @classmethod
 def uniform(cls, size, neuron_model=default_neuron,
 neuron_param=None, syn_model=default_synapse,
 syn_param=None, **kwargs):
 '''
 Generate a network containing only one type of neurons.

 Parameters

 size : int
 Number of neurons in the network.
 neuron_model : string, optional (default: 'aief_cond_alpha')
 Name of the NEST neural model to use when simulating the activity.
 neuron_param : dict, optional (default: {})
 Dictionary containing the neural parameters; the default value will
 make NEST use the default parameters of the model.
 syn_model : string, optional (default: 'static_synapse')
 NEST synaptic model to use when simulating the activity.
 syn_param : dict, optional (default: {})
 Dictionary containing the synaptic parameters; the default value
 will make NEST use the default parameters of the model.

 Returns

 net : :class:`~nngt.Network` or subclass
 Uniform network of disconnected neurons.
 '''
 if neuron_param is None:
 neuron_param = {}

 if syn_param is None:
 syn_param = {}

 pop = nngt.NeuralPop.uniform(
 size, neuron_model=neuron_model, neuron_param=neuron_param,
 syn_model=syn_model, syn_param=syn_param, parent=None)

 net = cls(population=pop, **kwargs)

 return net

[docs] @classmethod
 def exc_and_inhib(cls, size, iratio=0.2, en_model=default_neuron,
 en_param=None, in_model=default_neuron, in_param=None,
 syn_spec=None, **kwargs):
 '''
 Generate a network containing a population of two neural groups:
 inhibitory and excitatory neurons.

 Parameters

 size : int
 Number of neurons in the network.
 i_ratio : double, optional (default: 0.2)
 Ratio of inhibitory neurons: :math:`\\frac{N_i}{N_e+N_i}`.
 en_model : string, optional (default: 'aeif_cond_alpha')
 Nest model for the excitatory neuron.
 en_param : dict, optional (default: {})
 Dictionary of parameters for the the excitatory neuron.
 in_model : string, optional (default: 'aeif_cond_alpha')
 Nest model for the inhibitory neuron.
 in_param : dict, optional (default: {})
 Dictionary of parameters for the the inhibitory neuron.
 syn_spec : dict, optional (default: static synapse)
 Dictionary containg a directed edge between groups as key and the
 associated synaptic parameters for the post-synaptic neurons (i.e.
 those of the second group) as value. If provided, all connections
 between groups will be set according to the values contained in
 `syn_spec`. Valid keys are:

 - `('excitatory', 'excitatory')`
 - `('excitatory', 'inhibitory')`
 - `('inhibitory', 'excitatory')`
 - `('inhibitory', 'inhibitory')`

 Returns

 net : :class:`~nngt.Network` or subclass
 Network of disconnected excitatory and inhibitory neurons.

 See also

 :func:`~nngt.NeuralPop.exc_and_inhib`
 '''
 pop = nngt.NeuralPop.exc_and_inhib(
 size, iratio, en_model, en_param, in_model, in_param,
 syn_spec=syn_spec)

 net = cls(population=pop, **kwargs)

 return net

 #---#
 # Constructor, destructor and attributes

 def __init__(self, name="Network", weighted=True, directed=True,
 from_graph=None, population=None, inh_weight_factor=1.,
 **kwargs):
 '''
 Initializes :class:`~nngt.Network` instance.

 Parameters

 nodes : int, optional (default: 0)
 Number of nodes in the graph.
 name : string, optional (default: "Graph")
 The name of this :class:`Graph` instance.
 weighted : bool, optional (default: True)
 Whether the graph edges have weight properties.
 directed : bool, optional (default: True)
 Whether the graph is directed or undirected.
 from_graph : :class:`~nngt.core.GraphObject`, optional (default: None)
 An optional :class:`~nngt.core.GraphObject` to serve as base.
 population : :class:`nngt.NeuralPop`, (default: None)
 An object containing the neural groups and their properties:
 model(s) to use in NEST to simulate the neurons as well as their
 parameters.
 inh_weight_factor : float, optional (default: 1.)
 Factor to apply to inhibitory synapses, to compensate for example
 the strength difference due to timescales between excitatory and
 inhibitory synapses.

 Returns

 self : :class:`~nggt.Network`
 '''
 self.__id = self.__class__.__max_id

 self.__class__.__num_networks += 1
 self.__class__.__max_id += 1

 assert directed, "Network class cannot be undirected."

 if population is None:
 raise InvalidArgument("Network needs a NeuralPop to be created")

 nodes = population.size

 if "nodes" in kwargs.keys():
 assert kwargs["nodes"] == nodes, "Incompatible values for " +\
 "`nodes` = {} with a `population` of size {}.".format(
 kwargs["nodes"], nodes)
 del kwargs["nodes"]

 if "delays" not in kwargs: # set default delay to 1.
 kwargs["delays"] = 1.

 super().__init__(nodes=nodes, name=name, weighted=weighted,
 directed=directed, from_graph=from_graph,
 inh_weight_factor=inh_weight_factor, **kwargs)

 self._init_bioproperties(population)

 if "shape" in kwargs or "positions" in kwargs:
 self.make_spatial(self, shape=kwargs.get("shape", None),
 positions=kwargs.get("positions", None))

 def __del__(self):
 super().__del__()
 self.__class__.__num_networks -= 1

 @property
 def population(self):
 '''
 :class:`~nngt.NeuralPop` that divides the neurons into groups with
 specific properties.
 '''
 return self._population

 @population.setter
 def population(self, population):
 if issubclass(population.__class__, nngt.NeuralPop):
 if self.node_nb() == population.size:
 if population.is_valid:
 self._population = population
 else:
 raise AttributeError("NeuralPop is not valid (not all "
 "neurons are associated to a group).")
 else:
 raise AttributeError("Network and NeuralPop must have same "
 "number of neurons.")
 else:
 raise AttributeError("Expecting NeuralPop but received "
 "'{}'".format(population.__class__.__name__))

 @property
 def nest_gids(self):
 return self._nest_gids

 @nest_gids.setter
 def nest_gids(self, gids):
 self._nest_gids = gids
 for group in self.population.values():
 group._nest_gids = gids[group.ids]

[docs] def get_edge_types(self):
 inhib_neurons = {}
 types = np.ones(self.edge_nb())

 for g in self._population.values():
 if g.neuron_type == -1:
 for n in g.ids:
 inhib_neurons[n] = None

 for i, e in enumerate(self.edges_array):
 if e[0] in inhib_neurons:
 types[i] = -1

 return types

[docs] def id_from_nest_gid(self, gids):
 '''
 Return the ids of the nodes in the :class:`nngt.Network` instance from
 the corresponding NEST gids.

 Parameters

 gids : int or tuple
 NEST gids.

 Returns

 ids : int or tuple
 Ids in the network. Same type as the requested `gids` type.
 '''
 if nonstring_container(gids):
 return np.array([self._id_from_nest_gid[gid] for gid in gids],
 dtype=int)
 else:
 return self._id_from_nest_gid[gids]

[docs] def to_nest(self, send_only=None, weights=True):
 '''
 Send the network to NEST.

 .. seealso::
 :func:`~nngt.simulation.make_nest_network` for parameters
 '''
 from nngt.simulation import make_nest_network
 if nngt._config['with_nest']:
 return make_nest_network(
 self, send_only=send_only, weights=weights)
 else:
 raise RuntimeError("NEST is not present.")

 #---#
 # Init tool

 def _init_bioproperties(self, population):
 ''' Set the population attribute and link each neuron to its group. '''
 self._population = None
 self._nest_gids = None
 self._id_from_nest_gid = None
 if not hasattr(self, '_iwf'):
 self._iwf = 1.
 if issubclass(population.__class__, nngt.NeuralPop):
 if population.is_valid or not self.node_nb():
 self._population = population
 nodes = population.size
 # create the delay attribute if necessary
 if "delay" not in self.edge_attributes:
 self.set_delays()
 else:
 raise AttributeError("NeuralPop is not valid (not all neurons "
 "are associated to a group).")
 else:
 raise AttributeError("Expected NeuralPop but received "
 "{}".format(pop.__class__.__name__))

 #---#
 # Setter

[docs] def set_types(self, edge_type, nodes=None, fraction=None):
 raise NotImplementedError("Cannot be used on :class:`~nngt.Network`.")

[docs] def get_neuron_type(self, neuron_ids):
 '''
 Return the type of the neurons (+1 for excitatory, -1 for inhibitory).

 Parameters

 neuron_ids : int or tuple
 NEST gids.

 Returns

 ids : int or tuple
 Ids in the network. Same type as the requested `gids` type.
 '''
 if is_integer(neuron_ids):
 group_name = self._population._neuron_group[neuron_ids]
 neuron_type = self._population[group_name].neuron_type
 return neuron_type
 else:
 groups = (self._population._neuron_group[i] for i in neuron_ids)
 types = tuple(self._population[gn].neuron_type for gn in groups)
 return types

 #---#
 # Getter

[docs] def neuron_properties(self, idx_neuron):
 '''
 Properties of a neuron in the graph.

 Parameters

 idx_neuron : int
 Index of a neuron in the graph.

 Returns

 dict of the neuron's properties.
 '''
 group_name = self._population._neuron_group[idx_neuron]
 return self._population[group_name].properties()

SpatialNetwork

[docs]class SpatialNetwork(Network, SpatialGraph):

 """
 Class that inherits from :class:`~nngt.Network` and
 :class:`~nngt.SpatialGraph` to provide a detailed description of a real
 neural network in space, i.e. with positions and biological properties to
 interact with NEST.
 """

 #---#
 # Class attributes

 __num_networks = 0
 __max_id = 0

 #---#
 # Constructor, destructor, and attributes

 def __init__(self, population, name="SpatialNetwork", weighted=True,
 directed=True, shape=None, from_graph=None, positions=None,
 **kwargs):
 '''
 Initialize SpatialNetwork instance

 Parameters

 name : string, optional (default: "Graph")
 The name of this :class:`Graph` instance.
 weighted : bool, optional (default: True)
 Whether the graph edges have weight properties.
 directed : bool, optional (default: True)
 Whether the graph is directed or undirected.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment (None leads to a square of side
 1 cm)
 positions : :class:`numpy.array`, optional (default: None)
 Positions of the neurons; if not specified and `nodes` != 0, then
 neurons will be reparted at random inside the
 :class:`~nngt.geometry.Shape` object of the instance.
 population : class:`~nngt.NeuralPop`, optional (default: None)
 Population from which the network will be built.

 Returns

 self : :class:`~nngt.SpatialNetwork`
 '''
 self.__id = self.__class__.__max_id
 self.__class__.__num_networks += 1
 self.__class__.__max_id += 1

 if population is None:
 raise InvalidArgument("Network needs a NeuralPop to be created")

 nodes = population.size

 super().__init__(
 nodes=nodes, name=name, weighted=weighted, directed=directed,
 shape=shape, positions=positions, population=population,
 from_graph=from_graph, **kwargs)

 def __del__ (self):
 super().__del__()
 self.__class__.__num_networks -= 1

 #---#
 # Setter

[docs] def set_types(self, syn_type, nodes=None, fraction=None):
 raise NotImplementedError("Cannot be used on "
 ":class:`~nngt.SpatialNetwork`.")

 Source code for nngt.core.neural_pop_group

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Graph data strctures in NNGT """

import logging
import weakref
from copy import deepcopy

import numpy as np

import nngt
from nngt.lib import (InvalidArgument, nonstring_container, is_integer,
 default_neuron, default_synapse)
from nngt.lib._frozendict import _frozendict
from nngt.lib.logger import _log_message

from .group_structure import Structure, Group, MetaGroup

__all__ = [
 'GroupProperty',
 'MetaNeuralGroup',
 'NeuralGroup',
 'NeuralPop',
]

logger = logging.getLogger(__name__)

NeuralPop

[docs]class NeuralPop(Structure):

 """
 The basic class that contains groups of neurons and their properties.

 :ivar has_models: :obj:`bool`,
 ``True`` if every group has a ``model`` attribute.
 :ivar ~nngt.NeuralPop.size: :obj:`int`,
 Returns the number of neurons in the population.
 :ivar syn_spec: :obj:`dict`,
 Dictionary containing informations about the synapses between the
 different groups in the population.
 :ivar ~nngt.NeuralPop.is_valid: :obj:`bool`,
 Whether this population can be used to create a network in NEST.
 """

 # number of created populations
 __num_created = 0

 # store weakrefs to created populations
 __pops = weakref.WeakValueDictionary()

 #---#
 # Class attributes and methods

[docs] @classmethod
 def from_network(cls, graph, *args):
 '''
 Make a NeuralPop object from a network. The groups of neurons are
 determined using instructions from an arbitrary number of
 :class:`~nngt.properties.GroupProperties`.
 '''
 return cls(parent=graph, graph=graph, group_prop=args)

[docs] @classmethod
 def from_groups(cls, groups, names=None, syn_spec=None, parent=None,
 meta_groups=None, with_models=True):
 '''
 Make a NeuralPop object from a (list of) :class:`~nngt.NeuralGroup`
 object(s).

 Parameters

 groups : list of :class:`~nngt.NeuralGroup` objects
 Groups that will be used to form the population. Note that a given
 neuron can only belong to a single group, so the groups should form
 pairwise disjoints complementary sets.
 names : list of str, optional (default: None)
 Names that can be used as keys to retreive a specific group. If not
 provided, keys will be the group name (if not empty) or the position
 of the group in `groups`, stored as a string.
 In the latter case, the first group in a population named `pop`
 will be retreived by either `pop[0]` or `pop['0']`.
 parent : :class:`~nngt.Graph`, optional (default: None)
 Parent if the population is created from an exiting graph.
 syn_spec : dict, optional (default: static synapse)
 Dictionary containg a directed edge between groups as key and the
 associated synaptic parameters for the post-synaptic neurons (i.e.
 those of the second group) as value.
 If a 'default' entry is provided, all unspecified connections will
 be set to its value.
 meta_groups : list or dict of str/:class:`~nngt.NeuralGroup` items
 Additional set of groups which can overlap: a neuron can belong to
 several different meta groups. Contrary to the primary groups, meta
 groups do therefore no need to be disjoint.
 If all meta-groups have a name, they can be passed directly through
 a list; otherwise a dict is necessary.
 with_model : bool, optional (default: True)
 Whether the groups require models (set to False to use populations
 for graph theoretical purposes, without NEST interaction)

 Example

 For synaptic properties, if provided in `syn_spec`, all connections
 between groups will be set according to the values.
 Keys can be either group names or types (1 for excitatory, -1 for
 inhibitory). Because of this, several combination can be available for
 the connections between two groups. Because of this, priority is given
 to source (presynaptic properties), i.e. NNGT will look for the entry
 matching the first group name as source before looking for entries
 matching the second group name as target.

 .. code-block:: python

 # we created groups `g1`, `g2`, and `g3`
 prop = {
 ('g1', 'g2'): {'model': 'tsodyks2_synapse', 'tau_fac': 50.},
 ('g1', g3'): {'weight': 100.},
 ...
 }
 pop = NeuronalPop.from_groups(
 [g1, g2, g3], names=['g1', 'g2', 'g3'], syn_spec=prop)

 Note

 If the population is not generated from an existing
 :class:`~nngt.Graph` and the groups do not contain explicit ids, then
 the ids will be generated upon population creation: the first group, of
 size N0, will be associated the indices 0 to N0 - 1, the second group
 (size N1), will get N0 to N0 + N1 - 1, etc.
 '''
 if not nonstring_container(groups):
 groups = [groups]

 gsize = len(groups)
 names = [] if names is None else list(names)

 if not names:
 for i, g in enumerate(groups):
 if g.name:
 names.append(g.name)
 else:
 names.append(str(i))

 assert len(names) == gsize, "`names` and `groups` must have " +\
 "the same size."

 for n in names:
 assert isinstance(n, str), "Group names must be strings."

 if syn_spec:
 _check_syn_spec(syn_spec, names, groups)

 current_size = 0
 for g in groups:
 # generate the neuron ids if necessary
 ids = g.ids
 if len(ids) == 0:
 ids = list(range(current_size, current_size + g.size))
 g.ids = ids
 current_size += len(ids)

 pop = cls(current_size, parent=parent, meta_groups=meta_groups,
 with_models=with_models)

 for name, g in zip(names, groups):
 pop[name] = g
 g._struct = weakref.ref(pop)
 g._net = weakref.ref(parent) if parent is not None else None

 # take care of synaptic connections
 pop._syn_spec = deepcopy(syn_spec if syn_spec is not None else {})

 return pop

[docs] @classmethod
 def uniform(cls, size, neuron_type=1, neuron_model=default_neuron,
 neuron_param=None, syn_model=default_synapse, syn_param=None,
 parent=None, meta_groups=None):
 '''
 Make a NeuralPop of identical neurons belonging to a single "default"
 group.

 .. versionchanged:: 1.2
 Added `neuron_type` and `meta_groups` parameters

 Parameters

 size : int
 Number of neurons in the population.
 neuron_type : int, optional (default: 1)
 Type of the neurons in the population: 1 for excitatory or -1 for
 inhibitory.
 neuron_model : str, optional (default: default neuron model)
 Neuronal model for the simulator.
 neuron_param : dict, optional (default: default neuron parameters)
 Parameters associated to `neuron_model`.
 syn_model : str, optional (default: default static synapse)
 Synapse model for the simulator.
 syn_param : dict, optional (default: default synaptic parameters)
 Parameters associated to `syn_model`.
 parent : :class:`~nngt.Graph` object, optional (default: None)
 Parent graph described by the population.
 meta_groups : list or dict of str/:class:`~nngt.NeuralGroup` items
 Set of groups which can overlap: a neuron can belong to
 several different meta groups, i.e. they do no need to be disjoint.
 If all meta-groups have a name, they can be passed directly through
 a list; otherwise a dict is necessary.
 '''
 neuron_param = {} if neuron_param is None else neuron_param.copy()

 if syn_param is not None:
 assert 'weight' not in syn_param, '`weight` cannot be set here.'
 assert 'delay' not in syn_param, '`delay` cannot be set here.'
 syn_param = syn_param.copy()
 else:
 syn_param = {}

 pop = cls(size, parent, meta_groups=meta_groups)
 pop.create_group(range(size), "default", neuron_type, neuron_model,
 neuron_param)

 pop._syn_spec = {'model': syn_model}

 if syn_param is not None:
 pop._syn_spec.update(syn_param)

 return pop

[docs] @classmethod
 def exc_and_inhib(cls, size, iratio=0.2, en_model=default_neuron,
 en_param=None, in_model=default_neuron, in_param=None,
 syn_spec=None, parent=None, meta_groups=None):
 '''
 Make a NeuralPop with a given ratio of inhibitory and excitatory
 neurons.

 .. versionchanged:: 0.8
 Added `syn_spec` parameter.

 .. versionchanged:: 1.2
 Added `meta_groups` parameter

 Parameters

 size : int
 Number of neurons contained by the population.
 iratio : float, optional (default: 0.2)
 Fraction of the neurons that will be inhibitory.
 en_model : str, optional (default: default_neuron)
 Name of the NEST model that will be used to describe excitatory
 neurons.
 en_param : dict, optional (default: default NEST parameters)
 Parameters of the excitatory neuron model.
 in_model : str, optional (default: default_neuron)
 Name of the NEST model that will be used to describe inhibitory
 neurons.
 in_param : dict, optional (default: default NEST parameters)
 Parameters of the inhibitory neuron model.
 syn_spec : dict, optional (default: static synapse)
 Dictionary containg a directed edge between groups as key and the
 associated synaptic parameters for the post-synaptic neurons (i.e.
 those of the second group) as value. If provided, all connections
 between groups will be set according to the values contained in
 `syn_spec`. Valid keys are:
 - `('excitatory', 'excitatory')`
 - `('excitatory', 'inhibitory')`
 - `('inhibitory', 'excitatory')`
 - `('inhibitory', 'inhibitory')`
 parent : :class:`~nngt.Network`, optional (default: None)
 Network associated to this population.
 meta_groups : list dict of str/:class:`~nngt.NeuralGroup` items
 Additional set of groups which can overlap: a neuron can belong to
 several different meta groups. Contrary to the primary 'excitatory'
 and 'inhibitory' groups, meta groups are therefore no necessarily
 disjoint.
 If all meta-groups have a name, they can be passed directly through
 a list; otherwise a dict is necessary.

 See also

 :func:`nest.Connect` for a description of the dict that can be passed
 as values for the `syn_spec` parameter.
 '''
 num_exc_neurons = int(size*(1-iratio))

 pop = cls(size, parent, meta_groups=meta_groups)

 pop.create_group(
 range(num_exc_neurons), "excitatory", neuron_type=1,
 neuron_model=en_model, neuron_param=en_param)
 pop.create_group(
 range(num_exc_neurons, size), "inhibitory", neuron_type=-1,
 neuron_model=in_model, neuron_param=in_param)

 if syn_spec:
 _check_syn_spec(
 syn_spec, ["excitatory", "inhibitory"], pop.values())
 pop._syn_spec = deepcopy(syn_spec)
 else:
 pop._syn_spec = {}

 return pop

 @classmethod
 def _nest_reset(cls):
 '''
 Reset the _to_nest bool and potential parent networks.
 '''
 for pop in cls.__pops.valuerefs():
 if pop() is not None:
 pop()._to_nest = False
 for g in pop().values():
 g._to_nest = False
 if pop().parent is not None:
 pop().parent._nest_gids = None

 #---#
 # Contructor and instance attributes

 def __init__(self, size=None, parent=None, meta_groups=None,
 with_models=True, **kwargs):
 '''
 Initialize NeuralPop instance.

 Parameters

 size : int, optional (default: 0)
 Number of neurons that the population will contain.
 parent : :class:`~nngt.Network`, optional (default: None)
 Network associated to this population.
 meta_groups : dict of str/:class:`~nngt.NeuralGroup` items
 Optional set of groups. Contrary to the primary groups which
 define the population and must be disjoint, meta groups can
 overlap: a neuron can belong to several different meta
 groups.
 with_models : :class:`bool`
 whether the population's groups contain models to use in NEST
 *args : items for OrderedDict parent
 **kwargs : :obj:`dict`

 Returns

 pop : :class:`~nngt.NeuralPop` object.
 '''
 super().__init__(size=size, parent=parent, meta_groups=meta_groups,
 **kwargs)

 self._syn_spec = {}
 self._has_models = with_models

 # whether the network this population represents was sent to NEST
 self._to_nest = False

 # update class properties
 self.__id = self.__class__.__num_created
 self.__class__.__num_created += 1
 self.__class__.__pops[self.__id] = self

 def __reduce__(self):
 '''
 Overwrite this function to make NeuralPop pickable.
 OrderedDict.__reduce__ returns a 3 to 5 tuple:
 - the first is the class
 - the second is the init args in Py2, empty sequence in Py3
 - the third can be used to store attributes
 - the fourth is None and needs to stay None
 - the last must be kept unchanged: odict_iterator in Py3
 '''
 state = super().__reduce__()
 newstate = (
 NeuralPop, state[1][:3] + (self._has_models,) + state[1][3:],
 state[2], state[3], state[4]
)

 return newstate

 def __setitem__(self, key, value):
 if self._to_nest:
 raise RuntimeError("Populations items can no longer be modified "
 "once the network has been sent to NEST!")
 super().__setitem__(key, value)

[docs] def copy(self):
 '''
 Return a deep copy of the population.
 '''
 # copy groups and metagroups
 groups = {k: v.copy() for k, v in self.items()}
 metagroups = {k: v.copy() for k, v in self._meta_groups.items()}

 # generate new population
 copy = NeuralPop.from_groups(
 groups.values(), groups.keys(), syn_spec=self._syn_spec,
 parent=None, meta_groups=metagroups, with_models=self._has_models)

 return copy

 @property
 def nest_gids(self):
 '''
 Return the NEST gids of the nodes inside the population.

 .. versionadded:: 1.3
 '''
 gids = []

 for g in self.values():
 gids.extend(g.nest_gids)

 return gids

 @property
 def excitatory(self):
 '''
 Return the ids of all excitatory nodes inside the population.

 .. versionadded:: 1.3
 '''
 ids = []

 for g in self.values():
 if g.neuron_type == 1:
 ids.extend(g.ids)

 return ids

 @property
 def inhibitory(self):
 '''
 Return the ids of all inhibitory nodes inside the population.

 .. versionadded:: 1.3
 '''
 ids = []

 for g in self.values():
 if g.neuron_type == -1:
 ids.extend(g.ids)

 return ids

 @property
 def syn_spec(self):
 '''
 The properties of the synaptic connections between groups.
 Returns a :obj:`dict` containing tuples as keys and dicts of parameters
 as values.

 The keys are tuples containing the names of the groups in the
 population, with the projecting group first (presynaptic neurons) and
 the receiving group last (post-synaptic neurons).

 Example

 For a population of excitatory ("exc") and inhibitory ("inh") neurons.

 .. code-block:: python

 syn_spec = {
 ("exc", "exc"): {'model': 'stdp_synapse', 'weight': 2.5},
 ("exc", "inh"): {'model': 'static_synapse'},
 ("exc", "inh"): {'model': 'stdp_synapse', 'delay': 5.},
 ("inh", "inh"): {
 'model': 'stdp_synapse', 'weight': 5.,
 'delay': ('normal', 5., 2.)}
 }
 }

 .. versionadded:: 0.8
 '''
 return deepcopy(self._syn_spec)

 @syn_spec.setter
 def syn_spec(self, syn_spec):
 raise NotImplementedError('`syn_spec` is not settable yet.')

 @property
 def has_models(self):
 return self._has_models

 #---#
 # Methods

[docs] def create_group(self, neurons, name, neuron_type=1, neuron_model=None,
 neuron_param=None, replace=False):
 '''
 Create a new group in the population.

 Parameters

 neurons : int or array-like
 Desired number of neurons or list of the neurons indices.
 name : str
 Name of the group.
 neuron_type : int, optional (default: 1)
 Type of the neurons : 1 for excitatory, -1 for inhibitory.
 neuron_model : str, optional (default: None)
 Name of a neuron model in NEST.
 neuron_param : dict, optional (default: None)
 Parameters for `neuron_model` in the NEST simulator. If None,
 default parameters will be used.
 replace : bool, optional (default: False)
 Whether to override previous exiting meta group with same name.
 '''
 assert isinstance(name, str), "Group `name` must be a string."
 assert neuron_type in (-1, 1), "Valid neuron type must be -1 or 1."

 if self._to_nest:
 raise RuntimeError("Groups can no longer be created once the "
 "network has been sent to NEST!")

 if name in self and not replace:
 raise KeyError("Group with name '" + name + "' already " +\
 "exists. Use `replace=True` to overwrite it.")

 neuron_param = {} if neuron_param is None else neuron_param.copy()

 group = NeuralGroup(neurons, neuron_type=neuron_type,
 neuron_model=neuron_model,
 neuron_param=neuron_param, name=name)

 self[name] = group

[docs] def create_meta_group(self, neurons, name, neuron_param=None,
 replace=False):
 '''
 Create a new meta group and add it to the population.

 Parameters

 neurons : int or array-like
 Desired number of neurons or list of the neurons indices.
 name : str
 Name of the group.
 neuron_type : int, optional (default: 1)
 Type of the neurons : 1 for excitatory, -1 for inhibitory.
 neuron_model : str, optional (default: None)
 Name of a neuron model in NEST.
 neuron_param : dict, optional (default: None)
 Parameters for `neuron_model` in the NEST simulator. If None,
 default parameters will be used.
 replace : bool, optional (default: False)
 Whether to override previous exiting meta group with same name.
 '''
 neuron_param = {} if neuron_param is None else neuron_param.copy()

 group = MetaNeuralGroup(neurons, name=name, neuron_param=neuron_param)

 self.add_meta_group(group, replace=replace)

 return group

[docs] def set_model(self, model, group=None):
 '''
 Set the groups' models.

 Parameters

 model : dict
 Dictionary containing the model type as key ("neuron" or "synapse")
 and the model name as value (e.g. {"neuron": "iaf_neuron"}).
 group : list of strings, optional (default: None)
 List of strings containing the names of the groups which models
 should be updated.

 Note

 By default, synapses are registered as "static_synapse"s in NEST;
 because of this, only the ``neuron_model`` attribute is checked by
 the ``has_models`` function: it will answer ``True`` if all groups
 have a 'non-None' ``neuron_model`` attribute.

 Warning

 No check is performed on the validity of the models, which means
 that errors will only be detected when building the graph in NEST.
 '''
 if self._to_nest:
 raise RuntimeError("Models cannot be changed after the network "
 "has been sent to NEST!")
 if group is None:
 group = self.keys()
 try:
 for key, val in model.items():
 for name in group:
 if key == "neuron":
 self[name].neuron_model = val
 elif key == "synapse":
 self[name].syn_model = val
 else:
 raise ValueError(
 "Model type {} is not valid; choose among 'neuron'"
 " or 'synapse'.".format(key))
 except:
 if model is not None:
 raise InvalidArgument(
 "Invalid model dict or group; see docstring.")

 b_has_models = True

 if model is None:
 b_has_models = False

 for group in self.values():
 b_has_models *= group.has_model

 self._has_models = b_has_models

[docs] def set_neuron_param(self, params, neurons=None, group=None):
 '''
 Set the parameters of specific neurons or of a whole group.

 .. versionadded:: 1.0

 Parameters

 params : dict
 Dictionary containing parameters for the neurons. Entries can be
 either a single number (same for all neurons) or a list (one entry
 per neuron).
 neurons : list of ints, optional (default: None)
 Ids of the neurons whose parameters should be modified.
 group : list of strings, optional (default: None)
 List of strings containing the names of the groups whose parameters
 should be updated. When modifying neurons from a single group, it
 is still usefull to specify the group name to speed up the pace.

 Note

 If both `neurons` and `group` are None, all neurons will be modified.

 Warning

 No check is performed on the validity of the parameters, which means
 that errors will only be detected when building the graph in NEST.
 '''
 if self._to_nest:
 raise RuntimeError("Parameters cannot be changed after the "
 "network has been sent to NEST!")

 if neurons is not None: # specific neuron ids
 groups = []
 # get the groups they could belong to
 if group is not None:
 if nonstring_container(group):
 groups.extend((self[g] for g in group))
 else:
 groups.append(self[group])
 else:
 groups.extend(self.values())
 # update the groups parameters
 for g in groups:
 idx = np.where(np.in1d(g.ids, neurons, assume_unique=True))[0]
 # set the properties of the nodes for each entry in params
 for k, v in params.items():
 default = np.NaN
 if k in g.neuron_param:
 default = g.neuron_param[k]
 elif nngt.get_config('with_nest'):
 try:
 import nest
 try:
 default = nest.GetDefaults(g.neuron_model, k)
 except nest.NESTError:
 pass
 except ImportError:
 pass
 vv = np.repeat(default, g.size)
 vv[idx] = v
 # update
 g.neuron_param[k] = vv
 else: # all neurons in one or several groups
 group = self.keys() if group is None else group
 if not nonstring_container(group):
 group = [group]
 start = 0
 for name in group:
 g = self[name]
 for k, v in params.items():
 if nonstring_container(v):
 g.neuron_param[k] = v[start:start+g.size]
 else:
 g.neuron_param[k] = v
 start += g.size

[docs] def get_param(self, groups=None, neurons=None, element="neuron"):
 '''
 Return the `element` (neuron or synapse) parameters for neurons or
 groups of neurons in the population.

 Parameters

 groups : ``str``, ``int`` or array-like, optional (default: ``None``)
 Names or numbers of the groups for which the neural properties
 should be returned.
 neurons : int or array-like, optional (default: ``None``)
 IDs of the neurons for which parameters should be returned.
 element : ``list`` of ``str``, optional (default: ``"neuron"``)
 Element for which the parameters should be returned (either
 ``"neuron"`` or ``"synapse"``).

 Returns

 param : ``list``
 List of all dictionaries with the elements' parameters.
 '''
 if neurons is not None:
 groups = self._neuron_group[neurons]
 elif groups is None:
 groups = tuple(self.keys())
 key = "neuron_param" if element == "neuron" else "syn_param"
 if isinstance(groups, (str, int, np.integer)):
 return self[groups].properties[key]
 else:
 param = []
 for group in groups:
 param.append(self[group].properties[key])
 return param

[docs] def add_to_group(self, group_name, ids):
 '''
 Add neurons to a specific group.

 Parameters

 group_name : str or int
 Name or index of the group.
 ids : list or 1D-array
 Neuron ids.
 '''
 if self._to_nest:
 raise RuntimeError("Groups cannot be changed after the "
 "network has been sent to NEST!")
 super().add_to_group(group_name, ids)

 def _validity_check(self, name, group):
 if self._has_models and not group.has_model:
 raise AttributeError(
 "This NeuralPop requires group to have a model attribute that "
 "is not `None`; to disable this, use `set_model(None)` "
 "method on this NeuralPop instance or set `with_models` to "
 "False when creating it.")
 elif group.has_model and not self._has_models:
 _log_message(logger, "WARNING",
 "This NeuralPop is not set to take models into "
 "account; use the `set_model` method to change its "
 "behaviour.")

 if group.neuron_type not in (-1, 1):
 raise AttributeError("Valid neuron type must be -1 or 1.")

 # check pairwise disjoint
 super()._validity_check(name, group)

 def _sent_to_nest(self):
 '''
 Signify to the population and its groups that the network was sent
 to NEST and that therefore properties and groups should no longer
 be modified.
 '''
 self._to_nest = True

 for g in self.values():
 g._to_nest = True

NeuralGroup and GroupProperty

[docs]class NeuralGroup(Group):

 """
 Class defining groups of neurons.

 Its main variables are:

 :ivar ~nngt.NeuralGroup.ids: :obj:`list` of :obj:`int`
 the ids of the neurons in this group.
 :ivar ~nngt.NeuralGroup.neuron_type: :obj:`int`
 the default is ``1`` for excitatory neurons; ``-1`` is for inhibitory
 neurons; meta-groups must have `neuron_type` set to ``None``
 :ivar ~nngt.NeuralGroup.neuron_model: str, optional (default: None)
 the name of the model to use when simulating the activity of this group
 :ivar ~nngt.NeuralGroup.neuron_param: dict, optional (default: {})
 the parameters to use (if they differ from the model's defaults)
 :ivar ~nngt.NeuralGroup.is_metagroup: :obj:`bool`
 whether the group is a meta-group or not (`neuron_type` is ``None``
 for meta-groups)

 Warning

 Equality between :class:`~nngt.properties.NeuralGroup`s only compares
 the size and neuronal type, ``model`` and ``param`` attributes.
 This means that groups differing only by their ``ids`` will register as
 equal.
 """

 __num_created = 0

 def __new__(cls, *args, **kwargs):
 # check neuron type for MetaGroup
 neuron_type = None

 if "neuron_type" in kwargs:
 neuron_type = kwargs["neuron_type"]
 elif len(args) > 1 and is_integer(args[1]):
 neuron_type = arg[1]

 metagroup = (neuron_type is None)

 kwargs["metagroup"] = metagroup

 obj = super().__new__(cls, *args, **kwargs)

 if metagroup:
 obj.__class__ = nngt.MetaNeuralGroup

 return obj

 def __init__(self, nodes=None, neuron_type=1, neuron_model=None,
 neuron_param=None, name=None, **kwargs):
 '''
 Calling the class creates a group of neurons.
 The default is an empty group but it is not a valid object for
 most use cases.

 Parameters

 nodes : int or array-like, optional (default: None)
 Desired size of the group or, a posteriori, NNGT indices of the
 neurons in an existing graph.
 neuron_type : int, optional (default: 1)
 Type of the neurons (1 for excitatory, -1 for inhibitory) or None
 if not relevant (only allowed for metag roups).
 neuron_model : str, optional (default: None)
 NEST model for the neuron.
 neuron_param : dict, optional (default: model defaults)
 Dictionary containing the parameters associated to the NEST model.

 Returns

 A new :class:`~nngt.core.NeuralGroup` instance.
 '''
 super().__init__(nodes, **kwargs)

 assert neuron_type in (1, -1, None), \
 "`neuron_type` can either be 1 or -1."

 neuron_param = {} if neuron_param is None else neuron_param.copy()

 self._has_model = False if neuron_model is None else True
 self._neuron_model = neuron_model

 group_num = NeuralGroup.__num_created + 1
 self._name = "Group {}".format(group_num) if name is None \
 else name

 self._nest_gids = None
 self._neuron_param = neuron_param if self._has_model else {}
 self._neuron_type = neuron_type

 # whether the network this group belongs to was sent to NEST
 self._to_nest = False

 # parents
 self._struct = None
 self._net = None

 NeuralGroup.__num_created += 1

 def __eq__ (self, other):
 if isinstance(other, NeuralGroup):
 same_size = self.size == other.size
 same_nmodel = ((self.neuron_model == other.neuron_model)
 * (self.neuron_param == other.neuron_param))
 same_type = self.neuron_type == other.neuron_type

 return same_size*same_nmodel*same_type

 return False

 def __str__(self):
 return "NeuralGroup({}size={})".format(
 self._name + ": " if self._name else "", self.size)

 def _repr_pretty_(self, p, cycle):
 return p.text(str(self))

[docs] def copy(self):
 '''
 Return a deep copy of the group.
 '''
 copy = NeuralGroup(nodes=self._ids, neuron_type=self._neuron_type,
 neuron_model=self._neuron_model,
 neuron_param=self._neuron_param, name=self._name)

 return copy

 @property
 def neuron_model(self):
 return self._neuron_model

 @property
 def neuron_type(self):
 return self._neuron_type

 @neuron_model.setter
 def neuron_model(self, value):
 if self._to_nest:
 raise RuntimeError("Models cannot be changed after the "
 "network has been sent to NEST!")
 self._neuron_model = value
 self._has_model = False if value is None else True

 @property
 def neuron_param(self):
 if self._to_nest:
 return _frozendict(self._neuron_param, message="Cannot set " +
 "neuron params after the network has been " +
 "sent to NEST!")
 else:
 return self._neuron_param

 @neuron_param.setter
 def neuron_param(self, value):
 if self._to_nest:
 raise RuntimeError("Parameters cannot be changed after the "
 "network has been sent to NEST!")
 self._neuron_param = value

 @Group.ids.setter
 def ids(self, value):
 if self._to_nest:
 raise RuntimeError("Ids cannot be changed after the "
 "network has been sent to NEST!")

 self._ids = value

 @property
 def nest_gids(self):
 return self._nest_gids

 @property
 def has_model(self):
 return self._has_model

 @property
 def properties(self):
 dic = {
 "neuron_type": self.neuron_type,
 "neuron_model": self._neuron_model,
 "neuron_param": deepcopy(self._neuron_param)
 }
 return dic

[docs]class MetaNeuralGroup(MetaGroup, NeuralGroup):

 """
 Class defining a meta-group of neurons.

 Its main variables are:

 :ivar ~nngt.MetaGroup.ids: :obj:`list` of :obj:`int`
 the ids of the neurons in this group.
 :ivar ~nngt.MetaGroup.is_metagroup: :obj:`bool`
 whether the group is a meta-group or not (`neuron_type` is
 ``None`` for meta-groups)
 """

 def __init__(self, nodes=None, name=None, properties=None, **kwargs):
 '''
 Calling the class creates a group of neurons.
 The default is an empty group but it is not a valid object for
 most use cases.

 Parameters

 nodes : int or array-like, optional (default: None)
 Desired size of the group or, a posteriori, NNGT indices of
 the neurons in an existing graph.
 name : str, optional (default: "Group N")
 Name of the meta-group.

 Returns

 A new :class:`~nngt.MetaNeuralGroup` object.
 '''
 kwargs["neuron_type"] = kwargs.get("neuron_type",None)

 super().__init__(nodes=nodes, name=name, properties=properties,
 **kwargs)

 def __str__(self):
 return "MetaNeuralGroup({}size={})".format(
 self._name + ": " if self._name else "", self.size)

 @property
 def excitatory(self):
 '''
 Return the ids of all excitatory nodes inside the meta-group.
 '''
 if self.parent is not None:
 gtype = np.array(
 [g.neuron_type for g in self.parent.values()],
 dtype=int)

 ids = np.array(self.ids, dtype=int)

 parents = self.parent.get_group(ids, numbers=True)

 return ids[gtype[parents] == 1]

 return []

 @property
 def inhibitory(self):
 '''
 Return the ids of all inhibitory nodes inside the meta-group.
 '''
 if self.parent is not None:
 gtype = np.array(
 [g.neuron_type for g in self.parent.values()],
 dtype=int)

 ids = np.array(self.ids, dtype=int)

 parents = self.parent.get_group(ids, numbers=True)

 return ids[gtype[parents] == -1]

 return []

 @property
 def properties(self):
 return self._prop

[docs]class GroupProperty:

 """
 Class defining the properties needed to create groups of neurons from an
 existing :class:`~nngt.Graph` or one of its subclasses.

 :ivar ~nngt.GroupProperty.size: :obj:`int`
 Size of the group.
 :ivar constraints: :obj:`dict`, optional (default: {})
 Constraints to respect when building the
 :class:`~nngt.properties.NeuralGroup` .
 :ivar ~nngt.GroupProperty.neuron_model: str, optional (default: None)
 name of the model to use when simulating the activity of this group.
 :ivar ~nngt.GroupProperty.neuron_param: dict, optional (default: {})
 the parameters to use (if they differ from the model's defaults)
 """

 def __init__ (self, size, constraints={}, neuron_model=None,
 neuron_param={}, syn_model=None, syn_param={}):
 '''
 Create a new instance of GroupProperties.

 Notes

 The constraints can be chosen among:
 - "avg_deg", "min_deg", "max_deg" (:class:`int`) to constrain the
 total degree of the nodes
 - "avg/min/max_in_deg", "avg/min/max_out_deg", to work with the
 in/out-degrees
 - "avg/min/max_betw" (:class:`double`) to constrain the betweenness
 centrality
 - "in_shape" (:class:`nngt.geometry.Shape`) to chose neurons inside
 a given spatial region

 Examples

 >>> di_constrain = { "avg_deg": 10, "min_betw": 0.001 }
 >>> group_prop = GroupProperties(200, constraints=di_constrain)
 '''
 self.size = size
 self.constraints = constraints
 self.neuron_model = neuron_model
 self.neuron_param = neuron_param
 self.syn_model = syn_model
 self.syn_param = syn_param

def _make_groups(graph, group_prop):
 '''
 Divide `graph` into groups using `group_prop`, a list of group properties
 @todo
 '''
 pass

Tools

def _check_syn_spec(syn_spec, group_names, groups):
 gsize = len(groups)
 # test if all types syn_spec are contained
 alltypes = set(((1, 1), (1, -1), (-1, 1), (-1, -1))).issubset(
 syn_spec.keys())
 # is there more than 1 type?
 types = list(set(g.neuron_type for g in groups))
 mt_type = len(types) > 1
 # check that only allowed entries are present
 edge_keys = []
 for k in syn_spec.keys():
 if isinstance(k, tuple):
 edge_keys.extend(k)
 edge_keys = set(edge_keys)
 allkeys = group_names + types
 assert edge_keys.issubset(allkeys), \
 '`syn_spec` edge entries can only be made from {}.'.format(allkeys)
 # warn if connections might be missing
 nspec = len(edge_keys)
 has_default = len(syn_spec) > nspec
 if mt_type and nspec < gsize**2 and not alltypes and not has_default:
 _log_message(
 logger, "WARNING",
 'There is not one synaptic specifier per inter-group'
 'connection in `syn_spec` and no default model was provided. '
 'Therefore, {} or 4 entries were expected but only {} were '
 'provided. It might be right, but make sure all cases are '
 'covered. Missing connections will be set as "static_'
 'synapse".'.format(gsize**2, nspec))
 for val in syn_spec.values():
 assert 'weight' not in val, '`weight` cannot be set here.'
 assert 'delay' not in val, '`delay` cannot be set here.'

 Source code for nngt.core.nx_graph

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Networkx subclassing """

from collections import OrderedDict, deque
from copy import deepcopy
from itertools import chain
import logging
import sys

import numpy as np
import scipy.sparse as ssp

import nngt
from nngt.lib import InvalidArgument, BWEIGHT, nonstring_container, is_integer
from nngt.lib.connect_tools import (_cleanup_edges, _set_dist_new_edges,
 _set_default_edge_attributes)
from nngt.lib.graph_helpers import (_get_dtype, _get_nx_weights,
 _post_del_update)
from nngt.lib.converters import _np_dtype, _to_np_array
from nngt.lib.logger import _log_message
from .graph_interface import GraphInterface, BaseProperty

logger = logging.getLogger(__name__)

Properties

class _NxNProperty(BaseProperty):

 '''
 Class for generic interactions with nodes properties (networkx)
 '''

 def __getitem__(self, name):
 g = self.parent()._graph

 lst = [g.nodes[i][name] for i in range(g.number_of_nodes())]

 dtype = _np_dtype(super(_NxNProperty, self).__getitem__(name))

 return _to_np_array(lst, dtype=dtype)

 def __setitem__(self, name, value):
 g = self.parent()._graph
 size = g.number_of_nodes()

 if name in self:
 if len(value) == size:
 for i in range(size):
 g.nodes[i][name] = value[i]
 else:
 raise ValueError("A list or a np.array with one entry per "
 "node in the graph is required")
 else:
 raise InvalidArgument("Attribute does not exist yet, use "
 "set_attribute to create it.")

 def new_attribute(self, name, value_type, values=None, val=None):
 g = self.parent()._graph

 if val is None:
 if value_type == "int":
 val = int(0)
 elif value_type == "double":
 val = np.NaN
 elif value_type == "string":
 val = ""
 else:
 val = None
 value_type = "object"

 if values is None:
 values = [deepcopy(val)
 for _ in range(g.number_of_nodes())]

 # store name and value type in the dict
 super(_NxNProperty, self).__setitem__(name, value_type)
 # store the real values in the attribute
 self[name] = values
 self._num_values_set[name] = len(values)

 def set_attribute(self, name, values, nodes=None):
 '''
 Set the node attribute.

 Parameters

 name : str
 Name of the node attribute.
 values : array, size N
 Values that should be set.
 nodes : array-like, optional (default: all nodes)
 Nodes for which the value of the property should be set. If `nodes`
 is not None, it must be an array of size N.
 '''
 g = self.parent()._graph

 num_nodes = g.number_of_nodes()
 num_n = len(nodes) if nodes is not None else num_nodes

 if num_n == num_nodes:
 self[name] = values
 else:
 if num_n != len(values):
 raise ValueError("`nodes` and `values` must have the same "
 "size; got respectively " + str(num_n) + \
 " and " + str(len(values)) + " entries.")
 else:
 for n, val in zip(nodes, values):
 g.nodes[n][name] = val
 self._num_values_set[name] = num_nodes

class _NxEProperty(BaseProperty):

 ''' Class for generic interactions with edge properties (networkx) '''

 def __getitem__(self, name):
 g = self.parent()._graph
 edges = None

 if isinstance(name, slice):
 edges = self.parent().edges_array[name]
 elif nonstring_container(name):
 if len(name) == 0:
 return []

 if nonstring_container(name[0]):
 edges = name
 else:
 if len(name) != 2:
 raise InvalidArgument(
 "key for edge attribute must be one of the following: "
 "slice, list of edges, edges or attribute name.")
 return g[name[0]][name[1]]

 if isinstance(name, str):
 dtype = _np_dtype(super(_NxEProperty, self).__getitem__(name))
 eprop = np.empty(g.number_of_edges(), dtype=dtype)

 edges = list(g.edges(data=name))

 if len(edges):
 eids = np.asarray(list(g.edges(data="eid")))[:, 2]

 for i, eid in enumerate(np.argsort(eids)):
 eprop[i] = edges[eid][2]

 return eprop

 eprop = {k: [] for k in self.keys()}

 for edge in edges:
 data = g.get_edge_data(edge[0], edge[1])

 if data is None:
 raise ValueError("Edge {} does not exist.".format(edge))

 for k, v in data.items():
 if k != "eid":
 eprop[k].append(v)

 dtype = None

 for k, v in eprop.items():
 dtype = _np_dtype(super(_NxEProperty, self).__getitem__(k))
 eprop[k] = _to_np_array(v, dtype)

 return eprop

 def __setitem__(self, name, value):
 g = self.parent()._graph

 if name in self:
 size = g.number_of_edges()

 if len(value) == size:
 edges = np.asarray(list(g.edges(data="eid")))

 if size:
 order = np.argsort(edges[:, 2])

 for i, idx in enumerate(order):
 s, t, _ = edges[idx]
 g.edges[s, t][name] = value[i]
 else:
 raise ValueError(
 "A list or a np.array with one entry per edge in the "
 "graph is required. For attribute "
 "'{}', got {} entries vs {} edges.".format(
 name, len(value), size))
 else:
 raise InvalidArgument("Attribute does not exist yet, use "
 "set_attribute to create it.")

 def new_attribute(self, name, value_type, values=None, val=None):
 g = self.parent()._graph

 if val is None:
 if value_type == "int":
 val = int(0)
 elif value_type == "double":
 val = np.NaN
 elif value_type == "string":
 val = ""
 else:
 val = None
 value_type = "object"

 if values is None:
 values = [deepcopy(val)
 for _ in range(g.number_of_edges())]

 # store name and value type in the dict
 super(_NxEProperty, self).__setitem__(name, value_type)

 # store the real values in the attribute
 self[name] = values
 self._num_values_set[name] = len(values)

 def set_attribute(self, name, values, edges=None, last_edges=False):
 '''
 Set the edge property.

 Parameters

 name : str
 Name of the edge property.
 values : array
 Values that should be set.
 edges : array-like, optional (default: None)
 Edges for which the value of the property should be set. If `edges`
 is not None, it must be an array of shape `(len(values), 2)`.
 '''
 graph = self.parent()

 g = graph._graph

 num_edges = g.number_of_edges()
 num_e = len(edges) if edges is not None else num_edges

 if num_e != len(values):
 raise ValueError("`edges` and `values` must have the same "
 "size; got respectively " + str(num_e) + \
 " and " + str(len(values)) + " entries.")

 if edges is None:
 self[name] = values
 else:
 order = range(num_e)

 if not last_edges:
 get_eid = graph.edge_id

 eids = [get_eid(e) for e in edges]
 order = np.argsort(np.argsort(eids))

 for i, e in zip(order, edges):
 edict = g[e[0]][e[1]]

 edict[name] = values[i]

 g.add_edge(e[0], e[1], **edict)

 if num_e:
 self._num_values_set[name] = num_edges

Graph

class _NxGraph(GraphInterface):

 '''
 Subclass of networkx Graph
 '''

 _nattr_class = _NxNProperty
 _eattr_class = _NxEProperty

 #---#
 # Class properties

 di_value = {"string": "", "double": 0., "int": int(0)}

 #---#
 # Constructor and instance properties

 def __init__(self, nodes=0, copy_graph=None, directed=True, weighted=False,
 **kwargs):
 self._nattr = _NxNProperty(self)
 self._eattr = _NxEProperty(self)

 self._max_eid = 0

 g = copy_graph.graph if copy_graph is not None else None

 if g is not None:
 if not directed and g.is_directed():
 g = g.to_undirected()
 elif directed and not g.is_directed():
 g = g.to_directed()

 self._from_library_graph(g, copy=True)

 self._max_eid = copy_graph._max_eid
 else:
 nx = nngt._config["library"]

 self._graph = nx.DiGraph() if directed else nx.Graph()

 if nodes:
 self._graph.add_nodes_from(range(nodes))

 #---#
 # Graph manipulation

 def edge_id(self, edge):
 '''
 Return the ID a given edge or a list of edges in the graph.
 Raises an error if the edge is not in the graph or if one of the
 vertices in the edge is nonexistent.

 Parameters

 edge : 2-tuple or array of edges
 Edge descriptor (source, target).

 Returns

 index : int or array of ints
 Index of the given `edge`.
 '''
 g = self._graph

 if is_integer(edge[0]):
 return g[edge[0]][edge[1]]["eid"]
 elif nonstring_container(edge[0]):
 return [g[e[0]][e[1]]["eid"] for e in edge]

 raise AttributeError("`edge` must be either a 2-tuple of ints or "
 "an array of 2-tuples of ints.")

 def has_edge(self, edge):
 '''
 Whether `edge` is present in the graph.

 .. versionadded:: 2.0
 '''
 return self._graph.has_edge(*edge)

 @property
 def edges_array(self):
 '''
 Edges of the graph, sorted by order of creation, as an array of
 2-tuple.
 '''
 g = self._graph
 edges = np.full((self._max_eid, 2), -1)

 # fast iteration using list comprehension
 # could also be done with deque and map (deque forces lazy map to run)
 # deque(map(lambda x: _gen_edges(edges, x), g.edges(data="eid")))
 [_gen_edges(edges, x) for x in g.edges(data="eid")]

 if self._max_eid > g.number_of_edges():
 return edges[edges[:, 0] > -1]

 return edges

 def _get_edges(self, source_node=None, target_node=None):
 g = self._graph

 if source_node is not None:
 source_node = \
 [source_node] if is_integer(source_node) else source_node

 return list(
 g.out_edges(source_node) if g.is_directed()
 else g.edges(source_node))

 target_node = \
 [target_node] if is_integer(target_node) else target_node

 return list(
 g.in_edges(target_node) if g.is_directed()
 else g.edges(target_node))

 def new_node(self, n=1, neuron_type=1, attributes=None, value_types=None,
 positions=None, groups=None):
 '''
 Adding a node to the graph, with optional properties.

 Parameters

 n : int, optional (default: 1)
 Number of nodes to add.
 neuron_type : int, optional (default: 1)
 Type of neuron (1 for excitatory, -1 for inhibitory)
 attributes : dict, optional (default: None)
 Dictionary containing the attributes of the nodes.
 value_types : dict, optional (default: None)
 Dict of the `attributes` types, necessary only if the `attributes`
 do not exist yet.
 positions : array of shape (n, 2), optional (default: None)
 Positions of the neurons. Valid only for
 :class:`~nngt.SpatialGraph` or :class:`~nngt.SpatialNetwork`.
 groups : str, int, or list, optional (default: None)
 :class:`~nngt.core.NeuralGroup` to which the neurons belong. Valid
 only for :class:`~nngt.Network` or :class:`~nngt.SpatialNetwork`.

 Returns

 The node or a list of the nodes created.
 '''
 g = self._graph
 num_nodes = g.number_of_nodes()

 new_nodes = list(range(num_nodes, num_nodes + n))

 for v in new_nodes:
 g.add_node(v)

 attributes = {} if attributes is None else deepcopy(attributes)

 if attributes:
 for k, v in attributes.items():
 if k not in self._nattr:
 self._nattr.new_attribute(k, value_types[k], val=v)
 else:
 v = v if nonstring_container(v) else [v]
 self._nattr.set_attribute(k, v, nodes=new_nodes)

 # set default values for all attributes that were not set
 for k in self.node_attributes:
 if k not in attributes:
 dtype = self.get_attribute_type(k)
 filler = [None for _ in new_nodes]

 # change for strings, doubles and ints
 if dtype == "string":
 filler = ["" for _ in new_nodes]
 elif dtype == "double":
 filler = [np.NaN for _ in new_nodes]
 elif dtype == "int":
 filler = [0 for _ in new_nodes]

 self._nattr.set_attribute(k, filler, nodes=new_nodes)

 if self.is_spatial():
 old_pos = self._pos
 self._pos = np.full((self.node_nb(), 2), np.NaN)
 num_existing = len(old_pos) if old_pos is not None else 0

 if num_existing != 0:
 self._pos[:num_existing] = old_pos

 if positions is not None and len(positions):
 assert self.is_spatial(), \
 "`positions` argument requires a SpatialGraph/SpatialNetwork."
 self._pos[new_nodes] = positions

 if groups is not None:
 assert self.is_network(), \
 "`positions` argument requires a Network/SpatialNetwork."
 if nonstring_container(groups):
 assert len(groups) == n, "One group per neuron required."
 for g, node in zip(groups, new_nodes):
 self.population.add_to_group(g, node)
 else:
 self.population.add_to_group(groups, new_nodes)

 if len(new_nodes) == 1:
 return new_nodes[0]

 return new_nodes

 def delete_nodes(self, nodes):
 '''
 Remove nodes (and associated edges) from the graph.
 '''
 g = self._graph

 if nonstring_container(nodes):
 for n in nodes:
 g.remove_node(n)
 else:
 g.remove_node(nodes)

 # relabel nodes from zero
 nx = nngt._config["library"]

 nx.relabel_nodes(g, {n: i for i, n in enumerate(g.nodes)}, copy=False)

 # update attributes
 for key in self._nattr:
 self._nattr._num_values_set[key] = self.node_nb()

 for key in self._eattr:
 self._eattr._num_values_set[key] = self.edge_nb()

 # check spatial and structure properties
 _post_del_update(self, nodes)

 def new_edge(self, source, target, attributes=None, ignore=False,
 self_loop=False):
 '''
 Adding a connection to the graph, with optional properties.

 .. versionchanged :: 2.0
 Added `self_loop` argument to enable adding self-loops.

 Parameters

 source : :class:`int/node`
 Source node.
 target : :class:`int/node`
 Target node.
 attributes : :class:`dict`, optional (default: ``{}``)
 Dictionary containing optional edge properties. If the graph is
 weighted, defaults to ``{"weight": 1.}``, the unit weight for the
 connection (synaptic strength in NEST).
 ignore : bool, optional (default: False)
 If set to True, ignore attempts to add an existing edge and accept
 self-loops; otherwise an error is raised.
 self_loop : bool, optional (default: False)
 Whether to allow self-loops or not.

 Returns

 The new connection or None if nothing was added.
 '''
 g = self._graph

 attributes = {} if attributes is None else deepcopy(attributes)

 # check that nodes exist
 num_nodes = g.number_of_nodes()

 if source >= num_nodes or target >= num_nodes:
 raise InvalidArgument("`source` or `target` does not exist.")

 # set default values for attributes that were not passed
 _set_default_edge_attributes(self, attributes, num_edges=1)

 if g.has_edge(source, target):
 if not ignore:
 raise InvalidArgument("Trying to add existing edge.")

 _log_message(logger, "WARNING",
 "Existing edge {} ignored.".format((source, target)))
 else:
 if source == target:
 if not ignore and not self_loop:
 raise InvalidArgument("Trying to add a self-loop.")
 elif ignore:
 _log_message(logger, "WARNING",
 "Self-loop on {} ignored.".format(source))

 return None

 for attr in attributes:
 if "_corr" in attr:
 raise NotImplementedError("Correlated attributes are not "
 "available with networkx.")

 if self.is_weighted() and "weight" not in attributes:
 attributes["weight"] = 1.

 # check distance
 _set_dist_new_edges(attributes, self, [(source, target)])

 g.add_edge(source, target)

 g[source][target]["eid"] = self._max_eid

 self._max_eid += 1

 # call parent function to set the attributes
 self._attr_new_edges([(source, target)], attributes=attributes)

 return (source, target)

 def new_edges(self, edge_list, attributes=None, check_duplicates=False,
 check_self_loops=True, check_existing=True,
 ignore_invalid=False):
 '''
 Add a list of edges to the graph.

 .. versionchanged:: 2.0
 Can perform all possible checks before adding new edges via the
 ``check_duplicates`` ``check_self_loops``, and ``check_existing``
 arguments.

 Parameters

 edge_list : list of 2-tuples or np.array of shape (edge_nb, 2)
 List of the edges that should be added as tuples (source, target)
 attributes : :class:`dict`, optional (default: ``{}``)
 Dictionary containing optional edge properties. If the graph is
 weighted, defaults to ``{"weight": ones}``, where ``ones`` is an
 array the same length as the `edge_list` containing a unit weight
 for each connection (synaptic strength in NEST).
 check_duplicates : bool, optional (default: False)
 Check for duplicate edges within `edge_list`.
 check_self_loops : bool, optional (default: True)
 Check for self-loops.
 check_existing : bool, optional (default: True)
 Check whether some of the edges in `edge_list` already exist in the
 graph or exist multiple times in `edge_list` (also performs
 `check_duplicates`).
 ignore_invalid : bool, optional (default: False)
 Ignore invalid edges: they are not added to the graph and are
 silently dropped. Unless this is set to true, an error is raised
 whenever one of the three checks fails.

 .. warning::

 Setting `check_existing` to False will lead to undefined behavior
 if existing edges are provided! Only use it (for speedup) if you
 are sure that you are indeed only adding new edges.

 Returns

 Returns new edges only.
 '''
 g = self._graph

 attributes = {} if attributes is None else deepcopy(attributes)
 num_edges = len(edge_list)

 # check that all nodes exist
 if np.max(edge_list) >= g.number_of_nodes():
 raise InvalidArgument("Some nodes do no exist.")

 for attr in attributes:
 if "_corr" in attr:
 raise NotImplementedError("Correlated attributes are not "
 "available with networkx.")

 # set default values for attributes that were not passed
 _set_default_edge_attributes(self, attributes, num_edges)

 # check edges
 new_attr = None

 if check_duplicates or check_self_loops or check_existing:
 edge_list, new_attr = _cleanup_edges(
 self, edge_list, attributes, check_duplicates,
 check_self_loops, check_existing, ignore_invalid)
 else:
 new_attr = attributes

 # create the edges
 initial_eid = self._max_eid

 num_added = len(edge_list)

 if num_added:
 arr_edges = np.zeros((num_added, 3), dtype=int)

 arr_edges[:, :2] = edge_list
 arr_edges[:, 2] = np.arange(initial_eid, initial_eid + num_added)

 # create the edges with an eid attribute
 g.add_weighted_edges_from(arr_edges, weight="eid")

 # check distance
 _set_dist_new_edges(new_attr, self, edge_list)

 # call parent function to set the attributes
 self._attr_new_edges(edge_list, attributes=new_attr)

 self._max_eid += num_added

 return edge_list

 def delete_edges(self, edges):
 ''' Remove a list of edges '''
 if nonstring_container(edges[0]):
 self._graph.remove_edges_from(edges)
 else:
 self._graph.remove_edge(*edges)

 for key in self._eattr:
 self._eattr._num_values_set[key] = self.edge_nb()

 def clear_all_edges(self):
 ''' Remove all edges from the graph '''
 g = self._graph
 g.remove_edges_from(tuple(g.edges()))
 self._eattr.clear()

 #---#
 # Getters

 def node_nb(self):
 ''' Number of nodes in the graph '''
 return self._graph.number_of_nodes()

 def edge_nb(self):
 ''' Number of edges in the graph '''
 return self._graph.number_of_edges()

 def get_degrees(self, mode="total", nodes=None, weights=None):
 g = self._graph
 w = _get_nx_weights(self, weights)

 nodes = range(g.number_of_nodes()) if nodes is None else nodes
 dtype = int if weights in {False, None} else float
 di_deg = None

 if mode == 'total' or not self._graph.is_directed():
 di_deg = g.degree(nodes, weight=w)
 elif mode == 'in':
 di_deg = g.in_degree(nodes, weight=w)
 elif mode == 'out':
 di_deg = g.out_degree(nodes, weight=w)
 else:
 raise ValueError("Unknown `mode` '{}'".format(mode))

 if nonstring_container(nodes):
 return np.array([di_deg[i] for i in nodes], dtype=dtype)

 return di_deg

 def is_connected(self, mode="strong"):
 '''
 Return whether the graph is connected.

 Parameters

 mode : str, optional (default: "strong")
 Whether to test connectedness with directed ("strong") or
 undirected ("weak") connections.
 '''
 g = self._graph

 if g.is_directed() and mode == "weak":
 g = g.to_undirected(as_view=True)

 try:
 import networkx as nx
 nx.diameter(g)
 return True
 except nx.exception.NetworkXError:
 return False

 def neighbours(self, node, mode="all"):
 '''
 Return the neighbours of `node`.

 Parameters

 node : int
 Index of the node of interest.
 mode : string, optional (default: "all")
 Type of neighbours that will be returned: "all" returns all the
 neighbours regardless of directionality, "in" returns the
 in-neighbours (also called predecessors) and "out" retruns the
 out-neighbours (or successors).

 Returns

 neighbours : set
 The neighbours of `node`.
 '''
 g = self._graph

 # special case for undirected
 if not g.is_directed():
 return set(g.neighbors(node))

 if mode == "all":
 # for directed graphs, neighbors ~ successors
 return set(g.successors(node)).union(g.predecessors(node))
 elif mode == "in":
 return set(g.predecessors(node))
 elif mode == "out":
 return set(g.successors(node))

 raise ArgumentError('Invalid `mode` argument {}; possible values are '
 '"all", "out" or "in".'.format(mode))

 def _from_library_graph(self, graph, copy=True):
 ''' Initialize `self._graph` from existing library object. '''
 import networkx as nx

 nodes = {n: i for i, n in enumerate(graph)}

 num_nodes = graph.number_of_nodes()
 num_edges = graph.number_of_edges()

 # check if nodes start from 0 and are continuous
 if set(nodes.keys()) != set(range(num_nodes)):
 # forced copy to restore nodes to [0, num_nodes[
 g = None

 if graph.is_directed():
 g = nx.DiGraph()
 else:
 g = nx.Graph()

 # add nodes
 for i, (n, attr) in enumerate(graph.nodes(data=True)):
 attr["id"] = n
 g.add_node(i, **attr)

 # add edges
 [g.add_edge(nodes[u], nodes[v], **attr)
 for u, v, attr in graph.edges(data=True)]

 # make edges ids
 def set_eid(e, eid):
 g.edges[e]["eid"] = eid

 [set_eid(e, i) for i, e in enumerate(g.edges)]

 self._max_eid = num_edges

 self._graph = graph = g
 else:
 # all good
 self._graph = graph.copy() if copy else graph

 # get attributes names and "types" and initialize them
 if num_nodes:
 for key, val in graph.nodes[0].items():
 super(type(self._nattr), self._nattr).__setitem__(
 key, _get_dtype(val))

 if num_edges:
 e0 = next(iter(graph.edges))

 for key, val in graph.edges[e0].items():
 if key != "eid":
 super(type(self._eattr), self._eattr).__setitem__(
 key, _get_dtype(val))

tool function to generate the edges_array

def _gen_edges(array, edata):
 source, target, eid = edata
 array[eid] = (source, target)

 Source code for nngt.core.spatial_graph

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
spatial_graph.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" SpatialGraph class for spatial graph generation and management """

import numpy as np

import nngt
from nngt.lib import InvalidArgument, nonstring_container

from .connections import Connections
from .graph import Graph

SpatialGraph

[docs]class SpatialGraph(Graph):

 """
 The detailed class that inherits from :class:`~nngt.Graph` and implements
 additional properties to describe spatial graphs (i.e. graph where the
 structure is embedded in space.
 """

 #---#
 # Class properties

 __num_graphs = 0
 __max_id = 0

 #---#
 # Constructor, destructor, attributes

 def __init__(self, nodes=0, name="SpatialGraph", weighted=True,
 directed=True, from_graph=None, shape=None, positions=None,
 **kwargs):
 '''
 Initialize SpatialClass instance.

 Parameters

 nodes : int, optional (default: 0)
 Number of nodes in the graph.
 name : string, optional (default: "Graph")
 The name of this :class:`Graph` instance.
 weighted : bool, optional (default: True)
 Whether the graph edges have weight properties.
 directed : bool, optional (default: True)
 Whether the graph is directed or undirected.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment (None leads to a square of
 side 1 cm)
 positions : :class:`numpy.array` (N, 2), optional (default: None)
 Positions of the neurons; if not specified and `nodes` is not 0,
 then neurons will be reparted at random inside the
 :class:`~nngt.geometry.Shape` object of the instance.
 **kwargs : keyword arguments for :class:`~nngt.Graph` or
 :class:`~nngt.geometry.Shape` if no shape was given.

 Returns

 self : :class:`~nggt.SpatialGraph`
 '''
 self.__id = self.__class__.__max_id
 self.__class__.__num_graphs += 1
 self.__class__.__max_id += 1

 self._shape = None
 self._pos = None

 super().__init__(nodes, name, weighted, directed, from_graph, **kwargs)

 self._init_spatial_properties(shape, positions, **kwargs)

 if "population" in kwargs:
 self.make_network(self, kwargs["population"])

 def __del__(self):
 if hasattr(self, '_shape'):
 if self._shape is not None:
 self._shape._parent = None
 self._shape = None

 super().__del__()

 self.__class__.__num_graphs -= 1

 @property
 def shape(self):
 ''' The environment's spatial structure. '''
 return self._shape

 #---#
 # Init tool

 def _init_spatial_properties(self, shape, positions=None, **kwargs):
 '''
 Create the positions of the neurons from the graph `shape` attribute
 and computes the connections distances.
 '''
 positions = None if positions is None else np.asarray(positions)

 self.new_edge_attribute('distance', 'double')

 if positions is not None and len(positions) != self.node_nb():
 raise InvalidArgument("Wrong number of neurons in `positions`.")

 if shape is not None:
 shape.set_parent(self)
 self._shape = shape
 else:
 if positions is None or not np.any(positions):
 if 'height' in kwargs and 'width' in kwargs:
 self._shape = nngt.geometry.Shape.rectangle(
 kwargs['height'], kwargs['width'], parent=self)
 elif 'radius' in kwargs:
 self._shape = nngt.geometry.Shape.disk(
 kwargs['radius'], parent=self)
 elif 'radii' in kwargs:
 self._shape = nngt.geometry.Shape.ellipse(
 kwargs['radii'], parent=self)
 elif 'polygon' in kwargs:
 self._shape = nngt.geometry.Shape.from_polygon(
 kwargs['polygon'], min_x=kwargs.get('min_x', -5000.),
 max_x=kwargs.get('max_x', 5000.),
 unit=kwargs.get('unit', 'um'), parent=self)
 else:
 raise RuntimeError('SpatialGraph needs a `shape` or '
 'keywords arguments to build one, or '
 'at least `positions` so it can create '
 'a square containing them')
 else:
 minx, maxx = np.min(positions[:, 0]), np.max(positions[:, 0])
 miny, maxy = np.min(positions[:, 1]), np.max(positions[:, 1])

 height, width = 1.01*(maxy - miny), 1.01*(maxx - minx)

 centroid = (0.5*(maxx + minx), 0.5*(maxy + miny))

 self._shape = nngt.geometry.Shape.rectangle(
 height, width, centroid=centroid, parent=self)

 b_rnd_pos = True if not self.node_nb() or positions is None else False
 self._pos = self._shape.seed_neurons() if b_rnd_pos else positions

 Connections.distances(self)

 #---#
 # Positions

[docs] def get_positions(self, nodes=None):
 '''
 Returns a copy of the nodes' positions as a (N, 2) array.

 Parameters

 nodes : int or array-like, optional (default: all nodes)
 List of the nodes for which the position should be returned.
 '''
 if nodes is not None:
 if nonstring_container(nodes):
 # numpy slicing does not work with everything
 nodes = np.asarray(nodes)

 return np.array(self._pos[nodes])
 else:
 return self._pos[nodes]

 return np.array(self._pos)

[docs] def set_positions(self, positions, nodes=None):
 '''
 Set the nodes' positions as a (N, 2) array.

 Parameters

 positions : array-like
 List of positions, of shape (N, 2).
 nodes : int or array-like, optional (default: all nodes)
 List of the nodes for which the position should be set.
 '''
 if nodes is not None:
 self._pos[nodes] = positions
 else:
 if len(positions) != self.node_nb():
 raise ValueError("One position per node is required.")
 self._pos = np.array(positions)

 Source code for nngt.database.db_generation

#!/usr/bin/env python
#-*- coding:utf-8 -*-

""" Store results into a database """

from collections import namedtuple

from peewee import *
from playhouse.fields import CompressedField
from playhouse.migrate import *

import nngt
from .pickle_field import PickledField

__all__ = [
 'Activity',
 'Computer',
 'Connection',
 'db_migrator',
 'ignore',
 'migrate',
 'NeuralNetwork',
 'Neuron',
 'Simulation',
 'Synapse',
 'val_to_field',
]

Database classes

class LongCompressedField(CompressedField):
 db_field = 'longblob'

class BaseModel(Model):
 class Meta:
 database = nngt._main_db

[docs]class Computer(BaseModel):
 '''
 Class containing informations about the conputer.
 '''

 name = TextField()
 ''' : Name from ``platform.node()`` or ``"unknown"`` '''
 platform = TextField()
 ''' System information from ``platform.platform()`` '''
 python = TextField()
 ''' Python version given by ``platform.python_version()`` '''
 cores = IntegerField()
 ''' Number of cores returned by ``psutil.cpu_count()`` or ``-1`` '''
 ram = BigIntegerField()
 ''' Total memory given by ``psutil.virtual_memory().total`` (long) or
 ``-1`` '''

[docs]class NeuralNetwork(BaseModel):
 '''
 Class containing informations about the neural network.
 '''

 network_type = TextField(null=True)
 ''' Type of the network from Graph.type '''
 directed = BooleanField(null=True)
 ''' Whether the graph is directed or not '''
 nodes = IntegerField(null=True)
 ''' Number of nodes. '''
 edges = IntegerField(null=True)
 ''' Number of edges. '''
 weighted = BooleanField(null=True)
 ''' Whether the graph is weighted or not. '''
 weight_distribution = TextField(null=True)
 ''' Name of the weight_distribution used. '''
 compressed_file = LongCompressedField(null=True)
 ''' Compressed (bz2) string of the graph from ``str(graph)``; once
 uncompressed, can be loaded using ``Graph.from_file(name,
 from_string=True)``. '''

[docs]class Neuron(BaseModel):
 '''
 Base class that will be modified to contain all the properties of the
 neurons used during a simulation.
 '''
 pass

[docs]class Synapse(BaseModel):
 '''
 Base class that will be modified to contain all the properties of the
 synapses used during a simulation.
 '''
 pass

[docs]class Connection(BaseModel):
 '''
 Class detailing the existing connections in the network: a couple of pre-
 and post-synaptic neurons and a synapse.
 '''

 pre = ForeignKeyField(Neuron, null=True, related_name='out_connections')
 post = ForeignKeyField(Neuron, null=True, related_name='int_connections')
 synapse = ForeignKeyField(Synapse, null=True, related_name='connections')

[docs]class Activity(BaseModel):
 '''
 Class detailing the network's simulated activity.
 '''

 raster = PickledField(null=True)
 ''' Raster of the simulated activity. '''

[docs]class Simulation(BaseModel):
 '''
 Class containing all informations about the simulation properties.
 '''

 start_time = DateTimeField()
 ''' Date and time at which the simulation started. '''
 completion_time = DateTimeField()
 ''' Date and time at which the simulation ended. '''
 simulated_time = FloatField()
 ''' Virtual time that was simulated for the neural network. '''
 resolution = FloatField()
 ''' Timestep used to simulate the components of the neural network '''
 simulator = TextField()
 ''' Name of the neural simulator used (NEST, Brian...) '''
 grnd_seed = IntegerField(null=True)
 ''' Master seed of the simulation. '''
 local_seeds = PickledField(null=True)
 ''' List of the local threads seeds. '''
 computer = ForeignKeyField(Computer, related_name='simulations', null=True)
 ''' Computer table entry where the computer used is defined. '''
 network = ForeignKeyField(NeuralNetwork, related_name='simulations', null=True)
 ''' Network table entry where the simulated network is described. '''
 activity = ForeignKeyField(Activity, related_name='simulations', null=True)
 ''' Activity table entry where the simulated activity is described. '''
 connections = ForeignKeyField(Connection, related_name='simulations', null=True)
 ''' Connection table entry where the connections are described. '''
 population = PickledField()
 ''' Pickled list containing the neural group names. '''
 pop_sizes = PickledField()
 ''' Pickled list containing the group sizes. '''

#---#
Generate the custom Neuron and Synapse classes
#------------------------
#

ignore = {
 'global_id': True,
 'gsl_error_tol': True,
 'local_id': True,
 'recordables': True,
 'thread': True,
 'thread_local_id': True,
 'vp': True,
 'synaptic_elements': True,
 'sizeof': True,
 'source': True,
 'target': True,
}

val_to_field = {
 'int': IntegerField,
 'INTEGER': IntegerField,
 'bigint': IntegerField,
 'tinyint': IntegerField,
 'long': PickledField,
 'blob': PickledField,
 'BLOB': PickledField,
 'datetime': DateTimeField,
 'DATETIME': DateTimeField,
 'str': TextField,
 'TEXT': TextField,
 'longtext': TextField,
 'SLILiteral': TextField,
 'float': FloatField,
 'REAL': FloatField,
 'float64': FloatField,
 'float32': FloatField,
 'bool': BooleanField,
 'lst': PickledField,
 'dict': PickledField,
 'ndarray': PickledField,
 'compressed': LongCompressedField
}

db_migrator = {
 'SqliteDatabase': SqliteMigrator,
 'PostgresqlDatabase': PostgresqlMigrator,
 'MySQLDatabase': MySQLMigrator,
}

 Source code for nngt.database.db_main

#!/usr/bin/env python
#-*- coding:utf-8 -*-

""" Main object for database management """

import platform
from datetime import datetime
from itertools import permutations

try:
 import nest
except ImportError:
 raise ImportError("Database module requires NEST to work.")

import peewee

import nngt
from nngt.lib.db_tools import psutil
from .db_generation import *

__all__ = ['NNGTdb']

class NNGTdb:
 '''
 Class containing the database object and methods to store the simulation
 properties.
 '''

 tables = {
 'activity': Activity,
 'computer': Computer,
 'connection': Connection,
 'neuralnetwork': NeuralNetwork,
 'neuron': Neuron,
 'simulation': Simulation,
 'synapse': Synapse
 }

 def __init__(self):
 self.db = nngt._main_db
 self.db.connect()
 self.db.create_tables(self.tables.values(), safe=True)
 self._update_models()
 self.activity = None
 self.current_simulation = None
 self.simulator_lib = None
 self.computer = None
 self.neuralnet = None
 self.connections = {}
 self.nodes = {}

 def _update_class(self, table, **kwargs):
 ''' Add a field for each property of the considered node. '''
 klass = self.tables[table]
 columns = [x.name for x in self.db.get_columns(table)]
 migrator = db_migrator[self.db.__class__.__name__](self.db)
 type_names = False
 if "dtype" in kwargs:
 type_names = kwargs["dtype"]
 del kwargs["dtype"]
 for attr, value in kwargs.items():
 if attr not in ignore:
 # generate field instance
 dtype = value if type_names else value.__class__.__name__
 val_field = val_to_field[dtype](null=True)
 if len(attr) == 1 and attr.isupper():
 attr = 2*attr.lower()
 klass._meta.add_field(attr, val_field)
 # check whether the column exists on the table, if not create
 if not attr in columns:
 try:
 migrate(migrator.add_column(table, attr, val_field))
 except peewee.OperationalError:
 pass
 return klass

 def _update_models(self):
 ''' Update the models so that we can query the database with them '''
 tables = self.db.get_tables()
 for table in tables:
 delete = []
 col_names = self.db.get_columns(table)
 col_dict = { x.name: x.data_type for x in col_names}
 for attr in iter(col_dict.keys()):
 if attr == "compressed_file":
 col_dict["compressed_file"] = "compressed"
 elif "_id" in attr:
 delete.append(attr)
 col_dict["dtype"] = True
 for key in delete:
 del col_dict[key]
 self.tables[table] = self._update_class(table, **col_dict)

 def _make_computer_entry(self):
 ''' Get the computer properties.

 Returns

 computer : :class:`~nngt.database.Computer`
 New computer entry.
 '''
 name = platform.node()
 comp_prop = {
 'name': name if name else "unknown",
 'platform': platform.platform(),
 'python': platform.python_version(),
 'cores': psutil.cpu_count(),
 'ram': psutil.virtual_memory().total,
 }
 computer = Computer(**comp_prop)
 return computer

 def _make_network_entry(self, network):
 '''
 Get the network properties.

 Parameters

 network : :class:`~nngt.Network` or subclass
 Network used in the current simulation.

 Returns

 neuralnet : :class:`~nngt.database.NeuralNetwork`
 New NeuralNetwork entry.
 '''
 if network is not None:
 weighted = network.is_weighted()
 net_prop = {
 'network_type': network.type,
 'directed': network.is_directed(),
 'nodes': network.node_nb(),
 'edges': network.edge_nb(),
 'weighted': weighted,
 'compressed_file': str(network).encode('utf-8')
 }
 if weighted:
 net_prop['weight_distribution'] = network._w
 neuralnet = NeuralNetwork(**net_prop)
 else:
 neuralnet = NeuralNetwork()
 return neuralnet

 def _make_neuron_entry(self, network, group):
 '''
 Get the neuronal properties.

 Parameters

 network : :class:`~nngt.Network` or subclass
 Network used in the current simulation.
 group : :class:`~nngt.core.NeuralGroup`
 Group which properties will be fetched.

 Returns

 neuron : :class:`~nngt.database.Neuron`
 New neuron entry.
 '''
 nngt_id = group.ids[0]
 gid = network.nest_gids[nngt_id]
 # get the dictionary
 neuron_prop = nest.GetStatus((gid,))[0]
 # update Neuron class accordingly
 Neuron = self._update_class("neuron", **neuron_prop)
 neuron = Neuron(**neuron_prop)
 return neuron

 def _make_synapse_entry(self, network, group_pre, group_post):
 '''
 Get the synaptic properties.

 Parameters

 network : :class:`~nngt.Network` or subclass
 Network used in the current simulation.
 group_pre : :class:`~nngt.core.NeuralGroup`
 Pre-synaptic group.
 group_post : :class:`~nngt.core.NeuralGroup`
 Post-synaptic group.

 Returns

 synapse : :class:`~nngt.database.Synapse`
 New synapse entry.
 '''
 syn_model = "static_synapse"
 if (group_pre.name, group_post.name) in network.population.syn_spec:
 pre, post = group_pre.name, group_post.name
 syn_model = network.population.syn_spec[(pre, post)]
 if isinstance(syn_model, dict):
 syn_model = syn_model.get("model", "static_synapse")
 source_gids = tuple(network.nest_gids[group_pre.ids])
 target_gids = tuple(network.nest_gids[group_post.ids])
 connections = nest.GetConnections(
 synapse_model=syn_model, source=source_gids, target=target_gids)
 # get the dictionary
 syn_prop={}
 if connections:
 syn_prop = nest.GetStatus((connections[0],))[0]
 # check single uppercase letters
 sngl_upper = []
 for k in syn_prop:
 if len(k) == 1 and k.isupper():
 sngl_upper.append(k)
 for k in sngl_upper:
 syn_prop[2*k.lower()] = syn_prop[k]
 del syn_prop[k]
 # update Synapse class accordingly
 Synapse = self._update_class("synapse", **syn_prop)
 synapse = Synapse(**syn_prop)
 return synapse

 def _make_connection_entry(self, neuron_pre, neuron_post, synapse):
 '''
 Create the entries for the Connections table from a list of
 (pre, post, syn) triples.

 Parameters

 neuron_pre : :class:`~nngt.database.Neuron`
 Pre-synaptic neuron entry.
 neuron_post : :class:`~nngt.database.Neuron`
 Post-synaptic neuron entry.
 synapse : :class:`~nngt.database.Synapse`
 Synapse entry.

 Returns

 :class:`~nngt.database.Connection`
 '''
 return Connection(pre=neuron_pre, post=neuron_post, synapse=synapse)

 def _get_simulation_prop(self, network, simulator):
 '''
 Get the simulation properties.

 Parameters

 network : :class:`~nngt.Network`
 Network used for the simulation.
 simulator : str
 Name of the simulator use (NEST, BRIAN...).

 Returns

 sim_prop : dict
 Dictionary containing the relevant key/value pairs to fill the
 :class:`~nngt.database.Simulation` class.
 '''
 pop, size = [], []
 for name, group in iter(network.population.items()):
 pop.append(name)
 size.append(len(group.ids))
 self.current_simulation = {
 'start_time': datetime.now(),
 'simulated_time': nest.GetKernelStatus('time'),
 'resolution': nest.GetKernelStatus('resolution'),
 'simulator': simulator.lower(),
 'grnd_seed': nest.GetKernelStatus('grng_seed'),
 'local_seeds': nest.GetKernelStatus('rng_seeds'),
 'population': pop,
 'pop_sizes': size
 }

 def _make_activity_entry(self, network=None):
 '''
 Create an activity entry from an
 :class:`~nngt.simulation.ActivityRecord` object.
 '''
 raster = nngt.analysis.get_spikes(astype="np")
 activity = nngt.simulation.analyze_raster(raster, network=network)
 di_activity = activity.properties
 di_activity["raster"] = raster
 act_attr = { k: v.__class__.__name__ for k, v in di_activity.items() }
 if "spike_files" in act_attr:
 act_attr["spike_files"] = "compressed"
 act_attr["dtypes"] = True
 ''' ..todo ::
 compress the spike files '''
 Activity = self._update_class("activity", **act_attr)
 activity_entry = Activity(**di_activity)
 self.current_simulation['activity'] = activity_entry
 return activity_entry

 def log_simulation_start(self, network, simulator, save_network=True):
 '''
 Record the simulation start time, all nodes, connections, network, and
 computer properties, as well as some of simulation's.

 Parameters

 network : :class:`~nngt.Network` or subclass
 Network used for the current simulation.
 simulator : str
 Name of the simulator.
 save_network : bool, optional (default: True)
 Whether to save the network or not.
 '''
 if not self.is_clear():
 raise RuntimeError("Database log started without clearing the "
 "previous one.")
 self._get_simulation_prop(network, simulator)
 # computer and network data
 self.computer = self._make_computer_entry()
 self.neuralnet = (self._make_network_entry(network)
 if save_network else None)
 self.current_simulation['computer'] = self.computer
 self.current_simulation['network'] = self.neuralnet
 # neurons, synapses and connections
 perm_names = tuple(permutations(network.population.keys(), 2))
 perm_groups = tuple(permutations(network.population.values(), 2))
 if not perm_names:
 group_name = list(network.population.keys())[0]
 group = network.population[group_name]
 perm_names = ((group_name, group_name),)
 perm_groups = ((group, group),)
 self.nodes = {}
 for (name_pre, name_post), (pre, post) in zip(perm_names, perm_groups):
 if name_pre not in self.nodes:
 self.nodes[name_pre] = self._make_neuron_entry(network, pre)
 if name_post not in self.nodes:
 self.nodes[name_post] = self._make_neuron_entry(network, post)
 synapse = self._make_synapse_entry(network, pre, post)
 self.nodes["syn_{}->{}".format(name_pre, name_post)] = synapse
 conn = self._make_connection_entry(self.nodes[name_pre],
 self.nodes[name_post], synapse)
 self.connections["{}->{}".format(name_pre, name_post)] = conn

 def log_simulation_end(self, network=None, log_activity=True):
 '''
 Record the simulation completion and simulated times, save the data,
 then reset.
 '''
 if self.is_clear():
 raise RuntimeError("Database log ended with empy log.")
 # get completion time and simulated time
 self.current_simulation['completion_time'] = datetime.now()
 start_time = self.current_simulation['simulated_time']
 new_time = nest.GetKernelStatus('time')
 self.current_simulation['simulated_time'] = new_time - start_time
 # save activity if provided
 if log_activity:
 self.activity = self._make_activity_entry(network)
 else:
 self.activity = Activity()
 self.current_simulation['activity'] = self.activity
 # save data and reset
 self.activity.save()
 self.computer.save()
 if self.neuralnet is not None:
 self.neuralnet.save()
 for entry in iter(self.nodes.values()):
 entry.save()
 for entry in iter(self.connections.values()):
 entry.save()
 simul_data = Simulation(**self.current_simulation)
 simul_data.save()
 # ~ if nngt.get_config("db_to_file"):
 # ~ from .csv_utils import dump_csv
 # ~ db_cls = list(self.tables.values())
 # ~ q = (Simulation.select(*db_cls).join(Computer).switch(Simulation)
 # ~ .join(NeuralNetwork).switch(Simulation).join(Activity)
 # ~ .switch(Simulation).join(Connection).join(Neuron, on=Connection.pre)
 # ~ .switch(Connection).join(Neuron, on=Connection.post)
 # ~ .switch(Connection).join(Synapse)).select(*db_cls)
 # ~ dump_csv(q, "{}_{}.csv".format(self.computer.name,
 # ~ simul_data.completion_time))
 self.reset()

 def get_results(self, table, column=None, value=None):
 '''
 Return the entries where the attribute `column` satisfies the required
 equality.

 Parameters

 table : str
 Name of the table where the search should be performed (among
 ``'simulation'``, ``'computer'``, ``'neuralnetwork'``,
 ``'activity'``, ``'synapse'``, ``'neuron'``, or ``'connection'``).
 column : str, optional (default: None)
 Name of the variable of interest (a column on the table). If None,
 the whole table is returned.
 value : `column` corresponding type, optional (default: None)
 Specific value for the variable of interest. If None, the whole
 column is returned.

 Returns

 :class:`peewee.SelectQuery` with entries matching the request.
 '''
 TableModel = self.tables[table]
 if column is None:
 return TableModel.select()
 elif value is None:
 return TableModel.select(getattr(TableModel, column))
 else:
 return TableModel.select().where(
 getattr(TableModel, column) == value)

 def is_clear(self):
 ''' Check that the logs are clear. '''
 clear = True
 clear *= self.current_simulation is None
 clear *= self.simulator_lib is None
 clear *= self.computer is None
 clear *= self.neuralnet is None
 clear *= not self.nodes
 clear *= not self.connections
 return clear

 def reset(self):
 ''' Reset log status. '''
 self.current_simulation = None
 self.simulator_lib = None
 self.computer = None
 self.neuralnet = None
 self.connections = {}
 self.nodes = {}

 Source code for nngt.database.pickle_field

#!/usr/bin/env python
#-*- coding:utf-8 -*-

""" Pickle field for peewee """

import sqlite3
import pickle

from playhouse.fields import BlobField

class PickledField(BlobField):

 def python_value(self, value):
 if isinstance(value, (bytearray, sqlite3.Binary)):
 value = bytes(value)
 return pickle.loads(value)

 def db_value(self, value):
 return sqlite3.Binary(pickle.dumps(value, 2))

 Source code for nngt.generation.connectors

#-*- coding:utf-8 -*-
#
graph_connectivity.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Connector functions """

import numpy as np

import nngt
from nngt.generation import graph_connectivity as gc
from nngt.lib import is_iterable, nonstring_container
from nngt.lib.test_functions import deprecated
from nngt.lib.rng_tools import _generate_random

__all__ = [
 'connect_neural_groups',
 'connect_groups',
 'connect_neural_types',
 'connect_nodes'
]

generator dictionary
_di_gen_edges = {
 "all_to_all": gc._all_to_all,
 "circular": gc._circular,
 "distance_rule": gc._distance_rule,
 "erdos_renyi": gc._erdos_renyi,
 "fixed_degree": gc._fixed_degree,
 "from_degree_list": gc._from_degree_list,
 "gaussian_degree": gc._gaussian_degree,
 "newman_watts": gc._newman_watts,
 "watts_strogatz": gc._watts_strogatz,
 "price_scale_free": gc._price_scale_free,
 "random_scale_free": gc._random_scale_free
}

_one_pop_models = {
 "circular", "newman_watts", "price_scale_free", "watts_strogatz",
}

[docs]def connect_nodes(network, sources, targets, graph_model, density=None,
 edges=None, avg_deg=None, unit='um', weighted=True,
 directed=True, multigraph=False, check_existing=True,
 ignore_invalid=False, **kwargs):
 '''
 Function to connect nodes with a given graph model.

 .. versionchanged:: 2.0
 Added `check_existing` and `ignore_invalid` arguments.

 Parameters

 network : :class:`Network` or :class:`SpatialNetwork`
 The network to connect.
 sources : list
 Ids of the source nodes.
 targets : list
 Ids of the target nodes.
 graph_model : string
 The name of the connectivity model (among "erdos_renyi",
 "random_scale_free", "price_scale_free", and "newman_watts").
 check_existing : bool, optional (default: True)
 Check whether some of the edges that will be added already exist in the
 graph.
 ignore_invalid : bool, optional (default: False)
 Ignore invalid edges: they are not added to the graph and are
 silently dropped. Unless this is set to true, an error is raised
 if an existing edge is re-generated.
 **kwargs : keyword arguments
 Specific model parameters. or edge attributes specifiers such as
 `weights` or `delays`.

 Note

 For graph generation methods which set the properties of a
 specific degree (e.g. :func:`~nngt.generation.gaussian_degree`), the
 nodes which have their property sets are the `sources`.
 '''
 if network.is_spatial() and 'positions' not in kwargs:
 kwargs['positions'] = network.get_positions().astype(np.float32).T
 if network.is_spatial() and 'shape' not in kwargs:
 kwargs['shape'] = network.shape

 if graph_model in _one_pop_models:
 assert np.array_equal(sources, targets), \
 "'" + graph_model + "' can only work on a single set of nodes."

 sources = np.array(sources, dtype=np.uint)
 targets = np.array(targets, dtype=np.uint)
 distance = []

 elist = _di_gen_edges[graph_model](
 sources, targets, density=density, edges=edges,
 avg_deg=avg_deg, weighted=weighted, directed=directed,
 multigraph=multigraph, distance=distance, **kwargs)

 # Attributes are not set by subfunctions
 attr = {}

 if 'weights' in kwargs:
 ww = kwargs['weights']

 if isinstance(ww, dict):
 attr['weight'] = _generate_random(len(elist), ww)
 else:
 attr['weight'] = ww
 if 'delays' in kwargs:
 dd = kwargs['delays']

 if isinstance(ww, dict):
 attr['delay'] = _generate_random(len(elist), dd)
 else:
 attr['delay'] = dd
 if network.is_spatial() and distance:
 attr['distance'] = distance

 # call only on root process (for mpi) unless using distributed backend
 if nngt.on_master_process() or nngt.get_config("backend") == "nngt":
 elist = network.new_edges(
 elist, attributes=attr, check_duplicates=False,
 check_self_loops=False, check_existing=check_existing,
 ignore_invalid=ignore_invalid)

 if not network._graph_type.endswith('_connect'):
 network._graph_type += "_nodes_connect"

 return elist

[docs]def connect_neural_types(network, source_type, target_type, graph_model,
 density=None, edges=None, avg_deg=None, unit='um',
 weighted=True, directed=True, multigraph=False,
 check_existing=True, ignore_invalid=False, **kwargs):
 '''
 Function to connect excitatory and inhibitory population with a given graph
 model.

 .. versionchanged:: 2.0
 Added `check_existing` and `ignore_invalid` arguments.

 Parameters

 network : :class:`Network` or :class:`SpatialNetwork`
 The network to connect.
 source_type : int or list
 The type of source neurons (``1`` for excitatory, ``-1`` for
 inhibitory neurons).
 target_type : int or list
 The type of target neurons.
 graph_model : string
 The name of the connectivity model (among "erdos_renyi",
 "random_scale_free", "price_scale_free", and "newman_watts").
 check_existing : bool, optional (default: True)
 Check whether some of the edges that will be added already exist in the
 graph.
 ignore_invalid : bool, optional (default: False)
 Ignore invalid edges: they are not added to the graph and are
 silently dropped. Unless this is set to true, an error is raised
 if an existing edge is re-generated.
 kwargs : keyword arguments
 Specific model parameters. or edge attributes specifiers such as
 `weights` or `delays`.

 Note

 For graph generation methods which set the properties of a
 specific degree (e.g. :func:`~nngt.generation.gaussian_degree`), the
 nodes which have their property sets are the `source_type`.
 '''
 assert network.is_network(), "This function requires a Network object."

 elist, source_ids, target_ids = None, [], []

 if network.is_spatial() and 'positions' not in kwargs:
 kwargs['positions'] = network.get_positions().astype(np.float32).T

 if network.is_spatial() and 'shape' not in kwargs:
 kwargs['shape'] = network.shape

 if not nonstring_container(source_type):
 source_type = [source_type]

 if not nonstring_container(target_type):
 target_type = [target_type]

 for group in network._population.values():
 if group.neuron_type in source_type:
 source_ids.extend(group.ids)

 if group.neuron_type in target_type:
 target_ids.extend(group.ids)

 source_ids = np.array(source_ids, dtype=np.uint)
 target_ids = np.array(target_ids, dtype=np.uint)

 elist = connect_nodes(
 network, source_ids, target_ids, graph_model, density=density,
 edges=edges, avg_deg=avg_deg, unit=unit, weighted=weighted,
 directed=directed, multigraph=multigraph,
 check_existing=check_existing, ignore_invalid=ignore_invalid,
 **kwargs)

 if not network._graph_type.endswith('_neural_type_connect'):
 network._graph_type += "_neural_type_connect"

 return elist

[docs]@deprecated("1.3.1", reason="the library is moving to more generic names",
 alternative="connect_groups", removal="3.0")
def connect_neural_groups(*args, **kwargs):
 ''' Deprecatd alias of :func:`connect_groups`. '''
 return connect_groups(*args, **kwargs)

[docs]def connect_groups(network, source_groups, target_groups, graph_model,
 density=None, edges=None, avg_deg=None, unit='um',
 weighted=True, directed=True, multigraph=False,
 check_existing=True, ignore_invalid=False, **kwargs):
 '''
 Function to connect groups with a given graph model.

 .. versionchanged:: 2.0
 Added `check_existing` and `ignore_invalid` arguments.

 Parameters

 network : :class:`Network` or :class:`SpatialNetwork`
 The network to connect.
 source_groups : str, :class:`NeuralGroup`, or iterable
 Names of the source groups (which contain the pre-synaptic neurons) or
 directly the group objects themselves.
 target_groups : str, :class:`NeuralGroup`, or iterable
 Names of the target groups (which contain the post-synaptic neurons) or
 directly the group objects themselves.
 graph_model : string
 The name of the connectivity model (among "erdos_renyi",
 "random_scale_free", "price_scale_free", and "newman_watts").
 check_existing : bool, optional (default: True)
 Check whether some of the edges that will be added already exist in the
 graph.
 ignore_invalid : bool, optional (default: False)
 Ignore invalid edges: they are not added to the graph and are
 silently dropped. Unless this is set to true, an error is raised
 if an existing edge is re-generated.
 kwargs : keyword arguments
 Specific model parameters. or edge attributes specifiers such as
 `weights` or `delays`.

 Note

 For graph generation methods which set the properties of a
 specific degree (e.g. :func:`~nngt.generation.gaussian_degree`), the
 groups which have their property sets are the `source_groups`.
 '''
 source_ids, target_ids = [], []

 if network.is_spatial():
 if 'positions' not in kwargs:
 kwargs['positions'] = network.get_positions().astype(np.float32).T
 if 'shape' not in kwargs:
 kwargs['shape'] = network.shape

 if isinstance(source_groups, str) or not is_iterable(source_groups):
 source_groups = [source_groups]
 if isinstance(target_groups, str) or not is_iterable(target_groups):
 target_groups = [target_groups]

 for s in source_groups:
 if isinstance(s, nngt.Structure):
 source_ids.extend(s.ids)
 elif isinstance(s, nngt.Group):
 source_ids.extend(s.ids)
 else:
 source_ids.extend(network.structure[s].ids)

 for t in target_groups:
 if isinstance(t, nngt.Structure):
 target_ids.extend(t.ids)
 elif isinstance(t, nngt.Group):
 target_ids.extend(t.ids)
 else:
 target_ids.extend(network.structure[t].ids)

 source_ids = np.array(source_ids, dtype=np.uint)
 target_ids = np.array(target_ids, dtype=np.uint)

 elist = connect_nodes(
 network, source_ids, target_ids, graph_model, density=density,
 edges=edges, avg_deg=avg_deg, unit=unit, weighted=weighted,
 directed=directed, multigraph=multigraph,
 check_existing=check_existing, ignore_invalid=ignore_invalid,
 **kwargs)

 if not network._graph_type.endswith('_neural_group_connect'):
 network._graph_type += "_neural_group_connect"

 return elist

 Source code for nngt.generation.graph_connectivity

#-*- coding:utf-8 -*-
#
graph_connectivity.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Connectivity generators for nngt.Graph """

from copy import deepcopy
import logging

import numpy as np

import nngt
from nngt.geometry.geom_utils import conversion_magnitude
from nngt.lib.connect_tools import _set_options
from nngt.lib.logger import _log_message
from nngt.lib.test_functions import (mpi_checker, mpi_random, deprecated,
 on_master_process)

__all__ = [
 'all_to_all',
 'circular',
 'distance_rule',
 'erdos_renyi',
 'fixed_degree',
 'from_degree_list',
 'gaussian_degree',
 'newman_watts',
 'random_scale_free',
 'price_scale_free',
 'watts_strogatz',
]

do default import

from .connect_algorithms import *

try to import multithreaded or mpi algorithms

using_mt_algorithms = False

if nngt.get_config("multithreading"):
 logger = logging.getLogger(__name__)
 try:
 from .cconnect import *
 using_mt_algorithms = True
 _log_message(logger, "DEBUG",
 "Using multithreaded algorithms compiled on install.")
 nngt.set_config('multithreading', True, silent=True)
 except Exception as e:
 try:
 import cython
 import pyximport

 try:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 comm.bcast(pyximport.install(language_level=3))
 except:
 if nngt.get_config("mpi"):
 raise RuntimeError("Cannot safely compile with MPI.")

 pyximport.install(language_level=3)

 # wait for compilation to finish
 nngt.lib.mpi_barrier()

 if on_master_process():
 from .cconnect import *

 nngt.lib.mpi_barrier()

 from .cconnect import *

 using_mt_algorithms = True

 _log_message(logger, "DEBUG", str(e) + "\n\tCompiled "
 "multithreaded algorithms on-the-run.")

 nngt.set_config('multithreading', True, silent=True)
 except Exception as e2:
 _log_message(
 logger, "WARNING", str(e) + "\n\t" + str(e2) + "\n\t"
 "Cython import failed, using non-multithreaded algorithms.")
 nngt._config['multithreading'] = False

if nngt.get_config("mpi"):
 try:
 from .mpi_connect import *
 nngt._config['mpi'] = True
 except ImportError as e:
 nngt._config['mpi'] = False
 raise e

Specific degree distributions

[docs]def all_to_all(nodes=0, weighted=True, directed=True, multigraph=False,
 name="AllToAll", shape=None, positions=None, population=None,
 **kwargs):
 """
 Generate a graph where all nodes are connected.

 .. versionadded:: 1.0

 Parameters

 nodes : int, optional (default: None)
 The number of nodes in the graph.
 reciprocity : double, optional (default: -1 to let it free)
 Fraction of edges that are bidirectional (only for directed graphs
 -- undirected graphs have a reciprocity of 1 by definition)
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment.
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).

 Note

 `nodes` is required unless `population` is provided.

 Returns

 graph_all : :class:`~nngt.Graph`, or subclass
 A new generated graph.
 """
 nodes = nodes if population is None else population.size

 graph_all = nngt.Graph(name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_all, population, shape, positions)

 # add edges
 if nodes > 1:
 ids = np.arange(nodes, dtype=np.uint)
 edges = _all_to_all(ids, ids, directed=directed, multigraph=multigraph)
 graph_all.new_edges(edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_all._graph_type = "all_to_all"

 return graph_all

[docs]@mpi_random
def from_degree_list(degrees, degree_type='in', weighted=True,
 directed=True, multigraph=False, name="DL",
 shape=None, positions=None, population=None,
 from_graph=None, **kwargs):
 """
 Generate a random graph from a given list of degrees.

 Parameters

 degrees : list
 The list of degrees for each node in the graph.
 degree_type : str, optional (default: 'in')
 The type of the fixed degree, among ``'in'``, ``'out'`` or ``'total'``.
 @todo `'total'` not implemented yet.
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 @todo: only for directed graphs for now. Whether the graph is directed
 or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment.
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Returns

 graph_dl : :class:`~nngt.Graph`, or subclass
 A new generated graph or the modified `from_graph`.
 """
 # set node number and library graph
 graph_dl = from_graph
 nodes = len(degrees)

 if "nodes" in kwargs:
 assert kwargs["nodes"] == nodes, \
 "Invalid `nodes` entry: the number of nodes should " \
 "be ``len(degrees)``."
 del kwargs["nodes"]

 if graph_dl is not None:
 nodes = graph_dl.node_nb()
 graph_dl.clear_all_edges()
 else:
 nodes = population.size if population is not None else nodes
 graph_dl = nngt.Graph(
 name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_dl, population, shape, positions)

 # add edges
 ia_edges = None

 if nodes > 1:
 ids = np.arange(nodes, dtype=np.uint)
 ia_edges = _from_degree_list(ids, ids, degrees, degree_type,
 directed=directed, multigraph=multigraph)
 # check for None if MPI
 if ia_edges is not None:
 graph_dl.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_dl._graph_type = "from_{}_degree_list".format(degree_type)

 return graph_dl

[docs]@mpi_random
def fixed_degree(degree, degree_type='in', nodes=0, reciprocity=-1.,
 weighted=True, directed=True, multigraph=False, name="FD",
 shape=None, positions=None, population=None, from_graph=None,
 **kwargs):
 """
 Generate a random graph with constant in- or out-degree.

 Parameters

 degree : int
 The value of the constant degree.
 degree_type : str, optional (default: 'in')
 The type of the fixed degree, among ``'in'``, ``'out'`` or ``'total'``.

 @todo
 `'total'` not implemented yet.

 nodes : int, optional (default: None)
 The number of nodes in the graph.
 reciprocity : double, optional (default: -1 to let it free)
 @todo: not implemented yet. Fraction of edges that are bidirectional
 (only for directed graphs -- undirected graphs have a reciprocity of
 1 by definition)
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 @todo: only for directed graphs for now. Whether the graph is directed
 or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment.
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Note

 `nodes` is required unless `from_graph` or `population` is provided.
 If an `from_graph` is provided, all preexistant edges in the
 object will be deleted before the new connectivity is implemented.

 Returns

 graph_fd : :class:`~nngt.Graph`, or subclass
 A new generated graph or the modified `from_graph`.
 """
 # set node number and library graph
 graph_fd = from_graph

 if graph_fd is not None:
 nodes = graph_fd.node_nb()
 graph_fd.clear_all_edges()
 else:
 nodes = population.size if population is not None else nodes
 graph_fd = nngt.Graph(
 name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_fd, population, shape, positions)

 # add edges
 ia_edges = None

 if nodes > 1:
 ids = np.arange(nodes, dtype=np.uint)
 ia_edges = _fixed_degree(
 ids, ids, degree, degree_type, reciprocity=reciprocity,
 directed=directed, multigraph=multigraph)
 # check for None if MPI
 if ia_edges is not None:
 graph_fd.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_fd._graph_type = "fixed_{}_degree".format(degree_type)

 return graph_fd

[docs]@mpi_random
def gaussian_degree(avg, std, degree_type='in', nodes=0, reciprocity=-1.,
 weighted=True, directed=True, multigraph=False, name="GD",
 shape=None, positions=None, population=None,
 from_graph=None, **kwargs):
 """
 Generate a random graph with constant in- or out-degree.

 Parameters

 avg : float
 The value of the average degree.
 std : float
 The standard deviation of the Gaussian distribution.
 degree_type : str, optional (default: 'in')
 The type of the fixed degree, among 'in', 'out' or 'total' (or the
 full version: 'in-degree'...)
 @todo: Implement 'total' degree
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 reciprocity : double, optional (default: -1 to let it free)
 @todo: not implemented yet. Fraction of edges that are bidirectional
 (only for directed graphs -- undirected graphs have a reciprocity of
 1 by definition)
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 @todo: only for directed graphs for now. Whether the graph is directed
 or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment.
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Returns

 graph_gd : :class:`~nngt.Graph`, or subclass
 A new generated graph or the modified `from_graph`.

 Note

 `nodes` is required unless `from_graph` or `population` is provided.
 If an `from_graph` is provided, all preexistant edges in the object
 will be deleted before the new connectivity is implemented.
 """
 # set node number and library graph
 graph_gd = from_graph

 if graph_gd is not None:
 nodes = graph_gd.node_nb()
 graph_gd.clear_all_edges()
 else:
 nodes = population.size if population is not None else nodes
 graph_gd = nngt.Graph(
 name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_gd, population, shape, positions)

 # add edges
 ia_edges = None
 if nodes > 1:
 ids = np.arange(nodes, dtype=np.uint)
 ia_edges = _gaussian_degree(
 ids, ids, avg, std, degree_type, reciprocity=reciprocity,
 directed=directed, multigraph=multigraph)
 # check for None if MPI
 if ia_edges is not None:
 graph_gd.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_gd._graph_type = "gaussian_{}_degree".format(degree_type)

 return graph_gd

Erdos-Renyi

[docs]def erdos_renyi(density=None, nodes=0, edges=None, avg_deg=None,
 reciprocity=-1., weighted=True, directed=True,
 multigraph=False, name="ER", shape=None, positions=None,
 population=None, from_graph=None, **kwargs):
 """
 Generate a random graph as defined by Erdos and Renyi but with a
 reciprocity that can be chosen.

 Parameters

 density : double, optional (default: -1.)
 Structural density given by `edges / nodes`:math:`^2`. It is also the
 probability for each possible edge in the graph to exist.
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 edges : int (optional)
 The number of edges between the nodes
 avg_deg : double, optional
 Average degree of the neurons given by `edges / nodes`.
 reciprocity : double, optional (default: -1 to let it free)
 Fraction of edges that are bidirectional (only for
 directed graphs -- undirected graphs have a reciprocity of 1 by
 definition)
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment.
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Returns

 graph_er : :class:`~nngt.Graph`, or subclass
 A new generated graph or the modified `from_graph`.

 Note

 `nodes` is required unless `from_graph` or `population` is provided.
 If an `from_graph` is provided, all preexistant edges in the
 object will be deleted before the new connectivity is implemented.
 """
 # set node number and library graph
 graph_er = from_graph

 if graph_er is not None:
 nodes = graph_er.node_nb()
 graph_er.clear_all_edges()
 else:
 nodes = population.size if population is not None else nodes
 graph_er = nngt.Graph(
 name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_er, population, shape, positions)

 # add edges
 ia_edges = None

 if nodes > 1:
 ids = range(nodes)
 ia_edges = _erdos_renyi(ids, ids, density, edges, avg_deg, reciprocity,
 directed, multigraph)
 graph_er.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_er._graph_type = "erdos_renyi"

 return graph_er

Scale-free models

[docs]def random_scale_free(in_exp, out_exp, nodes=0, density=None, edges=None,
 avg_deg=None, reciprocity=0., weighted=True,
 directed=True, multigraph=False, name="RandomSF",
 shape=None, positions=None, population=None,
 from_graph=None, **kwargs):
 """
 Generate a free-scale graph of given reciprocity and otherwise
 devoid of correlations.

 Parameters

 in_exp : float
 Absolute value of the in-degree exponent :math:`\gamma_i`, such that
 :math:`p(k_i) \propto k_i^{-\gamma_i}`
 out_exp : float
 Absolute value of the out-degree exponent :math:`\gamma_o`, such that
 :math:`p(k_o) \propto k_o^{-\gamma_o}`
 nodes : int, optional (default: 0)
 The number of nodes in the graph.
 density: double, optional
 Structural density given by `edges / (nodes*nodes)`.
 edges : int optional
 The number of edges between the nodes
 avg_deg : double, optional
 Average degree of the neurons given by `edges / nodes`.
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes. can contain multiple edges between two
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment.
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`)
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Returns

 graph_fs : :class:`~nngt.Graph`

 Note

 As reciprocity increases, requested values of `in_exp` and `out_exp`
 will be less and less respected as the distribution will converge to a
 common exponent :math:`\gamma = (\gamma_i + \gamma_o) / 2`.
 Parameter `nodes` is required unless `from_graph` or `population` is
 provided.
 """
 # set node number and library graph
 graph_rsf = from_graph
 if graph_rsf is not None:
 nodes = graph_rsf.node_nb()
 graph_rsf.clear_all_edges()
 else:
 nodes = population.size if population is not None else nodes
 graph_rsf = nngt.Graph(
 name=name,nodes=nodes,directed=directed,**kwargs)

 _set_options(graph_rsf, population, shape, positions)

 # add edges
 if nodes > 1:
 ids = range(nodes)
 ia_edges = _random_scale_free(ids, ids, in_exp, out_exp, density,
 edges, avg_deg, reciprocity, directed, multigraph)
 graph_rsf.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_rsf._graph_type = "random_scale_free"

 return graph_rsf

[docs]def price_scale_free(m, c=None, gamma=1, nodes=0, reciprocity=0, weighted=True,
 directed=True, multigraph=False, name="PriceSF",
 shape=None, positions=None, population=None, **kwargs):
 r'''
 Generate a Price graph model (Barabasi-Albert if undirected).

 Parameters

 m : int
 The number of edges each new node will make.
 c : double, optional (0 if undirected, else 1)
 Constant added to the probability of a vertex receiving an edge.
 gamma : double, optional (default: 1)
 Preferential attachment power.
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 reciprocity : float, optional (default: 0)
 Reciprocity of the graph (between 0 and 1). For directed graphs, this
 will be the probability of the target node connecting back to the
 source node when a new edge is added.
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).

 Returns

 graph_price : :class:`~nngt.Graph` or subclass.

 Note

 `nodes` is required unless `population` is provided.

 Notes

 The (generalized) Price network is either a directed or undirected graph
 (the latter is better known as the Barabási-Albert network).
 It is generated via a growth process, adding a new node at each step and
 connecting it to :math:`m` previous nodes, chosen with probability:

 .. math::

 p \propto k^\gamma + c

 where :math:`k` is the (in-)degree of the vertex.

 We must therefore have :math:`c \ge 0` for directed graphs and
 :math:`c > -1` for undirected graphs.

 If the `reciprocity` :math:`r` is non-zero, each targeted node reciprocates
 the connection with probability :math:`r`.
 Expected reciprocity of the final graph is :math:`2r / (1 + r)`.

 If :math:`\gamma=1`, and `reciprocity` is zero, the tail of resulting
 in-degree distribution of the directed case is given by

 .. math::

 P_{k_{in}} \sim k_{in}^{-(2 + c/m)},

 or for the undirected case

 .. math::

 P_{k} \sim k^{-(3 + c/m)}.

 However, if :math:`\gamma \ne 1`, the in-degree distribution is not
 scale-free.
 '''
 c = c if c is not None else 1 if directed else 0

 # set node number and library graph
 nodes = population.size if population is not None else nodes

 graph_psf = nngt.Graph(
 name=name, nodes=nodes, directed=directed, weighted=weighted,
 **kwargs)

 _set_options(graph_psf, population, shape, positions)

 # add edges
 if nodes > 1:
 ids = range(nodes)
 edges = _price_scale_free(ids, m, c, gamma, reciprocity, directed,
 multigraph)

 graph_psf.new_edges(edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_psf._graph_type = "price_scale_free"

 return graph_psf

Circular graph

[docs]def circular(coord_nb, reciprocity=1., reciprocity_choice="random", nodes=0,
 weighted=True, directed=True, multigraph=False, name="Circular",
 shape=None, positions=None, population=None, from_graph=None,
 **kwargs):
 '''
 Generate a circular graph.

 The nodes are placed on a circle and connected to their `coord_nb` closest
 neighbours.
 If the graph is directed, the number of connections depends on the value
 of `reciprocity`: if ``reciprocity == 0.``, then only half of all possible
 connections will be created, so that no bidirectional edges exist; on the
 other hand, for ``reciprocity == 1.``, all possible edges are created; for
 intermediate values of `reciprocity`, the number of edges increases
 linearly as ``0.5*(1 + reciprocity / (2 - reciprocity))*nodes*coord_nb``.

 Parameters

 coord_nb : int
 The number of neighbours for each node on the initial topological
 lattice (must be even).
 reciprocity : double, optional (default: 1.)
 Proportion of reciprocal edges in the graph.
 reciprocity_choice : str, optional (default: "random")
 How reciprocal edges should be chosen, which can be either "random" or
 "closest". If the latter option is used, then connections
 between first neighbours are rendered reciprocal first, then between
 second neighbours, etc.
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 density: double, optional (default: 0.1)
 Structural density given by `edges` / (`nodes`*`nodes`).
 edges : int (optional)
 The number of edges between the nodes
 avg_deg : double, optional
 Average degree of the neurons given by `edges` / `nodes`.
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Returns

 graph_circ : :class:`~nngt.Graph` or subclass
 '''
 if multigraph:
 raise ValueError("`multigraph` is not supported for circular graphs.")

 # set node number and library graph
 graph_circ = from_graph

 if graph_circ is not None:
 nodes = graph_circ.node_nb()
 else:
 nodes = population.size if population is not None else nodes
 graph_circ = nngt.Graph(
 name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_circ, population, shape, positions)

 # add edges
 if nodes > 1:
 ids = range(nodes)
 edges = _circular(ids, ids, coord_nb, reciprocity, directed,
 reciprocity_choice=reciprocity_choice)

 graph_circ.new_edges(edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_circ._graph_type = "circular"

 return graph_circ

Small-world models

[docs]def newman_watts(coord_nb, proba_shortcut=None, reciprocity_circular=1.,
 reciprocity_choice_circular="random", nodes=0, edges=None,
 weighted=True, directed=True, multigraph=False, name="NW",
 shape=None, positions=None, population=None, from_graph=None,
 **kwargs):
 """
 Generate a (potentially small-world) graph using the Newman-Watts
 algorithm.

 For directed networks, the reciprocity of the initial circular network can
 be chosen.

 .. versionchanged:: 2.0
 Added the `reciprocity_circular` and `reciprocity_choice_circular`
 options.

 Parameters

 coord_nb : int
 The number of neighbours for each node on the initial topological
 lattice (must be even).
 proba_shortcut : double, optional
 Probability of adding a new random (shortcut) edge for each existing
 edge on the initial lattice.
 If `edges` is provided, then will be computed automatically as
 ``edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)``
 reciprocity_circular : double, optional (default: 1.)
 Proportion of reciprocal edges in the initial circular graph.
 reciprocity_choice_circular : str, optional (default: "random")
 How reciprocal edges should be chosen in the initial circular graph.
 This can be either "random" or "closest". If the latter option
 is used, then connections between first neighbours are rendered
 reciprocal first, then between second neighbours, etc.
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 edges : int (optional)
 The number of edges between the nodes.
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Returns

 graph_nw : :class:`~nngt.Graph` or subclass

 Note

 `nodes` is required unless `from_graph` or `population` is provided.
 """
 if multigraph:
 raise ValueError("`multigraph` is not supported for Watts-Strogatz.")

 # set node number and library graph
 graph_nw = from_graph

 if graph_nw is not None:
 nodes = graph_nw.node_nb()
 else:
 nodes = population.size if population is not None else nodes
 graph_nw = nngt.Graph(
 name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_nw, population, shape, positions)

 # add edges
 if nodes > 1:
 ids = range(nodes)

 ia_edges = _newman_watts(
 ids, ids, coord_nb, proba_shortcut, reciprocity_circular,
 reciprocity_choice_circular=reciprocity_choice_circular,
 edges=edges, directed=directed)

 graph_nw.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_nw._graph_type = "watts_strogatz"

 return graph_nw

[docs]def watts_strogatz(coord_nb, proba_shortcut=None, reciprocity_circular=1.,
 reciprocity_choice_circular="random", shuffle="random",
 nodes=0, weighted=True, directed=True, multigraph=False,
 name="WS", shape=None, positions=None, population=None,
 from_graph=None, **kwargs):
 """
 Generate a (potentially small-world) graph using the Watts-Strogatz
 algorithm.

 For directed networks, the reciprocity of the initial circular network can
 be chosen.

 .. versionadded:: 2.0

 Parameters

 coord_nb : int
 The number of neighbours for each node on the initial topological
 lattice (must be even).
 proba_shortcut : double, optional
 Probability of adding a new random (shortcut) edge for each existing
 edge on the initial lattice.
 If `edges` is provided, then will be computed automatically as
 ``edges / (coord_nb * nodes * (1 + reciprocity_circular) / 2)``
 reciprocity_circular : double, optional (default: 1.)
 Proportion of reciprocal edges in the initial circular graph.
 reciprocity_choice_circular : str, optional (default: "random")
 How reciprocal edges should be chosen in the initial circular graph.
 This can be either "random" or "closest". If the latter option
 is used, then connections between first neighbours are rendered
 reciprocal first, then between second neighbours, etc.
 shuffle : str, optional (default: 'random')
 Whether to shuffle only 'targets' (out-degree of all nodes remains
 constant), 'sources' (in-degree remains constant), or randomly the
 source or the target for each edge ('random') in the case of directed
 graphs.
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "ER")
 Name of the created graph.
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D or 3D array containing the positions of the neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.

 Returns

 graph_nw : :class:`~nngt.Graph` or subclass

 Note

 `nodes` is required unless `from_graph` or `population` is provided.
 """
 if multigraph:
 raise ValueError("`multigraph` is not supported for Newman-Watts.")

 # set node number and library graph
 graph_nw = from_graph
 if graph_nw is not None:
 nodes = graph_nw.node_nb()
 else:
 nodes = population.size if population is not None else nodes
 graph_nw = nngt.Graph(
 name=name, nodes=nodes, directed=directed, **kwargs)

 _set_options(graph_nw, population, shape, positions)

 # add edges
 if nodes > 1:
 ids = range(nodes)

 ia_edges = _watts_strogatz(
 ids, ids, coord_nb, proba_shortcut, reciprocity_circular,
 reciprocity_choice_circular, shuffle, directed=directed)

 graph_nw.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 graph_nw._graph_type = "newman_watts"

 return graph_nw

Distance-based models

[docs]@mpi_random
def distance_rule(scale, rule="exp", shape=None, neuron_density=1000.,
 max_proba=-1., nodes=0, density=None, edges=None,
 avg_deg=None, unit='um', weighted=True, directed=True,
 multigraph=False, name="DR", positions=None, population=None,
 from_graph=None, **kwargs):
 """
 Create a graph using a 2D distance rule to create the connection between
 neurons. Available rules are linear and exponential.

 Parameters

 scale : float
 Characteristic scale for the distance rule. E.g for linear distance-
 rule, :math:`P(i,j) \propto (1-d_{ij}/scale))`, whereas for the
 exponential distance-rule, :math:`P(i,j) \propto e^{-d_{ij}/scale}`.
 rule : string, optional (default: 'exp')
 Rule that will be apply to draw the connections between neurons.
 Choose among "exp" (exponential), "gaussian" (Gaussian), or
 "lin" (linear).
 shape : :class:`~nngt.geometry.Shape`, optional (default: None)
 Shape of the neurons' environment. If not specified, a square will be
 created with the appropriate dimensions for the number of neurons and
 the neuron spatial density.
 neuron_density : float, optional (default: 1000.)
 Density of neurons in space (:math:`neurons \cdot mm^{-2}`).
 nodes : int, optional (default: None)
 The number of nodes in the graph.
 p : float, optional
 Normalization factor for the distance rule; it is equal to the
 probability of connection when testing a node at zero distance.
 density: double, optional
 Structural density given by `edges` / (`nodes` * `nodes`).
 edges : int, optional
 The number of edges between the nodes
 avg_deg : double, optional
 Average degree of the neurons given by `edges` / `nodes`.
 unit : string (default: 'um')
 Unit for the length `scale` among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'.
 weighted : bool, optional (default: True)
 Whether the graph edges have weights.
 directed : bool, optional (default: True)
 Whether the graph is directed or not.
 multigraph : bool, optional (default: False)
 Whether the graph can contain multiple edges between two
 nodes.
 name : string, optional (default: "DR")
 Name of the created graph.
 positions : :class:`numpy.ndarray`, optional (default: None)
 A 2D (N, 2) or 3D (N, 3) shaped array containing the positions of the
 neurons in space.
 population : :class:`~nngt.NeuralPop`, optional (default: None)
 Population of neurons defining their biological properties (to create a
 :class:`~nngt.Network`).
 from_graph : :class:`Graph` or subclass, optional (default: None)
 Initial graph whose nodes are to be connected.
 """
 distance = []
 # convert neuronal density in (mu m)^2
 neuron_density *= conversion_magnitude(unit, 'mm')**2
 # set node number and library graph
 graph_dr = from_graph
 if graph_dr is not None:
 nodes = graph_dr.node_nb()
 graph_dr.clear_all_edges()
 else:
 nodes = population.size if population is not None else nodes
 # check shape
 if shape is None:
 h = w = np.sqrt(float(nodes) / neuron_density)
 shape = nngt.geometry.Shape.rectangle(h, w)
 if graph_dr is None:
 graph_dr = nngt.SpatialGraph(
 name=name, nodes=nodes, directed=directed, shape=shape,
 positions=positions, **kwargs)
 else:
 Graph.make_spatial(graph_dr, shape, positions=positions)
 positions = np.array(graph_dr.get_positions().T, dtype=np.float32)
 # set options (graph has already been made spatial)
 _set_options(graph_dr, population, None, None)
 # add edges
 ia_edges = None
 conversion_factor = conversion_magnitude(shape.unit, unit)
 if unit != shape.unit:
 positions = np.multiply(conversion_factor, positions, dtype=np.float32)
 if nodes > 1:
 ids = np.arange(0, nodes, dtype=np.uint)
 ia_edges = _distance_rule(
 ids, ids, density, edges, avg_deg, scale, rule, max_proba, shape,
 positions, directed, multigraph, distance=distance, **kwargs)
 attr = {'distance': distance}
 # check for None if MPI
 if ia_edges is not None:
 graph_dr.new_edges(ia_edges, attributes=attr,
 check_duplicates=False, check_self_loops=False,
 check_existing=False)

 graph_dr._graph_type = "{}_distance_rule".format(rule)
 return graph_dr

Polyvalent generator

_di_generator = {
 "all_to_all": all_to_all,
 "circular": circular,
 "distance_rule": distance_rule,
 "erdos_renyi": erdos_renyi,
 "fixed_degree": fixed_degree,
 "from_degree_list": from_degree_list,
 "gaussian_degree": gaussian_degree,
 "newman_watts": newman_watts,
 "price_scale_free": price_scale_free,
 "random_scale_free": random_scale_free,
 "watts_strogatz": watts_strogatz,
}

[docs]def generate(di_instructions, **kwargs):
 '''
 Generate a :class:`~nngt.Graph` or one of its subclasses from a ``dict``
 containing all the relevant informations.

 Parameters

 di_instructions : ``dict``
 Dictionary containing the instructions to generate the graph. It must
 have at least ``"graph_type"`` in its keys, with a value among
 ``"distance_rule", "erdos_renyi", "fixed_degree", "newman_watts",
 "price_scale_free", "random_scale_free"``. Depending on the type,
 `di_instructions` should also contain at least all non-optional
 arguments of the generator function.

 See also

 :mod:`~nngt.generation`
 '''
 graph_type = di_instructions["graph_type"]
 instructions = deepcopy(di_instructions)
 instructions.update(kwargs)
 return _di_generator[graph_type](**instructions)

 Source code for nngt.generation.rewiring

#-*- coding:utf-8 -*-
#
rewiring.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Rewiring functions """

from copy import deepcopy

import numpy as np

import nngt
from nngt.generation import graph_connectivity as gc
from nngt.lib import nonstring_container

__all__ = [
 "lattice_rewire",
 "random_rewire"
]

[docs]def lattice_rewire(g, target_reciprocity=1., node_attr_constraints=None,
 edge_attr_constraints=None, weight=None,
 weight_constraint="distance", distance_sort="inverse"):
 r'''
 Build a (generally irregular) lattice by rewiring the edges of a graph.

 .. versionadded:: 2.0

 The lattice is based on a circular graph, meaning that the nodes are placed
 on a circle and connected based on the topological distance between them,
 the distance being defined through the positive modulo:

 .. math::

 d_{ij} = (i - j) \% N

 with :math:`N` the number of nodes in the graph.

 Parameters

 g : :class:`~nngt.Graph`
 Graph based on which the lattice will be generated.
 target_reciprocity : float, optional (default: 1.)
 Value of reciprocity that should be aimed at. Depending on the number
 of edges, it may not be possible to reach this value exactly.
 node_attr_constraints : str, optional (default: randomize all attributes)
 Whether attribute randomization is constrained: either "preserve",
 where all nodes keep their attributes, or "together", where attributes
 are randomized by groups (all attributes of a given node are sent to
 the same new node). By default, attributes are completely and
 separately randomized.
 edge_attr_constraints : str, optional (default: randomize all but `weight`)
 Whether attribute randomization is constrained.
 If "distance" is used, then all number attributes (float or int) are
 sorted and are first associated to the shortest or longest edges
 depending on the value of `distance_sort`. Note that, for directed
 graphs, if a reciprocal edge exists, it is immediately assigned the
 next highest (respectively lowest) attribute after that of its directed
 couterpart.
 If "together" is used, edges attributes are randomized by groups (all
 attributes of a given edge are sent to the same new edge) either
 randomly if `weight` is None, or following the constrained `weight`
 attribute. By default, attributes are completely and separately
 randomized (except for `weight` if it has been provided).
 weight : str, optional (default: None)
 Whether a specific edge attribute should play the role of weight and
 have special constraints.
 weight_constraint : str, optional (default: "distance")
 Same as `edge_attr_constraints`` but only applies to `weight` and can
 only be "distance" or None since "together" was related to `weight`.
 distance_sort : str, optional (default: "inverse")
 How attributes are sorted with edge distance: either "inverse", with
 the shortest edges being assigned the largest weights, or with a
 "linear" sort, where shortest edges are assigned the lowest weights.
 '''
 directed = g.is_directed()
 num_nodes = g.node_nb()
 num_edges = g.edge_nb()

 # check that requested lattice is possible
 if directed:
 if num_edges < int(num_nodes*(1 + target_reciprocity)):
 raise ValueError("The number of edges in the graph is not "
 "sufficient to make a lattice with requested "
 "reciprocity.")
 else:
 if num_edges < num_nodes:
 raise ValueError("The number of edges in the graph is not"
 "sufficient to make a lattice.")

 # check arguments
 if node_attr_constraints not in (None, "preserve", "together"):
 raise ValueError("`node_attr_constraints` must be either None, "
 "'preserve', or 'together'.")

 if edge_attr_constraints not in (None, "distance", "together"):
 raise ValueError("`edge_attr_constraints` must be either None, "
 "'distance', or 'together'.")

 if weight_constraint not in ("distance", None):
 raise ValueError("`weight_constraint` can only be 'distance' or None.")

 if distance_sort not in ("linear", "inverse"):
 raise ValueError("`distance_sort` must be either 'linear' or "
 "'inverse'.")

 if not directed and target_reciprocity != 1:
 raise ValueError("Reciprocity is always 1 for undirected graphs.")

 # init graph and edges
 new_graph = nngt.Graph(nodes=num_nodes, directed=directed,
 name=g.name + "_latticized")

 ia_edges = np.full((num_edges, 2), -1, dtype=np.int64)

 # compute the coodination number of the closest regular lattice
 coord_nb = None

 if directed:
 # coordination number must be even
 coord_nb = 2 * int(num_edges * (1 - 0.5 * target_reciprocity)
 / num_nodes)
 else:
 # coordination number must be even and resulting edges are half
 coord_nb = 2*int(num_edges / num_nodes)

 e_reglat = int(0.5*num_nodes*coord_nb)

 # generate the edges of the regular lattice (setting 0 reciprocity for
 # directed case, this is ignored if graph is undirected)
 ids = range(num_nodes)

 ia_edges[:e_reglat] = gc._circular(
 ids, ids, coord_nb, directed=False,
 reciprocity_choice="closest-ordered")

 # add the remaining edges (remaining edges strictly smaller than num_nodes)
 e_remaining = num_edges - e_reglat

 if e_remaining:
 last_edges = np.full((e_remaining, 2), -1, dtype=np.int64)

 if directed:
 # make reciprocal edges first
 num_recip = int(0.5 * target_reciprocity * num_edges)

 # check if recip are more numerous that regular lattice edges
 first_recip = num_recip if num_recip <= e_reglat else e_reglat

 if first_recip:
 last_edges[:first_recip] = ia_edges[:first_recip, ::-1]
 e_remaining -= first_recip

 if e_remaining:
 # new connections are one step above the max regular lattice
 # distance
 dist = int(0.5*coord_nb) + 1

 # make reciprocal edges
 num_recip -= first_recip

 if num_recip:
 last_edges[first_recip:first_recip + num_recip] = \
 [(i, (i + dist) % num_nodes) for i in range(num_recip)]

 start = first_recip + num_recip
 stop = first_recip + 2*num_recip

 last_edges[start:stop] = \
 last_edges[first_recip:start, ::-1]

 # make remaning non-reciprocal edges
 e_final = e_remaining - 2*num_recip

 if e_final:
 last_edges[first_recip + 2*num_recip:] = \
 [(i, (i + dist) % num_nodes)
 for i in range(num_recip, num_recip + e_final)]
 else:
 # new connections are one step above the max regular lattice
 # distance
 dist = int(0.5*coord_nb) + 1
 last_edges[:] = [(i, i + dist) for i in range(e_remaining)]

 # put nodes back into [0, num_nodes[
 last_edges[last_edges >= num_nodes] -= num_nodes

 ia_edges[e_reglat:] = last_edges

 # add the edges
 new_graph.new_edges(ia_edges, check_duplicates=False,
 check_self_loops=False, check_existing=False)

 # set the node attributes
 _set_node_attributes(g, new_graph, node_attr_constraints, num_nodes)

 # edge attributes
 order = None

 # start with the weight
 if weight is not None:
 order = _lattice_shuffle_eattr(
 weight, g, new_graph, coord_nb, target_reciprocity,
 weight_constraint, distance_sort)

 for eattr in g.edge_attributes:
 if eattr != weight:
 ordering = (order if edge_attr_constraints == "together"
 else edge_attr_constraints)

 order = _lattice_shuffle_eattr(
 eattr, g, new_graph, coord_nb, target_reciprocity,
 ordering, distance_sort)

 return new_graph

[docs]def random_rewire(g, constraints=None, node_attr_constraints=None,
 edge_attr_constraints=None):
 '''
 Generate a new rewired graph from `g`.

 .. versionadded:: 2.0

 Parameters

 g : :class:`~nngt.Graph`
 Base graph based on which a new rewired graph will be generated.
 constraints : str, optional (default: no constraints)
 Defines which properties of `g` will be maintained in the rewired
 graph. By default, the graph is completely rewired into an Erdos-Renyi
 model. Available constraints are "in-degree", "out-degree",
 "total-degree", "all-degrees", and "clustering".
 node_attr_constraints : str, optional (default: randomize all attributes)
 Whether attribute randomization is constrained: either "preserve",
 where all nodes keep their attributes, or "together", where attributes
 are randomized by groups (all attributes of a given node are sent to
 the same new node). By default, attributes are completely and
 separately randomized.
 edge_attr_constraints : str, optional (default: randomize all attributes)
 Whether attribute randomization is constrained.
 If `constraints` is "in-degree" (respectively "out-degree") or
 "degrees", this can be "preserve_in" (respectively "preserve_out"),
 in which case all attributes of a given edge are moved together to a
 new incoming (respectively outgoing) edge of the same node.
 Regardless of `constraints`, "together" can be used so that edges
 attributes are randomized by groups (all attributes of a given edge are
 sent to the same new edge). By default, attributes are completely and
 separately randomized.
 '''
 directed = g.is_directed()
 num_nodes = g.node_nb()
 num_edges = g.edge_nb()

 new_graph = None

 if node_attr_constraints not in (None, "preserve", "together"):
 raise ValueError("`node_attr_constraints` must be either None, "
 "'preserve', or 'together'.")

 # check compatibility between `constraints` and `edge_attr_constraints`
 valid_e = (None, "preserve_in", "preserve_out", "together")

 if edge_attr_constraints not in valid_e:
 raise ValueError(
 "`edge_attr_constraints` must be in {}.".format(valid_e))
 elif edge_attr_constraints == "preserve_in":
 assert constraints in ("in-degree", "all-degrees"), \
 "Can only use 'preserve_in' if `constraints` is 'in-degree' or " \
 "'all-degrees'."
 elif edge_attr_constraints == "preserve_out":
 assert constraints in ("out-degree", "all-degrees"), \
 "Can only use 'preserve_out' if `constraints` is 'out-degree' " \
 "or 'all-degrees'."

 # generate rewired graph
 if constraints is None:
 new_graph = gc.erdos_renyi(edges=num_edges, nodes=num_nodes,
 directed=directed)
 elif constraints == "all-degrees":
 raise NotImplementedError("Full degrees constraints is not yet "
 "implemented.")
 elif "degree" in constraints:
 degrees = g.get_degrees(constraints)
 new_graph = gc.from_degree_list(degrees, constraints,
 directed=directed)
 elif constraints == "clustering":
 raise NotImplementedError("Rewiring with constrained clustering is "
 "not yet available.")

 rng = nngt._rng

 # node attributes
 _set_node_attributes(g, new_graph, node_attr_constraints, num_nodes)

 # edge attributes
 order = np.arange(num_edges, dtype=int)

 if edge_attr_constraints == "together":
 rng.shuffle(order)
 elif edge_attr_constraints == "preserve_in":
 for i in range(num_nodes):
 old_edges = g.get_edges(target_node=i)
 new_edges = new_graph.get_edges(target_node=i)

 if len(new_edges):
 old_ids = g.edge_id(old_edges)
 new_ids = new_graph.edge_id(new_edges)

 order[new_ids] = old_ids
 elif edge_attr_constraints == "preserve_out":
 for i in range(num_nodes):
 old_edges = g.get_edges(source_node=i)
 new_edges = new_graph.get_edges(source_node=i)

 if len(new_edges):
 old_ids = g.edge_id(old_edges)
 new_ids = new_graph.edge_id(new_edges)

 order[new_ids] = old_ids

 for k in g.edge_attributes:
 v = deepcopy(g.get_edge_attributes(name=k))

 if edge_attr_constraints is None:
 rng.shuffle(v)
 else:
 v = v[order]

 dtype = g.get_attribute_type(k, attribute_class="edge")

 new_graph.new_edge_attribute(k, dtype, values=v)

 # set spatial/network properties
 if g.is_spatial():
 nngt.Graph.make_spatial(new_graph, shape=g.shape.copy(),
 positions=g.get_positions().copy())
 if g.is_network():
 nngt.Graph.make_network(new_graph, neural_pop=g.population.copy())

 new_graph._name = g.name + "_rewired"

 return new_graph

Tools

def _set_node_attributes(old_graph, new_graph, constraints, num_nodes):
 ''' Reassign node attributes '''
 order = None

 if constraints == "together":
 order = [i for i in range(num_nodes)]
 nngt._rng.shuffle(order) # shuffled order for "together"

 for k, v in old_graph.node_attributes.items():
 values = v.copy()

 if constraints is None:
 nngt._rng.shuffle(values)
 elif constraints == "together":
 values = v[order]

 dtype = old_graph.get_attribute_type(k, attribute_class="node")

 new_graph.new_node_attribute(k, dtype, values=values)

def _lattice_shuffle_eattr(name, old_graph, new_graph, coord_nb,
 target_recip, order, distance_sort):
 '''
 Reassign edge attributes based on a constraint or a pre-defined
 order for the lattice rewiring.

 Parameters

 name : str
 Name of the edge attribute.
 old_graph : :class:`~nngt.Graph`
 The old graph.
 new_graph : :class:`~nngt.Graph`
 The new graph.
 coord_nb : int
 Coordination number of the lattice.
 target_recip : float
 Target reciprocity of the lattice.
 order : array of indices, distance", or None
 Constraint on edge reassignment: either a precomputed order, "distance"
 if we perform a distance-based shuffle, or None if we randomly
 shuffle the attributes.
 distance_sort : str
 How the attributes should correlate with the distance (linearly or
 inversely) if `order` is "distance".

 Returns

 order : array of indices
 The order in which the edge attributes have been shuffled.
 '''
 num_nodes = new_graph.node_nb()
 num_edges = new_graph.edge_nb()

 # old attribute
 value_type = old_graph.get_attribute_type(name, "edge")

 values = old_graph.edge_attributes[name].copy()

 # compute order and reassign values
 if order is None:
 order = np.arange(num_edges, dtype=int)
 nngt._rng.shuffle(order)

 values = values[order]
 elif nonstring_container(order):
 # use precomputed order
 values = values[order]
 else:
 # distance sort
 directed = new_graph.is_directed()

 if directed:
 # we need to find the reciprocal edges for the attribute
 # assignment (this relies on the precise implementation of the
 # function _circular_directed_recip that the closest distances
 # come first, then the reciprocal edges are at the end in the
 # same order)
 init_edges = int(0.5*num_nodes*coord_nb)
 num_recip = int(0.5 * target_recip * num_edges)

 first_recip = \
 num_recip if num_recip <= init_edges else init_edges

 second_recip = num_recip - first_recip

 # fill the order list in the following order
 order = np.zeros(num_edges, dtype=int)
 # the first entries are the initial edges that got a reciprocal
 # connection, we order them with every other first indices
 # since the reciprocal edges will come in between
 if first_recip:
 order[:2*first_recip - 1:2] = np.arange(first_recip)
 # we enter the index of the reciprocal connection
 order[1:2*first_recip:2] = \
 np.arange(init_edges, init_edges + first_recip)

 # then (if needed) we fill the 2nd wave of reciprocal edges
 if second_recip:
 start = init_edges + first_recip

 order[2*first_recip:2*num_recip - 1:2] = \
 np.arange(start, start + second_recip)

 order[2*first_recip + 1:2*num_recip:2] = \
 np.arange(start + second_recip, start + 2*second_recip)

 # then we fill the last entries with the initial edges that did
 # not get a reciprocal connection
 end = 2*num_recip + init_edges - first_recip
 order[2*num_recip:end] = np.arange(num_recip, init_edges)

 order[end:] = \
 np.arange(init_edges + num_recip + second_recip, num_edges)

 order = np.argsort(order)
 else:
 # we don't need to sort the new edges because they are ordered by
 # distance by default in the circular algorithm
 order = slice(num_edges)

 # sort the attribute
 if distance_sort == "linear":
 # order for other attributes if "together" is used
 order = np.argsort(values)[order]

 # sorted values
 values = values[order]

 else:
 # order for other attributes if "together" is used
 order = np.argsort(values)[::-1][order]

 # sorted values
 values = values[order]

 # set the new attributes
 new_graph.new_edge_attribute(name, value_type, values=values)

 return order

 Source code for nngt.geometry.plot

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the PyNCulture project, which aims at providing tools to
easily generate complex neuronal cultures.
Copyright (C) 2017 SENeC Initiative

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
These tools are inspired by Sean Gillies' `descartes` library, that you can
find here: https://pypi.python.org/pypi/descartes. They are released under
a BSD license.

""" Plotting functions for shapely objects """

import numpy as np

from matplotlib.patches import PathPatch
from matplotlib.path import Path

[docs]def plot_shape(shape, axis=None, m='', mc="#999999", fc="#8888ff",
 ec="#444444", alpha=0.5, brightness="height", show_contour=True,
 show=True, **kwargs):
 '''
 Plot a shape (you should set the `axis` aspect to 1 to respect the
 proportions).

 Parameters

 shape : :class:`Shape`
 Shape to plot.
 axis : :class:`matplotlib.axes.Axes` instance, optional (default: None)
 Axis on which the shape should be plotted. By default, a new figure
 is created.
 m : str, optional (default: invisible)
 Marker to plot the shape's vertices, matplotlib syntax.
 mc : str, optional (default: "#999999")
 Color of the markers.
 fc : str, optional (default: "#8888ff")
 Color of the shape's interior.
 ec : str, optional (default: "#444444")
 Color of the shape's edges.
 alpha : float, optional (default: 0.5)
 Opacity of the shape's interior.
 brightness : str, optional (default: height)
 Show how different other areas are from the 'default_area' (lower
 values are darker, higher values are lighter).
 Difference can concern the 'height', or any of the `properties` of the
 :class:`Area` objects.
 show_contour : bool, optional (default: True)
 Whether the shapes should be drawn with a contour.
 show : bool, optional (default: True)
 Whether the plot should be displayed immediately.
 **kwargs: keywords arguments for :class:`matplotlib.patches.PathPatch`
 '''
 # import
 import matplotlib.pyplot as plt
 MultiPolygon = None
 try:
 from shapely.geometry import (MultiPolygon, Polygon, LineString,
 MultiLineString)
 except ImportError:
 pass

 if axis is None:
 fig, axis = plt.subplots()

 zorder = kwargs.get("zorder", 0)
 if "zorder" in kwargs:
 del kwargs["zorder"]

 # plot the main shape
 if isinstance(shape, MultiPolygon):
 for p in shape:
 plot_shape(p, axis=axis, m=m, mc=mc, fc=fc, ec=ec, alpha=alpha,
 brightness=brightness, show=False,
 show_contour=show_contour, **kwargs)
 elif isinstance(shape, Polygon) and shape.exterior.coords:
 if show_contour:
 _plot_coords(axis, shape.exterior, m, mc, ec)
 for path in shape.interiors:
 _plot_coords(axis, path.coords, m, mc, ec)
 patch = _make_patch(shape, color=fc, alpha=alpha, zorder=zorder,
 **kwargs)
 axis.add_patch(patch)

 # take care of the areas
 if hasattr(shape, "areas"):
 def_area = shape.areas["default_area"]

 # get the highest and lowest properties
 mean = _get_prop(def_area, brightness)
 low, high = np.inf, -np.inf

 for name, area in shape.areas.items():
 if name != "default_area":
 prop = _get_prop(area, brightness)
 if prop < low:
 low = prop
 if prop > high:
 high = prop

 # plot the areas
 for name, area in shape.areas.items():
 if name != "default_area":
 prop = _get_prop(area, brightness)
 color = fc
 local_alpha = 0
 if prop < mean:
 color = "black"
 local_alpha = alpha * (prop - mean) / (low - mean)
 elif prop > mean:
 color = "white"
 local_alpha = alpha * (prop - mean) / (high - mean)
 # contour
 _plot_coords(axis, area.exterior, m, mc, ec)
 for path in shape.interiors:
 _plot_coords(axis, path.coords, m, mc, ec)
 # content
 patch = _make_patch(
 area, color=color, alpha=local_alpha, zorder=zorder,
 **kwargs)
 axis.add_patch(patch)
 elif isinstance(shape, (LineString, MultiLineString)):
 lines = [shape] if isinstance(shape, LineString) else shape.geoms
 for line in lines:
 _plot_coords(axis, line.coords, m, mc, ec)

 axis.set_aspect(1)

 if show:
 plt.show()

def _make_patch(shape, **kwargs):
 '''
 Construct a matplotlib patch from a geometric object

 Parameters

 shape: :class:`NetGrowth.geometry.Shape`
 may be a Shapely or GeoJSON-like object with or without holes.
 kwargs: keywords arguments for :class:`matplotlib.patches.PathPatch`

 Returns

 an instance of :class:`matplotlib.patches.PathPatch`.

 Example

 (using Shapely Point and a matplotlib axes):

 >>> b = Point(0, 0).buffer(1.0)
 >>> patch = PolygonPatch(b, fc='blue', ec='blue', alpha=0.5)
 >>> axis.add_patch(patch)

 Modified from `descartes` by Sean Gillies (BSD license).
 '''
 vertices = np.concatenate(
 [np.asarray(shape.exterior.coords)[:, :2]] +
 [np.asarray(h.coords)[:, :2] for h in shape.interiors])
 instructions = np.concatenate(
 [_path_instructions(shape.exterior)] +
 [_path_instructions(h) for h in shape.interiors])

 path = Path(vertices, instructions)
 return PathPatch(path, **kwargs)

def _path_instructions(ob):
 '''
 Give instructions to build path from vertices.
 '''
 # The codes will be all "LINETO" commands, except for "MOVETO"s at the
 # beginning of each subpath
 n = len(ob.coords)
 vals = np.ones(n, dtype=Path.code_type) * Path.LINETO
 vals[0] = Path.MOVETO
 return vals

def _plot_coords(ax, ob, m, mc, ec):
 if hasattr(ob, 'coords') and isinstance(ob.coords, list):
 for coord in ob.coords:
 x, y = ob.xy
 ax.plot(x, y, m, ls='-', c=ec, markerfacecolor=mc, zorder=1)
 else:
 x, y = ob.xy
 ax.plot(x, y, m, ls='-', c=ec, markerfacecolor=mc, zorder=1)

def _get_prop(area, brightness):
 is_height = (brightness == "height")
 return area.height if is_height else area.properties[brightness]

 Source code for nngt.geometry.shape

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the PyNCulture project, which aims at providing tools to
easily generate complex neuronal cultures.
Copyright (C) 2017 SENeC Initiative
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Shape implementation using the
`shapely <http://toblerity.org/shapely/index.html>`_ library.
"""

import weakref
from copy import deepcopy
import logging

logger = logging.getLogger(__name__)

import shapely
from shapely.wkt import loads
from shapely.affinity import scale, translate
from shapely.geometry import Point, Polygon, MultiPolygon

import numpy as np
from numpy.random import uniform

from .geom_utils import conversion_magnitude
from .tools import indexable, pop_largest, _insert_area

unit support

try:
 from .units import _unit_support
except ImportError:
 _unit_support = False

opengl support

try:
 from .triangulate import triangulate, rnd_pts_in_tr
 _opengl_support = True
except ImportError:
 _opengl_support = False

__all__ = ["Area", "Shape"]

[docs]class Shape(Polygon):
 """
 Class containing the shape of the area where neurons will be distributed to
 form a network.

 Attributes

 area : double
 Area of the shape in the :class:`Shape`'s
 :func:`Shape.unit` squared (:math:`\mu m^2`,
 :math:`mm^2`, :math:`cm^2`, :math:`dm^2` or :math:`m^2`).
 centroid : tuple of doubles
 Position of the center of mass of the current shape in `unit`.

 See also

 Parent class: :class:`shapely.geometry.Polygon`
 """

[docs] @staticmethod
 def from_file(filename, min_x=None, max_x=None, unit='um', parent=None,
 interpolate_curve=50, default_properties=None):
 '''
 Create a shape from a DXF, an SVG, or a WTK/WKB file.

 .. versionadded:: 0.3

 Parameters

 filename : str
 Path to the file that should be loaded.
 min_x : float, optional (default: -5000.)
 Absolute horizontal position of the leftmost point in the
 environment in `unit` (default: 'um'). If None, no rescaling
 occurs.
 max_x : float, optional (default: 5000.)
 Absolute horizontal position of the rightmost point in the
 environment in `unit`. If None, no rescaling occurs.
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'.
 parent : :class:`nngt.Graph` object
 The parent which will become a :class:`nngt.SpatialGraph`.
 interpolate_curve : int, optional (default: 50)
 Number of points that should be used to interpolate a curve.
 default_properties : dict, optional (default: None)
 Default properties of the environment.
 '''
 from .shape_io import culture_from_file

 if _unit_support:
 from .units import Q_
 if isinstance(min_x, Q_):
 min_x = min_x.m_as(unit)
 if isinstance(max_x, Q_):
 max_x = max_x.m_as(unit)

 return culture_from_file(
 filename, min_x=min_x, max_x=max_x, unit=unit, parent=parent,
 interpolate_curve=interpolate_curve,
 default_properties=default_properties)

[docs] @staticmethod
 def from_polygon(polygon, min_x=None, max_x=None, unit='um',
 parent=None, default_properties=None):
 '''
 Create a shape from a :class:`shapely.geometry.Polygon`.

 Parameters

 polygon : :class:`shapely.geometry.Polygon`
 The initial polygon.
 min_x : float, optional (default: -5000.)
 Absolute horizontal position of the leftmost point in the
 environment in `unit` If None, no rescaling occurs.
 max_x : float, optional (default: 5000.)
 Absolute horizontal position of the rightmost point in the
 environment in `unit` If None, no rescaling occurs.
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'
 parent : :class:`nngt.Graph` object
 The parent which will become a :class:`nngt.SpatialGraph`.
 default_properties : dict, optional (default: None)
 Default properties of the environment.
 '''
 assert isinstance(polygon, Polygon), "`polygon` is not a Polygon " +\
 "but a {}.".format(polygon.__class__)

 if _unit_support:
 from .units import Q_
 if isinstance(min_x, Q_):
 min_x = min_x.m_as(unit)
 if isinstance(max_x, Q_):
 max_x = max_x.m_as(unit)

 obj = None
 g_type = None

 # find the scaling factor
 if None not in (min_x, max_x):
 ext = np.array(polygon.exterior.coords)
 leftmost = np.min(ext[:, 0])
 rightmost = np.max(ext[:, 0])
 scaling = (max_x - min_x) / (rightmost - leftmost)
 obj = scale(polygon, scaling, scaling)
 else:
 obj = Polygon(polygon)

 obj.__class__ = Shape
 obj._parent = None
 obj._unit = unit
 obj._geom_type = g_type
 obj._return_quantity = False
 obj._areas = {
 "default_area": Area.from_shape(obj, name="default_area",
 properties=default_properties)
 }

 return obj

[docs] @staticmethod
 def from_wkt(wtk, min_x=None, max_x=None, unit='um', parent=None,
 default_properties=None):
 '''
 Create a shape from a WKT string.

 .. versionadded:: 0.2

 Parameters

 wtk : str
 The WKT string.
 min_x : float, optional (default: -5000.)
 Absolute horizontal position of the leftmost point in the
 environment in `unit` If None, no rescaling occurs.
 max_x : float, optional (default: 5000.)
 Absolute horizontal position of the rightmost point in the
 environment in `unit` If None, no rescaling occurs.
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'
 parent : :class:`nngt.Graph` object
 The parent which will become a :class:`nngt.SpatialGraph`.
 default_properties : dict, optional (default: None)
 Default properties of the environment.

 See also

 :func:`Shape.from_polygon` for details about the other arguments.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(min_x, Q_):
 min_x = min_x.m_as(unit)
 if isinstance(max_x, Q_):
 max_x = max_x.m_as(unit)
 p = loads(wtk)
 return Shape.from_polygon(
 p, min_x=min_x, max_x=max_x, unit=unit, parent=parent,
 default_properties=default_properties)

[docs] @staticmethod
 def rectangle(height, width, centroid=(0., 0.), unit='um',
 parent=None, default_properties=None):
 '''
 Generate a rectangle of given height, width and center of mass.

 Parameters

 height : float
 Height of the rectangle in `unit`
 width : float
 Width of the rectangle in `unit`
 centroid : tuple of floats, optional (default: (0., 0.))
 Position of the rectangle's center of mass in `unit`
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'
 parent : :class:`nngt.Graph` or subclass, optional (default: None)
 The parent container.
 default_properties : dict, optional (default: None)
 Default properties of the environment.

 Returns

 shape : :class:`Shape`
 Rectangle shape.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(width, Q_):
 width = width.m_as(unit)
 if isinstance(height, Q_):
 height = height.m_as(unit)
 if isinstance(centroid, Q_):
 centroid = centroid.m_as(unit)
 elif isinstance(centroid, Point):
 centroid = list(centroid.coords)[0]
 elif isinstance(centroid[0], Q_):
 centroid = (centroid[0].m_as(unit), centroid[1].m_as(unit))
 half_w = 0.5 * width
 half_h = 0.5 * height
 centroid = np.array(centroid)
 points = [centroid + [half_w, half_h],
 centroid + [half_w, -half_h],
 centroid - [half_w, half_h],
 centroid - [half_w, -half_h]]
 shape = Shape(points, unit=unit, parent=parent,
 default_properties=default_properties)
 shape._geom_type = "Rectangle"
 return shape

[docs] @staticmethod
 def disk(radius, centroid=(0.,0.), unit='um', parent=None,
 default_properties=None):
 '''
 Generate a disk of given radius and center (`centroid`).

 Parameters

 radius : float
 Radius of the disk in `unit`
 centroid : tuple of floats, optional (default: (0., 0.))
 Position of the rectangle's center of mass in `unit`
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'
 parent : :class:`nngt.Graph` or subclass, optional (default: None)
 The parent container.
 default_properties : dict, optional (default: None)
 Default properties of the environment.

 Returns

 shape : :class:`Shape`
 Rectangle shape.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(radius, Q_):
 radius = radius.m_as(unit)
 if isinstance(centroid, Q_):
 centroid = centroid.m_as(unit)
 elif isinstance(centroid, Point):
 centroid = list(centroid.coords)[0]
 elif isinstance(centroid[0], Q_):
 centroid = (centroid[0].m_as(unit), centroid[1].m_as(unit))
 centroid = np.array(centroid)
 minx = centroid[0] - radius
 maxx = centroid[0] + radius
 disk = Shape.from_polygon(
 Point(centroid).buffer(radius), min_x=minx, max_x=maxx, unit=unit,
 parent=parent, default_properties=default_properties)
 disk._geom_type = "Disk"
 disk.radius = radius
 return disk

[docs] @staticmethod
 def ellipse(radii, centroid=(0.,0.), unit='um', parent=None,
 default_properties=None):
 '''
 Generate a disk of given radius and center (`centroid`).

 Parameters

 radii : tuple of floats
 Couple (rx, ry) containing the radii of the two axes in `unit`
 centroid : tuple of floats, optional (default: (0., 0.))
 Position of the rectangle's center of mass in `unit`
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'
 parent : :class:`nngt.Graph` or subclass, optional (default: None)
 The parent container.
 default_properties : dict, optional (default: None)
 Default properties of the environment.

 Returns

 shape : :class:`Shape`
 Rectangle shape.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(radii, Q_):
 radii = radii.m_as(unit)
 elif isinstance(radii[0], Q_):
 radii = (radii[0].m_as(unit), radii[1].m_as(unit))
 if isinstance(centroid, Q_):
 centroid = centroid.m_as(unit)
 elif isinstance(centroid, Point):
 centroid = list(centroid.coords)[0]
 elif isinstance(centroid[0], Q_):
 centroid = (centroid[0].m_as(unit), centroid[1].m_as(unit))
 centroid = np.array(centroid)
 rx, ry = radii
 minx = centroid[0] - rx
 maxx = centroid[0] + rx
 ellipse = Shape.from_polygon(
 scale(Point(centroid).buffer(1.), rx, ry), min_x=minx, max_x=maxx,
 unit=unit, parent=parent, default_properties=default_properties)
 ellipse._geom_type = "Ellipse"
 ellipse.radii = radii
 return ellipse

 def __init__(self, shell, holes=None, unit='um', parent=None,
 default_properties=None):
 '''
 Initialize the :class:`Shape` object and the underlying
 :class:`shapely.geometry.Polygon`.

 Parameters

 exterior : array-like object of shape (N, 2)
 List of points defining the external border of the shape.
 interiors : array-like, optional (default: None)
 List of array-like objects of shape (M, 2), defining empty regions
 inside the shape.
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'.
 parent : :class:`nngt.Graph` or subclass
 The graph which is associated to this Shape.
 default_properties : dict, optional (default: None)
 Default properties of the environment.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(shell, Q_):
 shell = shell.m_as(unit)
 else:
 try:
 if isinstance(shell[0], Q_):
 shell = [q.m_as(unit) for q in shell]
 except:
 pass
 if holes is not None:
 for i, h in enumerate(holes):
 if isinstance(h, Q_):
 h = h.m_as(unit)
 else:
 try:
 if isinstance(h[0], Q_):
 holes[i] = [q.m_as(unit) for q in h]
 except:
 pass

 self._return_quantity = False

 self._parent = weakref.proxy(parent) if parent is not None else None
 self._unit = unit
 self._geom_type = 'Polygon'

 # create the default area
 tmp = Polygon(shell, holes=holes)
 self._areas = {
 "default_area": Area.from_shape(
 tmp, name="default_area", properties=default_properties,
 unit=unit)
 }

 super(Shape, self).__init__(shell, holes=holes)

[docs] def copy(self):
 '''
 Create a copy of the current Shape.
 '''
 copy = Shape.from_polygon(self)

 copy._return_quantity = self._return_quantity

 copy._parent = None
 copy._unit = self._unit
 copy._geom_type = self._geom_type

 if self._areas:
 copy._areas = {
 key: val.copy() for key, val in self._areas.items()
 }

 return copy

 @property
 def parent(self):
 ''' Return the parent of the :class:`Shape`. '''
 return self._parent

 @property
 def unit(self):
 '''
 Return the unit for the :class:`Shape` coordinates.
 '''
 return self._unit

 @property
 def areas(self):
 '''
 Returns the dictionary containing the Shape's areas.
 '''
 return deepcopy(self._areas)

 @property
 def default_areas(self):
 '''
 Returns the dictionary containing only the default areas.

 .. versionadded:: 0.4
 '''
 areas = {
 k: deepcopy(v) for k,v in self._areas.items()
 if k.find("default_area") == 0
 }
 return areas

 @property
 def non_default_areas(self):
 '''
 Returns the dictionary containing all Shape's areas except the
 default ones.

 .. versionadded:: 0.4
 '''
 areas = {
 k: deepcopy(v) for k,v in self._areas.items()
 if k.find("default_area") != 0
 }
 return areas

 @property
 def return_quantity(self):
 '''
 Whether `seed_neurons` returns positions with units by default.

 .. versionadded:: 0.5
 '''
 return self._return_quantity

[docs] def add_area(self, area, height=None, name=None, properties=None,
 override=False):
 '''
 Add a new area to the :class:`Shape`.
 If the new area has a part that is outside the main :class:`Shape`,
 it will be cut and only the intersection between the area and the
 container will be kept.

 Parameters

 area : :class:`Area` or :class:`Shape`, or :class:`shapely.Polygon`.
 Delimitation of the area. Only the intersection between the parent
 :class:`Shape` and this new area will be kept.
 name : str, optional, default ("areaX" where X is the number of areas)
 Name of the area, under which it can be retrieved using the
 :func:`Shape.area` property of the :class:`Shape` object.
 properties : dict, optional (default: None)
 Properties of the area. If `area` is a :class:`Area`, then this is
 not necessary.
 override : bool, optional (default: False)
 If True, the new area will be made over existing areas that will
 be reduced in consequence.
 '''
 # check that area and self overlap
 assert self.overlaps(area) or self.contains(area), "`area` must be " +\
 "contained or at least overlap with the current shape."
 # check units
 if _unit_support:
 from .units import Q_
 if isinstance(height, Q_):
 height = height.m_as(self.unit)
 # check whether this area intersects with existing areas other than
 # the default area.
 intersection = self.intersection(area)
 if not override:
 for key, other_area in self._areas.items():
 if key.find("default_area") == -1:
 assert not intersection.overlaps(other_area), \
 "Different areas of a given Shape should not overlap."
 else:
 delete = []
 for key, other_area in self.non_default_areas.items():
 if other_area.overlaps(area) or other_area.contains(area):
 new_existing = other_area.difference(area)
 if new_existing.empty():
 delete.append(key)
 else:
 _insert_area(self, key, new_existing,
 other_area.height, other_area.properties)
 for key in delete:
 del self._areas[key]

 # check properties
 if name is None:
 if isinstance(area, Area):
 name = area.name
 else:
 name = "area{}".format(len(self._areas))
 if height is None:
 if isinstance(area, Area):
 height = area.height
 else:
 height = self.areas["default_area"].height
 if properties is None:
 if isinstance(area, Area):
 properties = area.properties
 else:
 properties = {}
 # update the default area
 default_area = self._areas["default_area"]
 new_default = default_area.difference(intersection)

 # check that we do not add an area containing default
 if not new_default.is_empty:
 _insert_area(self, "default_area", new_default,
 default_area.height, default_area.properties)
 # create the area
 _insert_area(self, name, intersection, height, properties)

[docs] def add_hole(self, hole):
 '''
 Make a hole in the shape.

 .. versionadded:: 0.4
 '''
 areas = self.areas.copy()
 new_shape = Shape.from_polygon(
 self.difference(hole), unit=self.unit, parent=self.parent,
 default_properties=areas["default_area"].properties)

 self._geom = new_shape._geom
 new_shape._other_owned = True

 for name, area in areas.items():
 if name.find("default_area") != 0:
 _insert_area(self, name, area.difference(hole),
 area.height, area.properties)

[docs] def random_obstacles(self, n, form, params=None, heights=None,
 properties=None, etching=0, on_area=None):
 '''
 Place random obstacles inside the shape.

 .. versionadded:: 0.4

 Parameters

 n : int or float
 Number of obstacles if `n` is an :obj:`int`, otherwise represents
 the fraction of the shape's bounding box that should be occupied by
 the obstacles' bounding boxes.
 form : str or Shape
 Form of the obstacles, among "disk", "ellipse", "rectangle", or a
 custom shape.
 params : dict, optional (default: None)
 Dictionnary containing the instructions to build a predefined form
 ("disk", "ellipse", "rectangle"). See their creation methods for
 details. Leave `None` when using a custom shape.
 heights : float or list, optional (default: None)
 Heights of the obstacles. If None, the obstacle will considered as
 a "hole" in the structure, i.e. an uncrossable obstacle.
 properties : dict or list, optional (default: None)
 Properties of the obstacles if they constitue areas (only used if
 `heights` is not None). If not provided and `heights` is not None,
 will default to the "default_area" properties.
 etching : float, optional (default: 0)
 Etching of the obstacles' corners (rounded corners). Valid only
 for
 '''
 form_center = None

 if heights is not None:
 if _unit_support:
 from .units import Q_
 if isinstance(heights, Q_):
 heights = heights.m_as(self.unit)
 elif indexable(heights):
 if isinstance(heights[0], Q_):
 heights = [h.m_as(self.unit) for h in heights]

 # check n
 if not isinstance(n, np.integer):
 assert n <= 1, "Filling fraction (floating point `n`) must be " +\
 "smaller or equal to 1."

 # check form
 if form == "disk":
 form = self.disk(**params)
 elif form == "ellipse":
 form = self.ellipse(**params)
 elif form == "rectangle":
 form = self.rectangle(**params)
 elif not isinstance(form, (Polygon, MultiPolygon, Shape, Area)):
 raise RuntimeError("Invalid form: '{}'.".format(form))

 # get form center and center on (0, 0)
 xmin, ymin, xmax, ymax = form.bounds
 form_center = (0.5*(xmax + xmin), 0.5*(ymax + ymin))
 form_width = xmax - xmin
 form_height = ymax - ymin
 form_bbox_area = float((xmax - xmin)*(ymax - ymin))

 # get shape width and height
 xmin, ymin, xmax, ymax = self.bounds
 width = xmax - xmin
 height = ymax - ymin

 if not np.allclose(form_center, (0, 0)):
 form = translate(form, -form_center[0], -form_center[1])

 # create points where obstacles can be located
 locations = []
 on_width = int(np.rint(width / form_width))
 on_height = int(np.rint(height / form_height))
 x_offset = 0.5*(width - on_width*form_width)
 y_offset = 0.5*(height - on_height*form_height)

 for i in range(on_width):
 for j in range(on_height):
 x = xmin + x_offset + i*form_width
 y = ymin + y_offset + j*form_height
 locations.append((x, y))

 # get elected locations
 if not isinstance(n, np.integer):
 n = int(np.rint(len(locations) * n))

 indices = list(range(len(locations)))
 indices = np.random.choice(indices, n, replace=False)
 locations = [locations[i] for i in indices]

 # check heights
 same_prop = []
 if heights is not None:
 try:
 if len(heights) != n:
 raise RuntimeError("One `height` entry per obstacle is "
 "required; expected "
 "{} but got {}".format(n, len(heights)))
 same_prop.append(np.allclose(heights, heights[0]))
 except TypeError:
 same_prop.append(True)
 heights = [heights for _ in range(n)]

 # check properties
 if isinstance(properties, dict):
 properties = (properties for _ in range(n))
 same_prop.append(True)
 elif properties is not None:
 assert len(properties) == n, \
 "One `properties` entry per obstacle is required; " +\
 "expected {} but got {}".format(n, len(properties))
 same_prop.append(True)
 for dic in properties:
 same_prop[-1] *= (dic == properties[0])
 else:
 same_prop.append(True)
 properties = (
 self.areas["default_area"].properties.copy() for _ in range(n)
)

 # make names
 num_obstacles = 0
 for name in self.areas:
 if name.find("obstacle_") == 0:
 num_obstacles += 1

 names = ["obstacle_{}".format(num_obstacles + i) for i in range(n)]

 # create the obstacles
 if heights is None:
 new_form = Polygon()
 for loc in locations:
 new_form = new_form.union(translate(form, loc[0], loc[1]))
 if etching > 0:
 new_form = new_form.buffer(-etching, cap_style=3)
 new_form = new_form.buffer(etching)
 self.add_hole(new_form)
 else:
 if np.all(same_prop):
 # potentially contiguous areas
 new_form = Polygon()
 h = next(iter(heights))
 prop = next(iter(properties))
 for loc in locations:
 new_form = new_form.union(translate(form, loc[0], loc[1]))
 if etching > 0:
 new_form = new_form.buffer(-etching, cap_style=3)
 new_form = new_form.buffer(etching)
 if self.overlaps(new_form) or self.contains(new_form):
 self.add_area(new_form, height=h, name="obstacle",
 properties=prop, override=True)
 else:
 # many separate areas
 prop = (locations, heights, names, properties)
 for loc, h, name, p in zip(*prop):
 new_form = translate(form, loc[0], loc[1])
 if etching > 0:
 new_form = new_form.buffer(-etching, cap_style=3)
 new_form = new_form.buffer(etching)
 if h is None:
 self.add_hole(new_form)
 elif self.overlaps(new_form) or self.contains(new_form):
 self.add_area(new_form, height=h, name=name,
 properties=p, override=True)

[docs] def set_parent(self, parent):
 ''' Set the parent :class:`nngt.Graph`. '''
 self._parent = weakref.proxy(parent) if parent is not None else None

[docs] def set_return_units(self, b):
 '''
 Set the default behavior for positions returned by `seed_neurons`.
 If `True`, then the positions returned are quantities with units (from
 the `pint` library), otherwise they are simply numpy arrays.

 .. versionadded:: 0.5

 Note

 `set_return_units(True)` requires `pint` to be installed on the system,
 otherwise an error will be raised.
 '''
 if b and not _unit_support:
 raise RuntimeError("Cannot set 'return_quantity' to True as "
 "`pint` is not installed.")
 self._return_quantity = b
 for area in self.areas.values():
 area._return_quantity = b

[docs] def seed_neurons(self, neurons=None, container=None, on_area=None,
 xmin=None, xmax=None, ymin=None, ymax=None, soma_radius=0,
 unit=None, return_quantity=None):
 '''
 Return the positions of the neurons inside the
 :class:`Shape`.

 Parameters

 neurons : int, optional (default: None)
 Number of neurons to seed. This argument is considered only if the
 :class:`Shape` has no `parent`, otherwise, a position is generated
 for each neuron in `parent`.
 container : :class:`Shape`, optional (default: None)
 Subshape acting like a mask, in which the neurons must be
 contained. The resulting area where the neurons are generated is
 the :func:`~shapely.Shape.intersection` between of the current
 shape and the `container`.
 on_area : str or list, optional (default: None)
 Area(s) where the seeded neurons should be.
 xmin : double, optional (default: lowest abscissa of the Shape)
 Limit the area where neurons will be seeded to the region on the
 right of `xmin`.
 xmax : double, optional (default: highest abscissa of the Shape)
 Limit the area where neurons will be seeded to the region on the
 left of `xmax`.
 ymin : double, optional (default: lowest ordinate of the Shape)
 Limit the area where neurons will be seeded to the region on the
 upper side of `ymin`.
 ymax : double, optional (default: highest ordinate of the Shape)
 Limit the area where neurons will be seeded to the region on the
 lower side of `ymax`.
 unit : string (default: None)
 Unit in which the positions of the neurons will be returned, among
 'um', 'mm', 'cm', 'dm', 'm'.
 return_quantity : bool, optional (default: False)
 Whether the positions should be returned as ``pint.Quantity``
 objects (requires Pint).

 .. versionchanged:: 0.5
 Accepts `pint` units and `return_quantity` argument.

 Note

 If both `container` and `on_area` are provided, the intersection of
 the two is used.

 Returns

 positions : array of double with shape (N, 2) or `pint.Quantity` if
 `return_quantity` is `True`.
 '''
 return_quantity = (self._return_quantity
 if return_quantity is None else return_quantity)

 if return_quantity:
 unit = self._unit if unit is None else unit
 if not _unit_support:
 raise RuntimeError("`return_quantity` requested but Pint is "
 "not available. Please install it first.")
 if _unit_support:
 from .units import Q_
 if isinstance(xmin, Q_):
 xmin = xmin.m_as(unit)
 if isinstance(xmax, Q_):
 xmax = xmax.m_as(unit)
 if isinstance(ymin, Q_):
 ymin = ymin.m_as(unit)
 if isinstance(ymax, Q_):
 ymax = ymax.m_as(unit)
 if isinstance(soma_radius, Q_):
 soma_radius = soma_radius.m_as(unit)

 positions = None
 if neurons is None and self._parent is not None:
 neurons = self._parent.node_nb()
 if neurons is None:
 raise ValueError("`neurons` cannot be None if `parent` is None.")
 if on_area is not None:
 if not hasattr(on_area, '__iter__'):
 on_area = [on_area]

 min_x, min_y, max_x, max_y = self.bounds

 custom_shape = (container is not None)
 if container is None and on_area is None:
 # set min/max
 if xmin is None:
 xmin = -np.inf
 if ymin is None:
 ymin = -np.inf
 if xmax is None:
 xmax = np.inf
 if ymax is None:
 ymax = np.inf
 min_x = max(xmin, min_x) # smaller that Shape max x
 assert min_x <= self.bounds[2], "`min_x` must be inside Shape."
 min_y = max(ymin, min_y) # smaller that Shape max y
 assert min_y <= self.bounds[3], "`min_y` must be inside Shape."
 max_x = min(xmax, max_x) # larger that Shape min x
 assert max_x >= self.bounds[0], "`max_x` must be inside Shape."
 max_y = min(ymax, max_y) # larger that Shape min y
 assert max_y >= self.bounds[1], "`max_y` must be inside Shape."
 # remaining tests
 if self._geom_type == "Rectangle":
 xx = uniform(
 min_x + soma_radius, max_x - soma_radius, size=neurons)
 yy = uniform(
 min_y + soma_radius, max_y - soma_radius, size=neurons)
 positions = np.vstack((xx, yy)).T
 elif (self._geom_type == "Disk"
 and (xmin, ymin, xmax, ymax) == self.bounds):
 theta = uniform(0, 2*np.pi, size=neurons)
 # take some precaution to stay inside the shape
 r = (self.radius - soma_radius) *\
 np.sqrt(uniform(0, 0.99, size=neurons))
 positions = np.vstack(
 (r*np.cos(theta) + self.centroid[0],
 r*np.sin(theta) + self.centroid[1])).T
 else:
 custom_shape = True
 container = Polygon([(min_x, min_y), (min_x, max_y),
 (max_x, max_y), (max_x, min_y)])
 elif on_area is not None:
 custom_shape = True
 area_shape = Polygon()
 for area in on_area:
 area_shape = area_shape.union(self._areas[area])
 if container is not None:
 container = container.intersection(area_shape)
 else:
 container = area_shape
 assert container.area > 0, "`container` and `on_area` have " +\
 "empty intersection."

 # enter here only if Polygon or `container` is not None
 if custom_shape:
 seed_area = self.intersection(container)
 area_buffer = seed_area.buffer(-soma_radius)
 if not area_buffer.is_empty:
 seed_area = area_buffer
 assert not seed_area.is_empty, "Empty area for seeding, check " +\
 "your `container` and min/max values."

 if not isinstance(seed_area, (Polygon, MultiPolygon)):
 raise ValueError("Invalid boundary value for seed region; "
 "check that the min/max values you requested "
 "are inside the shape.")

 if _opengl_support:
 triangles = []

 if isinstance(seed_area, MultiPolygon):
 for g in seed_area.geoms:
 triangles.extend((Polygon(v) for v in triangulate(g)))
 else:
 triangles = [Polygon(v) for v in triangulate(seed_area)]

 positions = rnd_pts_in_tr(triangles, neurons)
 else:
 logger.warning("Random point generation can be very slow "
 "without advanced triangulation methods. "
 "Please install PyOpenGL for faster seeding "
 "inside complex shapes.")
 points = []
 p = Point()
 while len(points) < neurons:
 new_x = uniform(min_x, max_x, neurons-len(points))
 new_y = uniform(min_y, max_y, neurons-len(points))
 for x, y in zip(new_x, new_y):
 p.coords = (x, y)
 if seed_area.contains(p):
 points.append((x, y))
 positions = np.array(points)

 if unit is not None and unit != self._unit:
 positions *= conversion_magnitude(unit, self._unit)

 if _unit_support and return_quantity:
 from .units import Q_
 return positions * Q_("um" if unit is None else unit)

 return positions

[docs] def contains_neurons(self, positions):
 '''
 Check whether the neurons are contained in the shape.

 .. versionadded:: 0.4

 Parameters

 positions : point or 2D-array of shape (N, 2)

 Returns

 contained : bool or 1D boolean array of length N
 True if the neuron is contained, False otherwise.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(positions, Q_):
 positions = positions.m_as(self._unit)
 elif len(positions):
 if isinstance(positions[0], Q_):
 positions = np.array(
 [q.m_as(self._unit) for q in positions])
 elif isinstance(positions[0][0], Q_):
 positions = np.array(
 [[q.m_as(self._unit) for q in row]
 for row in positions])

 if np.shape(positions) == (len(positions), 2):
 contained = []
 for pos in positions:
 contained.append(self.contains(Point(*pos)))
 return np.array(contained, dtype=bool)
 else:
 return self.contains(Point(*positions))

[docs]class Area(Shape):
 """
 Specialized :class:`Shape` that stores additional properties regarding the
 interactions with the neurons.

 Each Area is characteristic of a given substrate and height. These two
 properties are homogeneous over the whole area, meaning that the neurons
 interact in the same manner with an Area reagardless of their position
 inside.

 The substrate is described through its modulation of the neuronal
 properties compared to their default behavior.
 Thus, a given area will modulate the speed, wall affinity, etc, of the
 growth cones that are growing above it.
 """

[docs] @classmethod
 def from_shape(cls, shape, height=0., name="area", properties=None,
 unit='um', min_x=None, max_x=None):
 '''
 Create an :class:`Area` from a :class:`Shape` object.

 Parameters

 shape : :class:`Shape`
 Shape that should be converted to an Area.

 Returns

 :class:`Area` object.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(height, Q_):
 height = height.m_as(unit)
 if isinstance(min_x, Q_):
 min_x = min_x.m_as(unit)
 if isinstance(max_x, Q_):
 max_x = max_x.m_as(unit)

 obj = None
 g_type = None
 if isinstance(shape, MultiPolygon):
 g_type = "MultiPolygon"
 elif isinstance(shape, (Polygon, Shape, Area)):
 g_type = "Polygon"
 else:
 raise TypeError("Expected a Polygon or MultiPolygon object.")
 # find the scaling factor
 scaling = 1.
 if None not in (min_x, max_x):
 ext = np.array(shape.exterior.coords)
 leftmost = np.min(ext[:, 0])
 rightmost = np.max(ext[:, 0])
 scaling = (max_x - min_x) / (rightmost - leftmost)
 obj = scale(shape, scaling, scaling)
 else:
 if g_type == "Polygon":
 obj = Polygon(shape)
 else:
 obj = MultiPolygon(shape)

 obj.__class__ = cls
 obj._parent = None
 obj._unit = unit
 obj._geom_type = g_type
 obj.__class__ = Area
 obj._areas = None
 obj.height = height
 obj.name = name
 obj._prop = _PDict(
 {} if properties is None else deepcopy(properties))
 obj._return_quantity = False

 return obj

 def __init__(self, shell, holes=None, unit='um', height=0.,
 name="area", properties=None):
 '''
 Initialize the :class:`Shape` object and the underlying
 :class:`shapely.geometry.Polygon`.

 Parameters

 shell : array-like object of shape (N, 2)
 List of points defining the external border of the shape.
 holes : array-like, optional (default: None)
 List of array-like objects of shape (M, 2), defining empty regions
 inside the shape.
 unit : string (default: 'um')
 Unit in the metric system among 'um' (:math:`\mu m`), 'mm', 'cm',
 'dm', 'm'.
 height : float, optional (default: 0.)
 Height of the area.
 name : str, optional (default: "area")
 The name of the area.
 properties : dict, optional (default: default neuronal properties)
 Dictionary containing the list of the neuronal properties that
 are modified by the substrate. Since this describes how the default
 property is modulated, all values must be positive reals or NaN.
 '''
 if _unit_support:
 from .units import Q_
 if isinstance(height, Q_):
 height = height.m_as(unit)

 super(Area, self).__init__(shell, holes=holes, unit=unit, parent=None)

 self._areas = None
 self.height = height
 self.name = name
 self._prop = _PDict(
 {} if properties is None else deepcopy(properties))

 def __deepcopy__(self, *args, **kwargs):
 obj = Area.from_shape(
 self, height=self.height, name=self.name, properties=self._prop)
 return obj

[docs] def copy(self):
 '''
 Create a copy of the current Area.
 '''
 return Area.from_shape(super().copy(), height=self.height,
 name=self.name, properties=self._prop.todict())

 @property
 def areas(self):
 raise AttributeError("Areas do not have sub-Areas.")

 @property
 def properties(self):
 p = self._prop.copy()
 p["height"] = self.height
 return p

[docs] def add_subshape(self, subshape, position, unit='um'):
 raise NotImplementedError("Areas cannot be modified.")

class _PDict(dict):
 """
 Modified dictionary storing the modulation of the properties of an
 :class:`Area`.
 """

 def __getitem__(self, key):
 '''
 Returns 1 if key is not present.
 '''
 return super(_PDict, self).__getitem__(key) if key in self else 1.

 def __setitem__(self, key, value):
 '''
 Check that the value is a positive real or NaN before setting it.
 '''
 if key != "substrate_affinity":
 assert value >= 0 or np.isnan(value), \
 "`{}` property must be a positive real or NaN.".format(key)
 else:
 assert isinstance(value, float), \
 "`substrate_affinity` must be real or NaN."
 super(_PDict, self).__setitem__(key, float(value))

 def todict(self):
 return {k: v for k, v in self.items()}

 Source code for nngt.geometry.shape_io

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the PyNCulture project, which aims at providing tools to
easily generate complex neuronal cultures.
Copyright (C) 2017 SENeC Initiative

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Importing shapes from files """

import logging

import numpy as np

from shapely.affinity import affine_transform
from shapely.geometry import MultiPolygon
from shapely.ops import cascaded_union

from .shape import Shape
from .tools import pop_largest

try:
 from .units import _unit_support
except ImportError:
 _unit_support = False

Check SVG/DXF support

_logger = logging.getLogger(__name__)
from .pync_log import _log_message

_svg_support = False
_dxf_support = False

try:
 from . import svgtools
 _svg_support = True
except ImportError as e:
 _log_message(
 _logger, "INFO", "SVG import disabled: {}\n".format(e) +\
 "Install 'svg.path' to use it.")

try:
 from . import dxftools
 _dxf_support = True
except ImportError as e:
 _log_message(_logger, "INFO", "DFX import disabled: {}\n".format(e) +\
 "Install 'dxfgrabber' to use it.")

Load from file

[docs]def shapes_from_file(filename, min_x=None, max_x=None, unit='um',
 parent=None, interpolate_curve=50,
 default_properties=None, **kwargs):
 '''
 Generate a set of :class:`Shape` objects from an SVG, a DXF, or a WKT/WKB
 file.

 Valid file needs to contain only closed objects among:
 rectangles, circles, ellipses, polygons, and closed curves.
 The objects do not have to be simply connected.

 .. versionadded:: 0.3

 Parameters

 filename : str
 Path to the SVG, DXF, or WKT/WKB file.
 min_x : float, optional (default: -5000.)
 Position of the leftmost coordinate of the shape's exterior, in `unit`.
 max_x : float, optional (default: 5000.)
 Position of the rightmost coordinate of the shape's exterior, in
 `unit`.
 unit : str, optional (default: 'um')
 Unit of the positions, among micrometers ('um'), milimeters ('mm'),
 centimeters ('cm'), decimeters ('dm'), or meters ('m').
 parent : :class:`nngt.Graph` or subclass, optional (default: None)
 Assign a parent graph if working with NNGT.
 interpolate_curve : int, optional (default: 50)
 Number of points by which a curve should be interpolated into segments.

 Returns

 culture : :class:`Shape` object
 Shape, vertically centred around zero, such that
 :math:`min(y) + max(y) = 0`.
 '''
 polygons, points = None, None

 if _unit_support:
 from .units import Q_
 if isinstance(min_x, Q_):
 min_x = min_x.m_as(unit)
 if isinstance(max_x, Q_):
 max_x = max_x.m_as(unit)

 if filename.endswith(".svg") and _svg_support:
 polygons, points = svgtools.polygons_from_svg(
 filename, parent=parent, interpolate_curve=interpolate_curve,
 return_points=True)
 elif filename.endswith(".dxf") and _dxf_support:
 polygons, points = dxftools.polygons_from_dxf(
 filename, parent=parent, interpolate_curve=interpolate_curve,
 return_points=True)
 elif filename.endswith(".wkt"):
 from shapely.wkt import loads
 content = ""
 with open(filename, 'r') as f:
 content = "".join([l for l in f])
 polygons = [loads(content)]
 points = {'path': [np.array(polygons[0].exterior.coords)]}
 elif filename.endswith(".wkb"):
 from shapely.wkb import loads
 content = ""
 with open(filename, 'r') as f:
 content = "".join([l for l in f])
 polygons = [loads(content)]
 points = {'path': [np.array(polygons[0].exterior.coords)]}
 else:
 raise ImportError("You do not have support to load '" + filename + \
 "', please install either 'shapely', 'svg.path' or "
 "'dxfgrabber' to enable it.")

 min_x_val = np.inf
 max_x_val = -np.inf
 min_y_val = np.inf
 max_y_val = -np.inf

 # find smallest and highest x values
 for p in polygons:
 min_x_tmp, min_y_tmp, max_x_tmp, max_y_tmp = p.bounds
 if min_x_tmp < min_x_val:
 min_x_val = min_x_tmp
 if max_x_tmp > max_x_val:
 max_x_val = max_x_tmp
 if min_y_tmp < min_y_val:
 min_y_val = min_y_tmp
 if max_y_tmp > max_y_val:
 max_y_val = max_y_tmp

 # set optional shifts if center will change
 y_center = 0.5*(max_y_val + min_y_val)
 x_shift = 0
 scale_factor = 1
 if None not in (min_x, max_x):
 scale_factor = (max_x - min_x) / (max_x_val - min_x_val)
 x_shift += max_x - max_x_val * scale_factor
 y_center *= scale_factor
 elif min_x is not None:
 x_shift += min_x - min_x_val
 elif max_x is not None:
 x_shift += max_x - max_x_val

 shapes = []

 # scale and shift the shapes
 for p in polygons:
 # define affine transformation (xx, xy, yx, yy, xoffset, yoffset)
 aff_trans = [scale_factor, 0, 0, scale_factor, x_shift, -y_center]
 p_new = affine_transform(p.buffer(0), aff_trans)
 # check incorrect shapes
 if not np.isclose(p_new.area, p.area*scale_factor**2):
 tolerance = p.length*1e-6
 p_new = affine_transform(p.simplify(tolerance), aff_trans)
 if not np.isclose(p_new.area, p.area*scale_factor**2, 1e-5):
 raise RuntimeError("Error when generating the shape, check "
 "your file...")
 x_min, _, x_max, _ = p_new.bounds
 shapes.append(
 Shape.from_polygon(p_new, min_x=x_min, max_x=x_max, unit=unit))

 if kwargs.get("return_points", False):
 return shapes, points
 return shapes

[docs]def culture_from_file(filename, min_x=None, max_x=None, unit='um',
 parent=None, interpolate_curve=50,
 internal_shapes_as="holes",
 default_properties=None,
 other_properties=None):
 '''
 Generate a culture from an SVG, a DXF, or a WKT/WKB file.

 Valid file needs to contain only closed objects among:
 rectangles, circles, ellipses, polygons, and closed curves.
 The objects do not have to be simply connected.

 .. versionchanged:: 0.6
 Added `internal_shapes_as` and `other_properties` keyword parameters.

 Parameters

 filename : str
 Path to the SVG, DXF, or WKT/WKB file.
 min_x : float, optional (default: -5000.)
 Position of the leftmost coordinate of the shape's exterior, in `unit`.
 max_x : float, optional (default: 5000.)
 Position of the rightmost coordinate of the shape's exterior, in
 `unit`.
 unit : str, optional (default: 'um')
 Unit of the positions, among micrometers ('um'), milimeters ('mm'),
 centimeters ('cm'), decimeters ('dm'), or meters ('m').
 parent : :class:`nngt.Graph` or subclass, optional (default: None)
 Assign a parent graph if working with NNGT.
 interpolate_curve : int, optional (default: 50)
 Number of points by which a curve should be interpolated into segments.
 internal_shapes_as : str, optional (default: "holes")
 Defines how additional shapes contained in the main environment should
 be processed. If "holes", then these shapes are substracted from the
 main environment; if "areas", they are considered as areas.
 default_properties : dict, optional (default: None)
 Properties of the default area of the culture.
 other_properties : dict, optional (default: None)
 Properties of the non-default areas of the culture (internal shapes if
 `internal_shapes_as` is set to "areas").

 Returns

 culture : :class:`Shape` object
 Shape, vertically centred around zero, such that
 :math:`min(y) + max(y) = 0`.
 '''
 shapes = shapes_from_file(
 filename, min_x=min_x, max_x=max_x, unit=unit, parent=parent,
 interpolate_curve=interpolate_curve,
 default_properties=default_properties)

 # make sure that the main container contains all other polygons
 main_container = pop_largest(shapes)
 interiors = [item.coords for item in main_container.interiors]
 invalid_shapes = []

 internal_shapes = []
 for i, s in enumerate(shapes):
 valid = main_container.contains(s)
 if valid:
 internal_shapes.append(s)
 else:
 # because of interpolation, some shapes can go slightly out of
 # the main container, we correct this by subtracting them from the
 # main container afterwards
 valid = s.difference(main_container).area < 1e-2*s.area
 internal_shapes.append(s.intersection(main_container))
 assert valid, "Some polygons are not contained in the main container."

 internal_shapes = \
 cascaded_union(internal_shapes) if internal_shapes else Shape([])

 if internal_shapes_as == "holes":
 diff = main_container.difference(internal_shapes)
 main_container = Shape.from_polygon(diff, min_x=None, max_x=None)
 interiors = [item.coords for item in main_container.interiors]
 elif internal_shapes_as != "areas":
 raise ValueError("Invalid value {} for `internal_shapes_as`".format(
 internal_shapes_as))

 culture = Shape(main_container.exterior.coords, interiors)
 old_area = culture.area
 # make sure it is a valid Polygon
 culture = Shape.from_polygon(culture.buffer(0), min_x=None, max_x=None,
 unit=unit, parent=parent,
 default_properties=default_properties)

 if internal_shapes_as == "areas" and not internal_shapes.is_empty:
 if isinstance(internal_shapes, MultiPolygon):
 for i, p in enumerate(internal_shapes):
 culture.add_area(p, name="area_{}".format(i),
 properties=other_properties)
 else:
 culture.add_area(internal_shapes, name="area_1",
 properties=other_properties)

 # check
 if not np.isclose(culture.area, old_area):
 tolerance = culture.length*1e-6
 culture = Shape.from_polygon(culture.simplify(tolerance), min_x=None,
 max_x=None, unit=unit, parent=parent,
 default_properties=default_properties)
 if not np.isclose(culture.area, old_area, 1e-5):
 raise RuntimeError("Error when generating the culture, check "
 "your file...")
 return culture

 Source code for nngt.geometry.tools

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the PyNCulture project, which aims at providing tools to
easily generate complex neuronal cultures.
Copyright (C) 2017 SENeC Initiative

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Tools for PyNCulture """

try:
 from collections.abc import Container as _container
except:
 from collections import Container as _container

import numpy as np

from . import _shapely_support

def indexable(obj):
 '''
 Returns true for any iterable which is not a string or byte sequence.
 '''
 if hasattr(obj, "__getitem__"):
 return True
 return False

[docs]def pop_largest(shapes):
 '''
 Returns the largest shape, removing it from the list.
 If `shapes` is a :class:`shapely.geometry.MultiPolygon`, returns the
 largest :class:`shapely.geometry.Polygon` without modifying the object.

 .. versionadded:: 0.3

 Parameters

 shapes : list of :class:`Shape` objects or MultiPolygon.
 '''
 MultiPolygon = None
 try:
 from shapely.geometry import MultiPolygon
 except ImportError:
 pass

 max_area = -np.inf
 max_idx = -1

 for i, s in enumerate(shapes):
 if s.area > max_area:
 max_area = s.area
 max_idx = i

 if shapes.__class__ == MultiPolygon:
 return shapes[max_idx]

 return shapes.pop(max_idx)

def _insert_area(container, area_name, shape, height, properties):
 '''
 Insert the area into the container, potentially restructuring the existing
 areas.
 In particular, if the shape is composed of multiple polygons, it will
 be inserted as "area_name_X", with X ranging from 0 to N-1, N being the
 number of polygons.

 If `area_name` already exists in `container`, it will be overriden,
 potentially even deleted in favor of numbered subareas if it is
 replaced by a set of polygons.
 The only exception to that rule is the "default_area", which is never
 deleted but replaced by the largest polygon, while the smaller ones are
 numbered from 1.
 '''
 # import
 from .shape import Area
 from shapely.geometry import MultiPolygon
 # check for multiple polygons
 if shape.__class__ == MultiPolygon:
 # behavior differs for default_area (never deleted) and other areas
 if area_name == "default_area":
 largest = pop_largest(shape)
 count = len(container.default_areas)
 for p in shape:
 new_name = area_name
 if p != largest:
 new_name = area_name + '_' + str(count)
 count += 1
 container._areas[new_name] = Area.from_shape(
 p, height=height, name=new_name, properties=properties)
 else:
 for i, p in enumerate(shape):
 new_name = area_name + '_' + str(i)
 container._areas[new_name] = Area.from_shape(
 p, height=height, name=new_name, properties=properties)
 if area_name in container.areas:
 del container._areas[area_name]
 else:
 container._areas[area_name] = Area.from_shape(
 shape, height=height, name=area_name, properties=properties)

def _backup_contains(x, y, shape):
 try:
 x = np.array(x)
 y = np.array(y)
 except:
 pass
 if shape.geom_type == "Disk":
 x0, y0 = shape.centroid
 xmin, _, xmax, _ = shape.bounds
 radius = 0.5*(xmax - xmin)
 return np.less_equal(np.linalg.norm([x - x0, y - y0], axis=0), radius)
 elif shape.geom_type == "Ellipse":
 xmin, ymin, xmax, ymax = shape.bounds
 a = 0.5*(xmax - xmin)
 b = 0.5*(ymax - ymin)
 x0, y0 = shape.centroid
 return np.less_equal(np.square(x-x0) / a + np.square(y-y0) / b, 1.)
 elif shape.geom_type == "Rectangle":
 xmin, ymin, xmax, ymax = shape.bounds
 contained = np.less_equal(x, xmax)
 contained *= np.greater_equal(x, xmin)
 contained *= np.less_equal(y, ymax)
 contained *= np.greater_equal(y, ymin)
 return contained
 else:
 raise TypeError("Invalid Shape type: {}.".format(shape.geom_type))

 Source code for nngt.io.graph_loading

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Loading functions """

import ast
import codecs
import logging
import pickle
import types

import numpy as np

import nngt
from nngt.lib import InvalidArgument
from nngt.lib.logger import _log_message
from ..geometry import Shape, _shapely_support
from .io_helpers import _get_format
from .loading_helpers import *

logger = logging.getLogger(__name__)

Formatting

di_get_edges = {
 "neighbour": _get_edges_neighbour,
 "edge_list": _get_edges_elist,
 "gml": _get_edges_gml,
}

Load function

[docs]def load_from_file(filename, fmt="auto", separator=" ", secondary=";",
 attributes=None, attributes_types=None, notifier="@",
 ignore="#", name="LoadedGraph", directed=True,
 cleanup=False):
 '''
 Load a Graph from a file.

 .. versionchanged :: 2.0
 Added optional `attributes_types` and `cleanup` arguments.

 .. warning ::
 Support for GraphML and DOT formats are currently limited and require
 one of the non-default backends (DOT requires graph-tool).

 Parameters

 filename: str
 The path to the file.
 fmt : str, optional (default: "neighbour")
 The format used to save the graph. Supported formats are: "neighbour"
 (neighbour list, default if format cannot be deduced automatically),
 "ssp" (scipy.sparse), "edge_list" (list of all the edges in the graph,
 one edge per line, represented by a ``source target``-pair), "gml"
 (gml format, default if `filename` ends with '.gml'), "graphml"
 (graphml format, default if `filename` ends with '.graphml' or '.xml'),
 "dot" (dot format, default if `filename` ends with '.dot'), "gt" (only
 when using `graph_tool`<http://graph-tool.skewed.de/>_ as library,
 detected if `filename` ends with '.gt').
 separator : str, optional (default " ")
 separator used to separate inputs in the case of custom formats (namely
 "neighbour" and "edge_list")
 secondary : str, optional (default: ";")
 Secondary separator used to separate attributes in the case of custom
 formats.
 attributes : list, optional (default: [])
 List of names for the attributes present in the file. If a `notifier`
 is present in the file, names will be deduced from it; otherwise the
 attributes will be numbered.
 For "edge_list", attributes may also be present as additional columns
 after the source and the target.
 attributes_types : dict, optional (default: str)
 Backup information if the type of the attributes is not specified
 in the file. Values must be callables (types or functions) that will
 take the argument value as a string input and convert it to the proper
 type.
 notifier : str, optional (default: "@")
 Symbol specifying the following as meaningfull information. Relevant
 information are formatted ``@info_name=info_value``, where
 ``info_name`` is in ("attributes", "directed", "name", "size") and
 associated ``info_value`` are of type (``list``, ``bool``, ``str``,
 ``int``).
 Additional notifiers are ``@type=SpatialGraph/Network/SpatialNetwork``,
 which must be followed by the relevant notifiers among ``@shape``,
 ``@structure``, and ``@graph``.
 ignore : str, optional (default: "#")
 Ignore lines starting with the `ignore` string.
 name : str, optional (default: from file information or 'LoadedGraph')
 The name of the graph.
 directed : bool, optional (default: from file information or True)
 Whether the graph is directed or not.
 cleanup : bool, optional (default: False)
 If true, removes nodes before the first one that appears in the
 edges and after the last one and renumber the nodes from 0.

 Returns

 graph : :class:`~nngt.Graph` or subclass
 Loaded graph.
 '''
 return nngt.Graph.from_file(
 filename, fmt=fmt, separator=separator, secondary=secondary,
 attributes=attributes, attributes_types=attributes_types,
 notifier=notifier, ignore=ignore, name=name, directed=directed,
 cleanup=cleanup)

def _load_from_file(filename, fmt="auto", separator=" ", secondary=";",
 attributes=None, attributes_types=None,
 notifier="@", ignore="#", cleanup=False):
 '''
 Load the main properties (edges, attributes...) from a file.

 Parameters

 filename: str
 The path to the file.
 fmt : str, optional (default: "neighbour")
 The format used to save the graph. Supported formats are: "neighbour"
 (neighbour list, default if format cannot be deduced automatically),
 "ssp" (scipy.sparse), "edge_list" (list of all the edges in the graph,
 one edge per line, represented by a ``source target``-pair), "gml"
 (gml format, default if `filename` ends with '.gml'), "graphml"
 (graphml format, default if `filename` ends with '.graphml' or '.xml'),
 "dot" (dot format, default if `filename` ends with '.dot'), "gt" (only
 when using `graph_tool <http://graph-tool.skewed.de/>`_ as library,
 detected if `filename` ends with '.gt').
 separator : str, optional (default " ")
 separator used to separate inputs in the case of custom formats (namely
 "neighbour" and "edge_list")
 secondary : str, optional (default: ";")
 Secondary separator used to separate attributes in the case of custom
 formats.
 attributes : list, optional (default: [])
 List of names for the edge attributes present in the file. If a
 `notifier` is present in the file, names will be deduced from it;
 otherwise the attributes will be numbered.
 attributes_types : dict, optional (default: str)
 Backup information if the type of the attributes is not specified
 in the file. Values must be callables (types or functions) that will
 take the argument value as a string input and convert it to the proper
 type.
 notifier : str, optional (default: "@")
 Symbol specifying the following as meaningfull information. Relevant
 information are formatted ``@info_name=info_value``, where
 ``info_name`` is in ("attributes", "directed", "name", "size") and
 associated ``info_value`` are of type (``list``, ``bool``, ``str``,
 ``int``).
 Additional notifiers are ``@type=SpatialGraph/Network/SpatialNetwork``,
 which must be followed by the relevant notifiers among ``@shape``,
 ``@structure``, and ``@graph``.
 ignore : str, optional (default: "#")
 Ignore lines starting with the `ignore` string.
 cleanup : bool, optional (default: False)
 If true, removes nodes before the first one that appears in the
 edges and after the last one and renumber the nodes from 0.

 Returns

 di_notif : dict
 Dictionary containing the main graph arguments.
 edges : list of 2-tuples
 Edges of the graph.
 di_nattributes : dict
 Dictionary containing the node attributes.
 di_eattributes : dict
 Dictionary containing the edge attributes (name as key, value as a
 list sorted in the same order as `edges`).
 struct : :class:`~nngt.NeuralPop`
 Population (``None`` if not present in the file).
 shape : :class:`~nngt.geometry.Shape`
 Shape of the graph (``None`` if not present in the file).
 positions : array-like of shape (N, d)
 The positions of the neurons (``None`` if not present in the file).
 '''
 # check for mpi
 if nngt.get_config("mpi"):
 raise NotImplementedError("This function is not ready for MPI yet.")

 # load
 lst_lines, struct, shape, positions = None, None, None, None
 fmt = _get_format(fmt, filename)

 if fmt not in ("neighbour", "edge_list", "gml"):
 return [None]*7

 with open(filename, "r") as filegraph:
 lst_lines = _process_file(filegraph, fmt, separator)

 # notifier lines
 di_notif = _get_notif(lst_lines, notifier, attributes, fmt=fmt,
 atypes=attributes_types)

 # get nodes attributes
 di_nattributes = _get_node_attr(di_notif, separator, fmt=fmt,
 lines=lst_lines, atypes=attributes_types)

 # make edges and attributes
 eattributes = di_notif["edge_attributes"]
 di_eattributes = {name: [] for name in eattributes}
 di_edge_convert = _gen_convert(di_notif["edge_attributes"],
 di_notif["edge_attr_types"],
 attributes_types=attributes_types)

 # process file
 edges = di_get_edges[fmt](
 lst_lines, eattributes, ignore, notifier, separator, secondary,
 di_attributes=di_eattributes, di_convert=di_edge_convert,
 di_notif=di_notif)

 if cleanup:
 edges = np.array(edges) - np.min(edges)

 # add missing size information if necessary
 if "size" not in di_notif:
 di_notif["size"] = int(np.max(edges)) + 1

 # check whether a shape is present
 if 'shape' in di_notif:
 if _shapely_support:
 min_x, max_x = float(di_notif['min_x']), float(di_notif['max_x'])
 unit = di_notif['unit']
 shape = Shape.from_wkt(
 di_notif['shape'], min_x=min_x, max_x=max_x, unit=unit)
 # load areas
 try:
 def_areas = ast.literal_eval(di_notif['default_areas'])
 def_areas_prop = ast.literal_eval(
 di_notif['default_areas_prop'])

 for k in def_areas:
 p = {key: float(v) for key, v in def_areas_prop[k].items()}
 if "default_area" in k:
 shape._areas["default_area"]._prop.update(p)
 shape._areas["default_area"].height = p["height"]
 else:
 a = Shape.from_wkt(def_areas[k], unit=unit)
 shape.add_area(a, height=p["height"], name=k,
 properties=p)

 ndef_areas = ast.literal_eval(
 di_notif['non_default_areas'])
 ndef_areas_prop = ast.literal_eval(
 di_notif['non_default_areas_prop'])
 for i in ndef_areas:
 p = {k: float(v) for k, v in ndef_areas_prop[i].items()}
 a = Shape.from_wkt(ndef_areas[i], unit=unit)
 shape.add_area(a, height=p["height"], name=i, properties=p)
 except KeyError:
 # backup compatibility with older versions
 pass
 else:
 _log_message(logger, "WARNING",
 'A Shape object was present in the file but could '
 'not be loaded because Shapely is not installed.')

 # check whether a structure is present
 if 'structure' in di_notif:
 str_enc = di_notif['structure'].replace('~', '\n').encode()
 str_dec = codecs.decode(str_enc, "base64")
 try:
 struct = pickle.loads(str_dec)
 except UnicodeError:
 struct = pickle.loads(str_dec, encoding="latin1")

 if 'x' in di_notif:
 x = np.fromstring(di_notif['x'], sep=separator)
 y = np.fromstring(di_notif['y'], sep=separator)
 if 'z' in di_notif:
 z = np.fromstring(di_notif['z'], sep=separator)
 positions = np.array((x, y, z)).T
 else:
 positions = np.array((x, y)).T

 return (di_notif, edges, di_nattributes, di_eattributes, struct, shape,
 positions)

def _library_load(filename, fmt):
 ''' Load the file using the library functions '''
 if nngt.get_config("backend") == "networkx":
 import networkx as nx

 if fmt == "graphml":
 return nx.read_graphml(filename)
 else:
 raise NotImplementedError
 elif nngt.get_config("backend") == "igraph":
 import igraph as ig

 if fmt == "graphml":
 return ig.Graph.Read_GraphML(filename)
 else:
 raise NotImplementedError
 elif nngt.get_config("backend") == "graph-tool":
 import graph_tool as gt

 return gt.load_graph(filename, fmt=fmt)
 else:
 raise NotImplementedError

 Source code for nngt.io.graph_saving

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" IO tools for NNGT """

import codecs
import logging
import pickle
import sys
import weakref

from collections import defaultdict

import numpy as np
import scipy.sparse as ssp

import nngt
from nngt.lib import InvalidArgument, on_master_process
from nngt.lib.logger import _log_message

from ..geometry import Shape, _shapely_support
from .io_helpers import _get_format
from .saving_helpers import (_neighbour_list, _edge_list, _gml, _custom_info,
 _gml_info, _str_bytes_len)

logger = logging.getLogger(__name__)

Formatting

di_format = {
 "neighbour": _neighbour_list,
 "edge_list": _edge_list,
 "gml": _gml
}

format_graph_info = defaultdict(lambda: _custom_info)
format_graph_info["gml"] = _gml_info

Saving function

[docs]def save_to_file(graph, filename, fmt="auto", separator=" ",
 secondary=";", attributes=None, notifier="@"):
 '''
 Save a graph to file.

 @todo: implement dot, xml/graphml, and gt formats

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Graph to save.
 filename: str
 The path to the file.
 fmt : str, optional (default: "auto")
 The format used to save the graph. Supported formats are: "neighbour"
 (neighbour list, default if format cannot be deduced automatically),
 "ssp" (scipy.sparse), "edge_list" (list of all the edges in the graph,
 one edge per line, represented by a ``source target``-pair), "gml"
 (gml format, default if `filename` ends with '.gml'), "graphml"
 (graphml format, default if `filename` ends with '.graphml' or '.xml'),
 "dot" (dot format, default if `filename` ends with '.dot'), "gt" (only
 when using `graph_tool <http://graph-tool.skewed.de/>`_ as library,
 detected if `filename` ends with '.gt').
 separator : str, optional (default " ")
 separator used to separate inputs in the case of custom formats (namely
 "neighbour" and "edge_list")
 secondary : str, optional (default: ";")
 Secondary separator used to separate attributes in the case of custom
 formats.
 attributes : list, optional (default: ``None``)
 List of names for the edge attributes present in the graph that will be
 saved to disk; by default (``None``), all attributes will be saved.
 notifier : str, optional (default: "@")
 Symbol specifying the following as meaningfull information. Relevant
 information are formatted ``@info_name=info_value``, with
 ``info_name`` in ("attributes", "attr_types", "directed", "name",
 "size").
 Additional notifiers are ``@type=SpatialGraph/Network/SpatialNetwork``,
 which are followed by the relevant notifiers among ``@shape``,
 ``@structure``, and ``@graph`` to separate the sections.

 Note

 Positions are saved as bytes by :func:`numpy.nparray.tostring`
 '''
 fmt = _get_format(fmt, filename)

 # check for mpi
 if nngt.get_config("mpi"):
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 size = comm.Get_size()
 rank = comm.Get_rank()
 # get the
 str_local, di_notif = _as_string(
 graph, separator=separator, fmt=fmt, secondary=secondary,
 attributes=attributes, notifier=notifier, return_info=True)
 # make notification string only on master thread
 str_notif = ""
 if on_master_process():
 for key, val in iter(di_notif.items()):
 str_notif += "{}{}={}\n".format(notifier, key, val)
 # strings need to start with a newline because MPI strips last
 str_local = "\n" + str_local
 # gather all strings sizes
 sizes = comm.allgather(
 _str_bytes_len(str_local) + _str_bytes_len(str_notif))
 # get rank-based offset
 offset = [_str_bytes_len(str_notif)]
 offset.extend(np.cumsum(sizes)[:-1])
 # open file and write
 if on_master_process():
 with open(filename, "w") as f_graph:
 f_graph.write(str_notif)
 # parallel write
 amode = MPI.MODE_WRONLY
 fh = MPI.File.Open(comm, filename, amode)
 fh.Write_at_all(offset[rank], str_local.encode('utf-8'))
 fh.Close()
 else:
 str_graph = _as_string(
 graph, separator=separator, fmt=fmt, secondary=secondary,
 attributes=attributes, notifier=notifier)
 with open(filename, "w") as f_graph:
 f_graph.write(str_graph)

String representation

def _as_string(graph, fmt="neighbour", separator=" ", secondary=";",
 attributes=None, notifier="@", return_info=False):
 '''
 Full string representation of the graph.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Graph to save.
 fmt : str, optional (default: "auto")
 The format used to save the graph. Supported formats are: "neighbour"
 (neighbour list, default if format cannot be deduced automatically),
 "ssp" (:mod:`scipy.sparse`), "edge_list" (list of all the edges in the
 graph, one edge per line, represented by a ``source target``-pair),
 "gml" (gml format, default if `filename` ends with '.gml'), "graphml"
 (graphml format, default if `filename` ends with '.graphml' or '.xml'),
 "dot" (dot format, default if `filename` ends with '.dot'), "gt" (only
 when using `graph_tool`<http://graph-tool.skewed.de/>_ as library,
 detected if `filename` ends with '.gt').
 separator : str, optional (default " ")
 separator used to separate inputs in the case of custom formats (namely
 "neighbour" and "edge_list")
 secondary : str, optional (default: ";")
 Secondary separator used to separate attributes in the case of custom
 formats.
 attributes : list, optional (default: all)
 List of names for the edge attributes present in the graph that will be
 saved to disk; by default, all attributes will be saved.
 notifier : str, optional (default: "@")
 Symbol specifying the following as meaningfull information. Relevant
 information are formatted ``@info_name=info_value``, with
 ``info_name`` in ("attributes", "attr_types", "directed", "name",
 "size").
 Additional notifiers are ``@type=SpatialGraph/Network/SpatialNetwork``,
 which are followed by the relevant notifiers among ``@shape``, ``@x``,
 ``@y``, ``@z``, ``@structure``, and ``@graph`` to separate the
 sections.

 Returns

 str_graph : string
 The full graph representation as a string.
 '''
 # checks
 if separator == secondary and fmt != "edge_list":
 raise InvalidArgument("`separator` and `secondary` strings must be "
 "different.")

 if notifier == separator or notifier == secondary:
 raise InvalidArgument("`notifier` string should differ from "
 "`separator` and `secondary`.")

 # temporarily disable numpy cut threshold to save string
 old_threshold = np.get_printoptions()['threshold']
 np.set_printoptions(threshold=sys.maxsize)

 # data
 if attributes is None:
 attributes = [a for a in graph.edge_attributes if a != "bweight"]

 nattributes = [a for a in graph.node_attributes]

 additional_notif = {
 "directed": graph.is_directed(),
 "node_attributes": nattributes,
 "node_attr_types": [
 graph.get_attribute_type(nattr, "node") for nattr in nattributes
],
 "edge_attributes": attributes,
 "edge_attr_types": [
 graph.get_attribute_type(attr, "edge") for attr in attributes
],
 "name": graph.name,
 "size": graph.node_nb()
 }

 # add node attributes to the notifications
 for nattr in additional_notif["node_attributes"]:
 key = "na_" + nattr

 tmp = np.array2string(
 graph.get_node_attributes(name=nattr), max_line_width=np.NaN,
 separator=separator)[1:-1].replace("'" + separator + "'",
 '"' + separator + '"')

 # replace possible variants
 tmp = tmp.replace("'" + separator + '"', '"' + separator + '"')
 tmp = tmp.replace('"' + separator + "'", '"' + separator + '"')

 if tmp.startswith("'"):
 tmp = '"' + tmp[1:]

 if tmp.endswith("'"):
 tmp = tmp[:-1] + '"'

 # make and store final string
 additional_notif[key] = tmp

 # save positions for SpatialGraph (and shape if Shapely is available)
 if graph.is_spatial():
 if _shapely_support:
 additional_notif['shape'] = graph.shape.wkt
 additional_notif['default_areas'] = \
 {k: v.wkt for k, v in graph.shape.default_areas.items()}
 additional_notif['default_areas_prop'] = \
 {k: v.properties for k, v in graph.shape.default_areas.items()}
 additional_notif['non_default_areas'] = \
 {k: v.wkt for k, v in graph.shape.non_default_areas.items()}
 additional_notif['non_default_areas_prop'] = \
 {k: v.properties
 for k, v in graph.shape.non_default_areas.items()}
 additional_notif['unit'] = graph.shape.unit
 min_x, min_y, max_x, max_y = graph.shape.bounds
 additional_notif['min_x'] = min_x
 additional_notif['max_x'] = max_x
 else:
 _log_message(logger, "WARNING",
 'The `shape` attribute of the graph could not be '
 'saved to file because Shapely is not installed.')

 pos = graph.get_positions()
 additional_notif['x'] = np.array2string(
 pos[:, 0], max_line_width=np.NaN, separator=separator)[1:-1]
 additional_notif['y'] = np.array2string(
 pos[:, 1], max_line_width=np.NaN, separator=separator)[1:-1]
 if pos.shape[1] == 3:
 additional_notif['z'] = np.array2string(
 pos[:, 2], max_line_width=np.NaN, separator=separator)[1:-1]

 if graph.structure is not None:
 # temporarily remove weakrefs
 graph.structure._parent = None
 for g in graph.structure.values():
 g._struct = None
 g._net = None
 # save as string
 if nngt.get_config("mpi"):
 if nngt.get_config("mpi_comm").Get_rank() == 0:
 additional_notif["structure"] = codecs.encode(
 pickle.dumps(graph.structure, protocol=2),
 "base64").decode().replace('\n', '~')
 else:
 additional_notif["structure"] = codecs.encode(
 pickle.dumps(graph.structure, protocol=2),
 "base64").decode().replace('\n', '~')
 # restore weakrefs
 graph.structure._parent = weakref.ref(graph)
 for g in graph.structure.values():
 g._struct = weakref.ref(graph.structure)
 g._net = weakref.ref(graph)

 str_graph = di_format[fmt](graph, separator=separator,
 secondary=secondary, attributes=attributes)

 # set numpy cut threshold back on
 np.set_printoptions(threshold=old_threshold)

 if return_info:
 return str_graph, additional_notif

 # format the info into the string
 info_str = format_graph_info[fmt](additional_notif, notifier, graph=graph)

 return info_str + str_graph

 Source code for nngt.lib.errors

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Errors for the NGT module """

[docs]class InvalidArgument(ValueError):

 ''' Error raised when an argument is invalid. '''

 pass

def not_implemented(*args, **kwargs):
 return NotImplementedError("Not implemented.")

 Source code for nngt.lib.graph_backends

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Tools to interact with the graph libraries backends """

from importlib import reload
import logging
import sys

import numpy as np
import scipy.sparse as ssp

import nngt
from .errors import not_implemented
from .logger import _log_message
from .test_functions import nonstring_container, mpi_barrier

logger = logging.getLogger(__name__)

Graph library usage

analyze_graph = {
 'adjacency': not_implemented,
 'assortativity': not_implemented,
 'betweenness': not_implemented,
 'diameter': not_implemented,
 'ebetweenness': not_implemented,
 'get_edges': not_implemented,
 'nbetweenness': not_implemented,
 'reciprocity': not_implemented,
 'scc': not_implemented,
 'wcc': not_implemented,
}

use library function

[docs]@mpi_barrier
def use_backend(backend, reloading=True, silent=False):
 '''
 Allows the user to switch to a specific graph library as backend.

 .. warning ::
 If :class:`~nngt.Graph` objects have already been created, they will no
 longer be compatible with NNGT methods.

 Parameters

 backend : string
 Name of a graph library among 'graph_tool', 'igraph', 'networkx', or
 'nngt'.
 reloading : bool, optional (default: True)
 Whether the graph objects should be reloaded through `reload`
 (this should always be set to True except when NNGT is first initiated!)
 silent : bool, optional (default: False)
 Whether the changes made to the configuration should be logged at the
 DEBUG (True) or INFO (False) level.
 '''
 # save old config except for graph-library data
 old_config = nngt.get_config(detailed=True)
 for k in ("graph", "backend", "library"):
 del old_config[k]

 # try to switch graph library
 success = False
 error = None

 if backend == "graph-tool":
 try:
 success = _set_graph_tool()
 except Exception as e:
 error = e
 elif backend == "igraph":
 try:
 success = _set_igraph()
 except Exception as e:
 error = e
 elif backend == "networkx":
 try:
 success = _set_networkx()
 except Exception as e:
 error = e
 elif backend == "nngt":
 try:
 success = _set_nngt()
 except Exception as e:
 error = e
 else:
 raise ValueError("Invalid graph library requested.")

 if reloading:
 reload(sys.modules["nngt"].analysis.clustering)
 reload(sys.modules["nngt"].analysis.graph_analysis)
 reload(sys.modules["nngt"].analysis) # must come after graph_analysis
 reload(sys.modules["nngt"].generation.graph_connectivity)
 reload(sys.modules["nngt"].generation)

 if nngt._config['with_plot']:
 reload(sys.modules["nngt"].plot)

 reload(sys.modules["nngt"].lib)
 reload(sys.modules["nngt"].core) # reload first for Graph inheritance
 reload(sys.modules["nngt"].core.graph)
 reload(sys.modules["nngt"].core.spatial_graph)
 reload(sys.modules["nngt"].core.networks)

 from nngt.core.graph import Graph
 from nngt.core.spatial_graph import SpatialGraph
 from nngt.core.networks import Network, SpatialNetwork

 sys.modules["nngt"].Graph = Graph
 sys.modules["nngt"].SpatialGraph = SpatialGraph
 sys.modules["nngt"].Network = Network
 sys.modules["nngt"].SpatialNetwork = SpatialNetwork

 # restore old config
 nngt.set_config(old_config, silent=True)

 # log
 if success:
 if silent:
 _log_message(logger, "DEBUG",
 "Successfuly switched to " + backend + ".")
 else:
 _log_message(logger, "INFO",
 "Successfuly switched to " + backend + ".")
 else:
 if silent:
 _log_message(logger, "DEBUG",
 "Error, could not switch to " + backend + ": "
 "{}.".format(error))
 else:
 _log_message(logger, "WARNING",
 "Error, could not switch to " + backend + ": "
 "{}.".format(error))
 if error is not None:
 raise error

Loading functions

def _set_graph_tool():
 '''
 Set graph-tool as graph library, store relevant items in config and
 analyze graph dictionaries.
 '''
 import graph_tool as glib
 from graph_tool import Graph as GraphLib

 nngt._config["backend"] = "graph-tool"
 nngt._config["library"] = glib
 nngt._config["graph"] = GraphLib

 # store the functions
 from ..analysis import gt_functions

 _store_functions(nngt.analyze_graph, gt_functions)

 return True

def _set_igraph():
 '''
 Set igraph as graph library, store relevant items in config and
 analyze graph dictionaries.
 '''
 import igraph as glib
 from igraph import Graph as GraphLib

 nngt._config["backend"] = "igraph"
 nngt._config["library"] = glib
 nngt._config["graph"] = GraphLib

 # store the functions
 from ..analysis import ig_functions

 _store_functions(nngt.analyze_graph, ig_functions)

 return True

def _set_networkx():
 import networkx as glib
 if glib.__version__ < '2.4':
 raise ImportError("`networkx {} is ".format(glib.__version__) +\
 "installed while version >= 2.4 is required.")

 from networkx import DiGraph as GraphLib
 nngt._config["backend"] = "networkx"
 nngt._config["library"] = glib
 nngt._config["graph"] = GraphLib

 # store the functions
 from ..analysis import nx_functions

 _store_functions(nngt.analyze_graph, nx_functions)

 return True

def _set_nngt():
 nngt._config["backend"] = "nngt"
 nngt._config["library"] = nngt
 nngt._config["graph"] = object

 # analysis functions
 def _notimplemented(*args, **kwargs):
 raise NotImplementedError("Install a graph library to use.")

 def get_edges(g):
 return g.edges_array

 from nngt.analysis.nngt_functions import reciprocity, adj_mat

 # store functions
 nngt.analyze_graph["assortativity"] = _notimplemented
 nngt.analyze_graph["betweenness"] = _notimplemented
 nngt.analyze_graph["diameter"] = _notimplemented
 nngt.analyze_graph["closeness"] = _notimplemented
 nngt.analyze_graph["reciprocity"] = reciprocity
 nngt.analyze_graph["connected_components"] = _notimplemented
 nngt.analyze_graph["adjacency"] = adj_mat
 nngt.analyze_graph["get_edges"] = get_edges

 return True

def _store_functions(analysis_dict, module):
 ''' Store functions from module '''
 analysis_dict["assortativity"] = module.assortativity
 analysis_dict["betweenness"] = module.betweenness
 analysis_dict["closeness"] = module.closeness
 analysis_dict["connected_components"] = module.connected_components
 analysis_dict["diameter"] = module.diameter
 analysis_dict["reciprocity"] = module.reciprocity
 analysis_dict["adjacency"] = module.adj_mat
 analysis_dict["get_edges"] = module.get_edges

 Source code for nngt.lib.nngt_config

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Configuration tools for NNGT """

import os
import sys
import logging
import importlib.util as imputil
from copy import deepcopy
from importlib import reload

import numpy as np

import nngt
from .errors import InvalidArgument
from .logger import _configure_logger, _init_logger, _log_message
from .rng_tools import seed as nngt_seed
from .test_functions import mpi_checker, num_mpi_processes, mpi_barrier

logger = logging.getLogger(__name__)

Getter and setter

[docs]def get_config(key=None, detailed=False):
 '''
 Get the NNGT configuration as a dictionary.

 Note

 This function has no MPI barrier on it.
 '''
 if key is None:
 cfg = {
 key: val.copy() if isinstance(val, list) else val
 for key, val in nngt._config.items()
 }

 if detailed:
 return cfg
 else:
 # hide mpi conf if not used
 if not nngt._config["mpi"]:
 del cfg['mpi_comm']

 # hide technical stuff
 del cfg["graph"]
 del cfg["library"]
 del cfg["palette_continuous"]
 del cfg["palette_discrete"]
 del cfg["use_tex"]
 del cfg["mpl_backend"]
 del cfg["color_lib"]

 # hide database config if not used
 rm = []
 if not nngt._config["use_database"]:
 for k in cfg:
 if k.startswith('db_'):
 rm.append(k)

 # hide log config
 for k in cfg:
 if k.startswith('log_'):
 rm.append(k)

 for k in rm:
 del cfg[k]

 return cfg

 res = nngt._config[key]

 return res

[docs]@mpi_barrier
def set_config(config, value=None, silent=False):
 '''
 Set NNGT's configuration.

 Parameters

 config : dict or str
 Either a full configuration dictionary or one key to be set together
 with its associated value.
 value : object, optional (default: None)
 Value associated to `config` if `config` is a key.

 Examples

 >>> nngt.set_config({'multithreading': True, 'omp': 4})
 >>> nngt.set_config('multithreading', False)

 Notes

 See the config file `nngt/nngt.conf.default` or `~/.nngt/nngt.conf` for
 details about your configuration.

 This function has an MPI barrier on it, so it must always be called on all
 processes.

 See also

 :func:`~nngt.get_config`
 '''
 old_mt = nngt._config["multithreading"]
 old_mpi = nngt._config["mpi"]
 old_omp = nngt._config["omp"]
 old_gl = nngt._config["backend"]
 old_msd = nngt._config["msd"]

 old_config = nngt._config.copy()
 new_config = None

 if not isinstance(config, dict):
 new_config = {config: value}
 else:
 new_config = config.copy()

 for key, val in new_config.items():
 # support for previous "palette" keyword
 if key not in nngt._config:
 if key == "palette":
 _log_message(logger, "WARNING",
 "`palette` argument is deprecated and will be "
 "removed in version 3.")
 else:
 raise KeyError(
 "Unknown configuration property: {}".format(key))

 if key == "log_level":
 new_config[key] = _convert(val)
 if key == "backend" and val != old_gl:
 nngt.use_backend(val)
 if key == "log_folder":
 new_config["log_folder"] = os.path.abspath(
 os.path.expanduser(val))
 if key == "db_folder":
 new_config["db_folder"] = os.path.abspath(
 os.path.expanduser(val))

 # support for previous "palette" keyword
 if "palette" in new_config:
 new_config["palette_continuous"] = new_config["palette"]
 new_config["palette_discrete"] = new_config["palette"]

 del new_config["palette"]

 # check multithreading status and number of threads
 _pre_update_parallelism(new_config, old_mt, old_omp, old_mpi)

 # update
 nngt._config.update(new_config)

 # apply multithreading parameters
 _post_update_parallelism(new_config, old_gl, old_msd, old_mt, old_mpi)

 # update matplotlib
 if nngt._config['use_tex']:
 import matplotlib
 matplotlib.rc('text', usetex=True)

 # update database
 if nngt._config["use_database"] and not hasattr(nngt, "db"):
 from .. import database
 sys.modules["nngt.database"] = database
 if nngt._config["db_to_file"]:
 _log_message(logger, "WARNING",
 "This functionality is not available")
 # update nest
 if imputil.find_spec("nest") is not None:
 _lazy_load("nngt.simulation")
 nngt._config["with_nest"] = True
 else:
 nngt._config["with_nest"] = False
 # log changes
 _configure_logger(nngt._logger)
 glib = (nngt._config["library"] if nngt._config["library"] is not None
 else nngt)
 num_mpi = num_mpi_processes()
 s_mpi = False if not nngt._config["mpi"] else "True ({} process{})".format(
 num_mpi, "es" if num_mpi > 1 else "")
 try:
 import svg.path
 has_svg = True
 except:
 has_svg = False
 try:
 import dxfgrabber
 has_dxf = True
 except:
 has_dxf = False
 try:
 import shapely
 has_shapely = shapely.__version__
 except:
 has_shapely = False
 conf_info = config_info.format(
 gl = nngt._config["backend"] + " " + glib.__version__[:5],
 thread = nngt._config["multithreading"],
 plot = nngt._config["with_plot"],
 nest = nngt._config["with_nest"],
 db = nngt._config["use_database"],
 omp = nngt._config["omp"],
 s = "s" if nngt._config["omp"] > 1 else "",
 mpi = s_mpi,
 shapely = has_shapely,
 svg = has_svg,
 dxf = has_dxf,
)
 if not silent and old_config != nngt._config:
 _log_conf_changed(conf_info)

Tools

def _convert(value):
 value = str(value)
 if value.isdigit():
 return int(value)
 elif value.lower() == "true":
 return True
 elif value.lower() == "false":
 return False
 elif value.upper() == "CRITICAL":
 return logging.CRTICAL
 elif value.upper() == "DEBUG":
 return logging.DEBUG
 elif value.upper() == "ERROR":
 return logging.ERROR
 elif value.upper() == "INFO":
 return logging.INFO
 elif value.upper() == "WARNING":
 return logging.WARNING
 else:
 return value

def _load_config(path_config):
 ''' Load `~/.nngt.conf` and parse it, return the settings '''
 with open(path_config, 'r') as fconfig:
 options = [l.strip() for l in fconfig if l.strip() and l[0] != "#"]
 for opt in options:
 sep = opt.find("=")
 opt_name = opt[:sep].strip()
 nngt._config[opt_name] = _convert(opt[sep+1:].strip())
 _init_logger(nngt._logger)

@mpi_checker(logging=True)
def _log_conf_changed(conf_info):
 logger.info(conf_info)

def _set_gt_config(old_gl, new_config):
 using_gt = old_gl == "graph-tool"
 using_gt *= new_config.get("backend", old_gl) == "graph-tool"
 using_gt *= nngt._config["library"] is not None

 if "omp" in new_config and using_gt:
 omp_nest = new_config["omp"]
 if nngt._config['with_nest']:
 import nest
 omp_nest = nest.GetKernelStatus("local_num_threads")
 if omp_nest == new_config["omp"]:
 nngt._config["library"].openmp_set_num_threads(nngt._config["omp"])
 else:
 _log_message(logger, "WARNING",
 "Using NEST and graph_tool, OpenMP number must be "
 "consistent throughout the code. Current NEST "
 "config states omp = " + str(omp_nest) + ", hence "
 "`graph_tool` configuration was not changed.")

def _pre_update_parallelism(new_config, old_mt, old_omp, old_mpi):
 mt = "multithreading"

 if "omp" in new_config:
 if new_config["omp"] > 1:
 if mt in new_config and not new_config[mt]:
 _log_message(logger, "WARNING",
 "Updating to 'multithreading' == False with "
 "'omp' greater than one.")
 elif mt not in new_config and not old_mt:
 new_config[mt] = True
 _log_message(logger, "WARNING",
 "'multithreading' was set to False but new "
 "'omp' is greater than one. Updating "
 "'multithreading' to True.")

 if new_config.get('mpi', False) and new_config.get(mt, False):
 raise InvalidArgument('Cannot set both "mpi" and "multithreading" to '
 'True simultaneously, choose one or the other.')
 elif new_config.get(mt, False):
 new_config['mpi'] = False
 elif new_config.get('mpi', False):
 if old_mt:
 new_config[mt] = False
 _log_message(logger, "WARNING",
 '"mpi" set to True but previous configuration was '
 'using OpenMP; setting "multithreading" to False '
 'to switch to mpi algorithms.')

 with_mt = new_config.get(mt, old_mt)
 with_mpi = new_config.get('mpi', old_mpi)

 # check that seeds are correct
 if new_config.get('seeds', None) is not None:
 seeds = new_config['seeds']
 err = 'Expected {} seeds.'
 err2 = 'All seeds must be different.'
 if with_mpi:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 size = comm.Get_size()
 assert size == len(seeds), err.format(size)
 assert len(set(seeds)) == len(seeds), err2
 elif with_mt:
 num_omp = new_config.get("omp", old_omp)
 assert num_omp == len(seeds), err.format(num_omp)
 assert len(set(seeds)) == len(seeds), err2
 else:
 # reset seeds if necessary
 # - because the number of threads changed
 reset_seeds = (new_config.get("omp", 1) != nngt._config["omp"])
 # - because we switched from OpenMP to MPI
 reset_seeds += (with_mpi and old_mt)
 # - because we switched from MPI to OpenMP
 reset_seeds += (with_mt and old_mpi)

 if reset_seeds:
 new_config['seeds'] = None
 new_config['msd'] = None
 nngt._seeded = False

def _post_update_parallelism(new_config, old_gl, old_msd, old_mt, old_mpi):
 # reload for omp
 new_multithreading = new_config.get("multithreading", old_mt)

 if new_multithreading != old_mt:
 reload(sys.modules["nngt"].generation.graph_connectivity)
 reload(sys.modules["nngt"].generation.connectors)
 reload(sys.modules["nngt"].generation.rewiring)

 # if multithreading loading failed, set omp back to 1
 if not nngt._config['multithreading']:
 nngt._config['omp'] = 1
 nngt._config['seeds'] = None

 # if MPI is on, set mpi_comm and check random numbers
 if new_config.get('mpi', old_mpi):
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 rank = comm.Get_rank()
 nngt._config['mpi_comm'] = comm
 # check that master seed is the same everywhere
 msd = nngt._config['msd']
 msd = comm.gather(msd, root=0)
 if rank == 0:
 if None not in msd:
 msd = np.array(msd, dtype=int)
 if not np.alltrue(msd == msd[0]):
 nngt._config["mpi"] = False
 raise InvalidArgument("'msd' entry must be the same on "
 "all MPI processes.")
 else:
 differs = [seed != None for seed in msd]
 if np.any(differs):
 raise InvalidArgument("'msd' entry must be the same on "
 "all MPI processes.")

 # reload for mpi
 if new_config.get('mpi', old_mpi) != old_mpi:
 reload(sys.modules["nngt"].generation.graph_connectivity)
 reload(sys.modules["nngt"].generation.connectors)
 reload(sys.modules["nngt"].generation.rewiring)

 # set graph-tool config
 _set_gt_config(old_gl, new_config)

 # seed python RNGs
 if old_msd != nngt._config['msd'] or not nngt._seeded:
 nngt_seed(msd=nngt._config['msd'])

def _lazy_load(fullname):
 '''
 Lazy loading for simulation.

 From: https://stackoverflow.com/a/51126745/5962321
 '''
 try:
 return sys.modules[fullname]
 except KeyError:
 spec = imputil.find_spec(fullname)
 module = imputil.module_from_spec(spec)
 loader = imputil.LazyLoader(spec.loader)
 # setup module and insert into sys.modules
 loader.exec_module(module)
 return module

config_info = '''

Config changed

Graph library: {gl}
Multithreading: {thread} ({omp} thread{s})
MPI: {mpi}
Plotting: {plot}
NEST support: {nest}
Shapely: {shapely}
SVG support: {svg}
DXF support: {dxf}
Database: {db}
'''

 Source code for nngt.lib.rng_tools

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Generating the weights of the graph object's connections """

import numpy as np
import scipy.sparse as ssp

import nngt

from .errors import InvalidArgument
from .test_functions import nonstring_container
from .test_functions import mpi_random

Random seed

[docs]@mpi_random
def seed(msd=None, seeds=None):
 '''
 Seed the random generator used by NNGT
 (i.e. the numpy `RandomState`: for details, see
 :class:`numpy.random.RandomState`).

 Parameters

 msd : int, optional
 Master seed for numpy `RandomState`.
 Must be convertible to 32-bit unsigned integers.
 seeds : list of ints, optional
 Seeds for `RandomState` (when using MPI).
 Must be convertible to 32-bit unsigned integers, one entry per MPI
 process.
 '''
 # when using MPI numpy seeeds are sync-ed via the mpi_random decorator
 msd = np.random.randint(0, 2**31 - 1) if msd is None else msd

 # seed both random state and new generator
 np.random.seed(msd)
 nngt._rng = np.random.default_rng(msd)

 nngt._config['msd'] = msd

 nngt._seeded = True

 nngt._seeded_local = False

 # check subseeds
 if seeds is not None:
 with_mt = nngt.get_config('multithreading')
 with_mpi = nngt.get_config('mpi')
 err = 'Expected {} seeds.'

 if with_mpi:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 size = comm.Get_size()
 assert size == len(seeds), err.format(size)
 nngt._config['seeds'] = seeds
 elif with_mt:
 num_omp = nngt.get_config('omp')
 assert num_omp == len(seeds), err.format(num_omp)
 nngt._config['seeds'] = seeds

 nngt._seeded_local = True
 nngt._used_local = False

Return the right distribution

def _generate_random(number, instructions):
 name = "not defined"

 if isinstance(instructions, dict):
 name = instructions["distribution"]

 instructions = {
 k: v for k, v in instructions.items() if k != "distribution"
 }

 if name in di_dfunc:
 return di_dfunc[name](None, None, number, **instructions)

 raise NotImplementedError(
 "Unknown distribution: '{}'. Supported distributions " \
 "are {}".format(name, ", ".join(di_dfunc.keys())))
 elif nonstring_container(instructions):
 name = instructions[0]

 if name in di_dfunc:
 return di_dfunc[name](None, None, number, *instructions[1:])

 raise NotImplementedError(
 "Unknown distribution: '{}'. Supported distributions " \
 "are {}".format(name, ", ".join(di_dfunc.keys())))

 raise NotImplementedError(
 "Unknown instructions: '{}'".format(instructions))

def _eprop_distribution(graph, distrib_type, matrix=False, elist=None,
 last_edges=False, **kw):
 ra_values = di_dfunc[distrib_type](graph, elist=elist,
 last_edges=last_edges, **kw)
 num_edges = graph.edge_nb()

 if matrix:
 return _make_matrix(graph, num_edges, ra_values, elist)
 else:
 return ra_values

Generating the matrix

def _make_matrix(graph, ecount, values, elist=None):
 mat_distrib = None
 n = graph.node_nb()
 if elist is not None and graph.edge_nb():
 mat_distrib = ssp.coo_matrix((values,(elist[:,0],elist[:,1])),(n,n))
 else:
 mat_distrib = graph.adjacency_matrix()
 mat_distrib.data = values
 mat_distrib = mat_distrib.tolil()
 mat_distrib.setdiag(np.zeros(n))
 return mat_distrib

Distribution generators

[docs]def delta_distrib(graph=None, elist=None, num=None, value=1., **kwargs):
 '''
 Delta distribution for edge attributes.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Graph for which an edge attribute will be generated.
 elist : list of edges, optional (default: all edges)
 Generate values for only a subset of edges.
 value : float, optional (default: 1.)
 Value of the delta distribution.

 Returns : :class:`numpy.ndarray`
 Attribute value for each edge in `graph`.
 '''
 num = _compute_num_prop(elist, graph, num)
 return np.repeat(value, num)

[docs]def uniform_distrib(graph, elist=None, num=None, lower=None, upper=None,
 **kwargs):
 '''
 Uniform distribution for edge attributes.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Graph for which an edge attribute will be generated.
 elist : list of edges, optional (default: all edges)
 Generate values for only a subset of edges.
 lower : float, optional (default: 0.)
 Min value of the uniform distribution.
 upper : float, optional (default: 1.5)
 Max value of the uniform distribution.

 Returns : :class:`numpy.ndarray`
 Attribute value for each edge in `graph`.
 '''
 num = _compute_num_prop(elist, graph, num)
 return np.random.uniform(lower, upper, num)

[docs]def gaussian_distrib(graph, elist=None, num=None, avg=None, std=None,
 **kwargs):
 '''
 Gaussian distribution for edge attributes.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Graph for which an edge attribute will be generated.
 elist : list of edges, optional (default: all edges)
 Generate values for only a subset of edges.
 avg : float, optional (default: 0.)
 Average of the Gaussian distribution.
 std : float, optional (default: 1.5)
 Standard deviation of the Gaussian distribution.

 Returns : :class:`numpy.ndarray`
 Attribute value for each edge in `graph`.
 '''
 num = _compute_num_prop(elist, graph, num)
 return np.random.normal(avg, std, num)

[docs]def lognormal_distrib(graph, elist=None, num=None, position=None, scale=None,
 **kwargs):
 '''
 Lognormal distribution for edge attributes.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Graph for which an edge attribute will be generated.
 elist : list of edges, optional (default: all edges)
 Generate values for only a subset of edges.
 position : float, optional (default: 0.)
 Average of the normal distribution (i.e. log of the actual mean of the
 lognormal distribution).
 scale : float, optional (default: 1.5)
 Standard deviation of the normal distribution.

 Returns : :class:`numpy.ndarray`
 Attribute value for each edge in `graph`.
 '''
 num = _compute_num_prop(elist, graph, num)
 return np.random.lognormal(position, scale, num)

[docs]def lin_correlated_distrib(graph, elist=None, correl_attribute="betweenness",
 noise_scale=None, lower=None, upper=None,
 slope=None, offset=0., last_edges=False, **kwargs):
 if slope is not None and (lower, upper) != (None, None):
 raise InvalidArgument('`slope` and `lower`/`upper` parameters are not '
 'compatible, please choose one or the other.')
 elif (lower is not None or upper is not None) and None in (lower, upper):
 raise InvalidArgument('Both `lower` and `upper` should be set if one '
 'of the two is used.')
 ecount = _compute_num_prop(elist, graph)
 noise = (1. if noise_scale is None
 else np.abs(np.random.normal(1, noise_scale, ecount)))
 data = None
 if correl_attribute == "betweenness":
 data = graph.get_betweenness(kwargs["btype"], kwargs["weights"])
 elif correl_attribute == "distance":
 assert 'distance' in graph.edge_attributes, \
 'Graph has no "distance" edge attribute.'
 if 'distance' not in kwargs:
 if last_edges:
 slc = slice(-len(elist), None)
 data = graph.get_edge_attributes(slc, 'distance')
 else:
 data = graph.get_edge_attributes(elist, 'distance')
 else:
 data = kwargs['distance']
 else:
 raise NotImplementedError()
 if noise_scale is not None:
 data *= noise
 if len(data):
 if slope is None:
 dmax = np.max(data)
 dmin = np.min(data)
 return lower + (upper-lower)*(data-dmin)/(dmax-dmin) + offset
 else:
 return slope*data + offset
 return np.array([])

[docs]def log_correlated_distrib(graph, elist=None, correl_attribute="betweenness",
 noise_scale=None, lower=0., upper=2.,
 **kwargs):
 ecount = _compute_num_prop(elist, graph)
 raise NotImplementedError()

def custom(graph, values=None, elist=None, **kwargs):
 if values is None and elist is not None:
 return np.ones(len(elist))

 return values

di_dfunc = {
 "constant": delta_distrib,
 "uniform": uniform_distrib,
 "lognormal": lognormal_distrib,
 "gaussian": gaussian_distrib,
 "normal": gaussian_distrib,
 "lin_corr": lin_correlated_distrib,
 "log_corr": log_correlated_distrib,
 "custom": custom
}

Tools

def _compute_num_prop(elist, graph, ecount=None):
 if ecount is None:
 return len(elist) if elist is not None else graph.edge_nb()
 return ecount

 Source code for nngt.lib.sorting

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Sorting tools """

import numpy as np

from .errors import InvalidArgument
from .test_functions import nonstring_container, is_integer

[docs]def find_idx_nearest(array, values):
 '''
 Find the indices of the nearest elements of `values` in a sorted `array`.

 .. warning::
 Both ``array`` and ``values`` should be `numpy.array` objects and
 `array` MUST be sorted in increasing order.

 Parameters

 array : reference list or np.ndarray
 values : double, list or array of values to find in `array`

 Returns

 idx : int or array representing the index of the closest value in `array`
 '''
 idx = np.searchsorted(array, values, side="left") # get the interval
 # return the index of the closest
 if isinstance(values, np.float) or is_integer(values):
 if idx == len(array):
 return idx-1
 else:
 idx -= (np.abs(values-array[idx-1]) < np.abs(values-array[idx]))
 return idx
 else:
 # find where it is idx_max+1
 overflow = (idx == len(array))
 idx[overflow] -= 1
 # for the others, find the nearest
 tmp = idx[~overflow]
 idx[~overflow] = tmp - (np.abs(values[~overflow] - array[tmp-1])
 < np.abs(values[~overflow] - array[tmp]))
 return idx

def _sort_neurons(sort, gids, network, data=None, return_attr=False):
 '''
 Sort the neurons according to the `sort` property.

 If `sort` is "firing_rate" or "B2", then data must contain the `senders`
 and `times` list given by a NEST ``spike_recorder``.

 Parameters

 sort : str or array
 Sorting method or indices
 gids : array-like
 NEST gids
 network : the network
 data : numpy.array of shape (N, 2)
 Senders on column 1, times on column 2.

 Returns

 For N neurons, labeled from ``GID_MIN`` to ``GID_MAX``, returns a`sorting`
 array of size ``GID_MAX``, where ``sorting[gids]`` gives the sorted ids of
 the neurons, i.e. an integer between 1 and N.
 '''
 from nngt.analysis import node_attributes, get_b2
 min_nest_gid = network.nest_gids.min()
 max_nest_gid = network.nest_gids.max()
 sorting = np.zeros(max_nest_gid + 1)
 attribute = None
 sorted_ids = None
 if isinstance(sort, str):
 if sort == "firing_rate":
 # compute number of spikes per neuron
 spikes = np.bincount(data[:, 0].astype(int))
 if spikes.shape[0] < max_nest_gid: # one entry per neuron
 spikes.resize(max_nest_gid)
 # sort them (neuron with least spikes arrives at min_nest_gid)
 sorted_ids = np.argsort(spikes)[min_nest_gid:] - min_nest_gid
 # get attribute
 idx_min = int(np.min(data[:, 0]))
 attribute = spikes[idx_min:] \
 / (np.max(data[:, 1]) - np.min(data[:, 1]))
 elif sort.lower() == "b2":
 attribute = get_b2(network, data=data, nodes=gids)
 sorted_ids = np.argsort(attribute)
 # check for non-spiking neurons
 num_b2 = attribute.shape[0]
 if num_b2 < network.node_nb():
 spikes = np.bincount(data[:, 0])
 non_spiking = np.where(spikes[min_nest_gid] == 0)[0]
 sorted_ids.resize(network.node_nb())
 for i, n in enumerate(non_spiking):
 sorted_ids[sorted_ids >= n] += 1
 sorted_ids[num_b2 + i] = n
 elif sort == "space":
 xs, ys = network.get_positions().T
 x_min, x_max = np.min(xs), np.max(xs)
 y_min, y_max = np.min(ys), np.max(ys)

 num_boxes = 10

 xbins = np.linspace(x_min, x_max, num_boxes + 1)
 ybins = np.linspace(y_min, y_max, num_boxes + 1)
 xboxes = np.digitize(xs, xbins)
 yboxes = np.digitize(ys, ybins)

 attribute = xboxes*num_boxes + yboxes
 sorted_ids = np.argsort(attribute)
 elif sort == "x":
 xs, _ = network.get_positions().T
 x_min, x_max = np.min(xs), np.max(xs)

 num_boxes = 10

 xbins = np.linspace(x_min, x_max, num_boxes + 1)
 attribute = np.digitize(xs, xbins)
 sorted_ids = np.argsort(attribute)
 elif sort == "y":
 _, ys = network.get_positions().T
 y_min, y_max = np.min(ys), np.max(ys)

 num_boxes = 10

 ybins = np.linspace(y_min, y_max, num_boxes + 1)
 attribute = np.digitize(ys, ybins)
 sorted_ids = np.argsort(attribute)
 else:
 attribute = node_attributes(network, sort)
 sorted_ids = np.argsort(attribute)
 else:
 sorted_ids = np.argsort(sort)
 attribute = sort[sorted_ids]

 if network.is_network():
 num_sorted = 1
 for group in network.population.values():
 gids = network.nest_gids[group.ids]
 order = np.argsort(np.argsort(np.argsort(sorted_ids)[group.ids]))
 sorting[gids] = num_sorted + order
 num_sorted += len(group.ids)

 if return_attr:
 return sorting.astype(int), attribute
 else:
 return sorting.astype(int)

def _sort_groups(pop):
 '''
 Sort the groups of a NeuralPop by decreasing size.
 '''
 names, groups = [], []
 for name, group in pop.items():
 names.append(name)
 groups.append(group)
 sizes = [len(g.ids) for g in groups]
 order = np.argsort(sizes)[::-1]
 return [names[i] for i in order], [groups[i] for i in order]

 Source code for nngt.lib.test_functions

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Test functions for the NNGT """

import collections
import functools
import inspect
import warnings

from collections.abc import Container as _container
from collections.abc import Iterable as _iterable
from collections.abc import KeysView as _key_view
from collections.abc import ValuesView as _value_view

import numpy as np

import nngt

from .decorator import decorate

def deprecated(version, reason=None, alternative=None, removal=None):
 '''
 Decorator to mark deprecated functions.
 '''
 def decorator(func):
 def wrapper(func, *args, **kwargs):
 # turn off filter temporarily
 warnings.simplefilter('always', DeprecationWarning)
 message = "Function {} is deprecated since version {}"
 message = message.format(func.__name__, version)
 if reason is not None:
 message += " because " + reason + "."
 else:
 message += "."
 if removal is not None:
 message += " It will be removed in version {}.".format(removal)
 if alternative is not None:
 message += " Use " + alternative + " instead."
 warnings.warn(message, category=DeprecationWarning)
 warnings.simplefilter('default', DeprecationWarning)
 return func(*args, **kwargs)
 return decorate(func, wrapper)
 return decorator

~ def constrain_argument(arg, valid_values):
 # ~ '''
 # ~ Decorator to constrain function arguments.
 # ~ '''
 # ~ def decorator(func):
 # ~ @functools.wrap(func)
 # ~ def wrapper(func, *args, **kwargs):
 # ~ arg_names = inspect.getargspec(func)[0]
 # ~ arguments = {k: v for k, v in zip(arg_names, args)}

 # ~ arguments.update(kwargs)

 # ~ if arg in arguments:
 # ~ assert arguments[arg] in valid_values, \
 # ~ "Argument `'{}' must be among {}".format(arg, valid_values)

 # ~ return func(*args, **kwargs)
 # ~ return decorate(func, wrapper)
 # ~ return decorator

~ def check_arguments(arg_list):
 # ~ '''
 # ~ Decorator to constrain function arguments.
 # ~ '''
 # ~ def decorator(func):
 # ~ @functools.wrap(func)
 # ~ def wrapper(func, *args, **kwargs):
 # ~ arg_names = set(inspect.getargspec(func)[0])
 # ~ allowed = arg_names.union(arg_list)

 # ~ for arg in kwargs:
 # ~ if arg not in allowed:
 # ~ raise InvalidArgument(("'{}' is not a valid argument for "
 # ~ "function '{}'.").format(arg, func))
 # ~ return func(*args, **kwargs)
 # ~ return decorate(func, wrapper)
 # ~ return decorator

[docs]def on_master_process():
 '''
 Check whether the current code is executing on the master process (rank 0)
 if MPI is used.

 Returns

 True if rank is 0, if mpi4py is not present or if MPI is not used,
 otherwise False.
 '''
 try:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 rank = comm.Get_rank()
 if rank == 0:
 return True
 else:
 return False
 except ImportError:
 return True

[docs]def num_mpi_processes():
 ''' Returns the number of MPI processes (1 if MPI is not used) '''
 try:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 return comm.Get_size()
 except ImportError:
 return 1

def mpi_barrier(func=None):
 def wrapper(func, *args, **kwargs):
 try:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 comm.Barrier()
 except ImportError:
 pass

 if func is not None:
 return func(*args, **kwargs)

 # act as a real decorator
 if func is not None:
 return decorate(func, wrapper)

 # otherwise just execute the barrier
 wrapper(None)

def mpi_checker(logging=False):
 '''
 Decorator used to check for mpi and make sure only rank zero is used
 to store and generate the graph if the mpi algorithms are activated.
 '''
 def decorator(func):
 def wrapper(func, *args, **kwargs):
 # when using MPI, make sure everyone waits for the others
 try:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 comm.Barrier()
 except ImportError:
 pass
 # check backend ("nngt" is fully parallel, not the others)
 backend = False
 if not logging:
 backend = nngt.get_config("backend") == "nngt"
 if backend or on_master_process():
 return func(*args, **kwargs)
 else:
 return None
 return decorate(func, wrapper)
 return decorator

def mpi_random(func):
 '''
 Decorator asserting that all processes start with same random seed when
 using mpi.
 '''
 def wrapper(func, *args, **kwargs):
 try:
 from mpi4py import MPI
 comm = MPI.COMM_WORLD
 rank = comm.Get_rank()

 if rank == 0:
 state = np.random.get_state()
 else:
 state = None

 state = comm.bcast(state, root=0)
 np.random.set_state(state)
 except ImportError:
 pass

 return func(*args, **kwargs)

 return decorate(func, wrapper)

[docs]def nonstring_container(obj):
 '''
 Returns true for any iterable which is not a string or byte sequence.
 '''
 if isinstance(obj, (_key_view, _value_view)):
 return True

 if not isinstance(obj, _container):
 return False

 if isinstance(obj, (bytes, str)):
 return False

 return True

[docs]def is_integer(obj):
 ''' Return whether the object is an integer '''
 return isinstance(obj, (int, np.integer))

[docs]def is_iterable(obj):
 ''' Return whether the object is iterable '''
 return isinstance(obj, _iterable)

def graph_tool_check(version_min):
 '''
 Raise an error for function not working with old versions of graph-tool.
 '''
 def decorator(func):
 def wrapper(func, *args, **kwargs):
 old_graph_tool = _old_graph_tool(version_min)
 if old_graph_tool:
 raise NotImplementedError('This function is not working for '
 'graph-tool < ' + version_min + '.')
 else:
 return func(*args, **kwargs)
 return decorate(func, wrapper) # to preserve the docstring info
 return decorator

def _old_graph_tool(version_min):
 '''
 Check for old versions of graph-tool for which some functions are not
 working.
 '''
 return (nngt.get_config('backend') == 'graph-tool'
 and nngt.get_config('library').__version__[:4] < version_min)

 Source code for nngt.plot.animations

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Animation tools """

import warnings
import weakref
import subprocess

import numpy as np

import matplotlib as mpl
from matplotlib.lines import Line2D
import matplotlib.animation as anim

from nngt.lib import InvalidArgument
from nngt.lib.sorting import _sort_neurons
from nngt.analysis import total_firing_rate
from .plt_networks import draw_network

Animation classes

class _SpikeAnimator(anim.TimedAnimation):

 '''
 Generic class to plot raster plot and firing-rate in time for a given
 network.

 .. warning::
 This class is not supposed to be instantiated directly, but only
 through Animation2d or AnimationNetwork.
 '''

 steps = [
 1, 5, 10, 20, 25, 50, 100, 200, 250, 500,
 1000, 2000, 2500, 5000, 10000, 25000, 50000, 75000, 100000, 250000
]

 def __init__(self, source, sort_neurons=None,
 network=None, grid=(2, 4), pos_raster=(0, 2),
 span_raster=(1, 2), pos_rate=(1, 2),
 span_rate=(1, 2), make_rate=True, **kwargs):
 '''
 Generate a SubplotAnimation instance to plot a network activity.

 Parameters

 source : NEST gid tuple or str
 NEST gid of the `spike_detector`(s) which recorded the network or
 path to a file containing the recorded spikes.

 Note

 Calling class is supposed to have defined `self.times`, `self.start`,
 `self.duration`, `self.trace`, and `self.timewindow`.
 '''
 import matplotlib.pyplot as plt
 import nest
 from nngt.simulation.nest_activity import _get_data

 # organization
 self.grid = grid
 self.has_rate = make_rate

 # get data
 data_s = _get_data(source)
 spikes = np.where(data_s[:, 1] >= self.times[0])[0]

 if np.any(spikes):
 idx_start = spikes[0]
 self.spikes = data_s[:, 1][idx_start:]
 self.senders = data_s[:, 0][idx_start:].astype(int)
 self._ymax = np.max(self.senders)
 self._ymin = np.min(self.senders)

 if network is None:
 self.num_neurons = int(self._ymax - self._ymin)
 else:
 self.num_neurons = network.node_nb()
 # sorting
 if sort_neurons is not None:
 if network is not None:
 sorted_neurons = _sort_neurons(
 sort_neurons, self.senders, network, data=data_s)
 self.senders = sorted_neurons[self.senders]
 else:
 warnings.warn("Could not sort neurons because no " \
 + "`network` was provided.")

 dt = self.times[1] - self.times[0]
 self.simtime = self.times[-1] - self.times[0]
 self.dt = dt

 # generate the spike-rate
 if make_rate:
 self.firing_rate, _ = total_firing_rate(
 network, data=data_s, resolution=self.times)
 else:
 raise RuntimeError("No spikes between {} and {}.".format(
 self.start, self.times[-1]))

 # figure/canvas: pause/resume and step by step interactions
 self.fig = plt.figure(
 figsize=kwargs.get("figsize", (8, 6)), dpi=kwargs.get("dpi", 75))
 self.pause = False
 self.pause_after = False
 self.event = None
 self.increment = 1
 self.fig.canvas.mpl_connect('button_press_event', self.on_click)
 self.fig.canvas.mpl_connect('key_press_event', self.on_keyboard_press)
 self.fig.canvas.mpl_connect(
 'key_release_event', self.on_keyboard_release)

 # Axes for spikes and spike-rate/other representations
 self.spks = plt.subplot2grid(
 grid, pos_raster, rowspan=span_raster[0], colspan=span_raster[1])
 self.second = plt.subplot2grid(
 grid, pos_rate, rowspan=span_rate[0], colspan=span_rate[1],
 sharex=self.spks)

 # lines
 self.line_spks_ = Line2D(
 [], [], ls='None', marker='o', color='black', ms=2, mew=0)
 self.line_spks_a = Line2D(
 [], [], ls='None', marker='o', color='red', ms=2, mew=0)
 self.line_second_ = Line2D([], [], color='black')
 self.line_second_a = Line2D([], [], color='red', linewidth=2)
 self.line_second_e = Line2D(
 [], [], color='red', marker='o', markeredgecolor='r')

 # Spikes raster plot
 kw_args = {}
 if self.timewindow != self.duration:
 kw_args['xlim'] = (self.start,
 min(self.simtime, self.timewindow + self.start))
 ylim = (self._ymin, self._ymax)
 self.lines_raster = [self.line_spks_, self.line_spks_a]
 self.set_axis(self.spks, xlabel='Time (ms)', ylabel='Neuron',
 lines=self.lines_raster, ylim=ylim, set_xticks=True, **kw_args)
 self.lines_second = [
 self.line_second_, self.line_second_a, self.line_second_e]

 # Rate plot
 if make_rate:
 self.set_axis(
 self.second, xlabel='Time (ms)', ylabel='Rate (Hz)',
 lines=self.lines_second, ydata=self.firing_rate, **kw_args)

 #---
 # Axis definition

 def set_axis(self, axis, xlabel, ylabel, lines, xdata=None, ydata=None,
 **kwargs):
 '''
 Setup an axis.

 Parameters

 axis : :class:`matplotlib.axes.Axes` object
 xlabel : str
 ylabel : str
 lines : list of :class:`matplotlib.lines.Line2D` objects
 xdata : 1D array-like, optional (default: None)
 ydata : 1D array-like, optional (default: None)
 **kwargs : dict, optional (default: {})
 Optional arguments ("xlim" or "ylim", 2-tuples; "set_xticks",
 bool).
 '''
 axis.set_xlabel(xlabel)
 axis.set_ylabel(ylabel)
 if kwargs.get('set_xticks', False):
 self._make_ticks(self.timewindow)
 for line2d in lines:
 axis.add_line(line2d)
 if 'xlim' in kwargs:
 axis.set_xlim(*kwargs['xlim'])
 else:
 xmin, xmax = self.xticks[0], self.xticks[-1]
 axis.set_xlim(_min_axis(xmin, xmax), _max_axis(xmax, xmin))
 if 'ylim' in kwargs:
 axis.set_ylim(*kwargs['ylim'])
 else:
 ymin, ymax = np.min(ydata), np.max(ydata)
 axis.set_ylim(_min_axis(ymin, ymax), _max_axis(ymax, ymin))

 def _draw(self, i, head, head_slice, spike_cum, spike_slice):
 self.line_spks_.set_data(
 self.spikes[spike_cum], self.senders[spike_cum])
 if np.any(spike_slice):
 self.line_spks_a.set_data(
 self.spikes[spike_slice], self.senders[spike_slice])
 else:
 self.line_spks_a.set_data([], [])
 if self.has_rate:
 self.line_second_.set_data(self.times[:i], self.firing_rate[:i])
 self.line_second_a.set_data(
 self.times[head_slice], self.firing_rate[head_slice])
 self.line_second_e.set_data(
 self.times[head], self.firing_rate[head])

 # set axis limits: 1. check user-defined
 current_window = np.diff(self.spks.get_xlim())
 default_window = (np.isclose(current_window, self.timewindow)
 or np.isclose(current_window, self.simtime - self.start))[0]
 # 3. change if necessary
 if default_window:
 xlims = self.spks.get_xlim()
 if self.times[i] >= xlims[1]:
 self.spks.set_xlim(
 self.times[i] - self.timewindow, self.times[i])
 self.second.set_xlim(
 self.times[i] - self.timewindow, self.times[i])
 elif self.times[i] <= xlims[0]:
 self.spks.set_xlim(self.start, self.timewindow + self.start)

 def _make_ticks(self, timewindow):
 target_num_ticks = np.ceil(self.duration / timewindow * 5)
 target_step = self.duration / target_num_ticks
 idx_step = np.abs(self.steps-target_step).argmin()
 step = self.steps[idx_step]
 num_steps = int(self.duration / step) + 2
 self.xticks = [self.start + i*step for i in range(num_steps)]
 self.xlabels = [str(i) for i in self.xticks]

 #---
 # User interaction

 def on_click(self, event):
 if event.button == '2':
 if self.pause:
 self.pause = False
 self.event_source.start()
 else:
 self.pause = True
 self.event_source.stop()

 def on_keyboard_press(self, kb_event):
 if kb_event.key == ' ':
 if self.pause:
 self.pause = False
 self.event_source.start()
 else:
 self.pause = True
 self.event_source.stop()
 else:
 if kb_event.key in ('B', 'F', 'N', 'P'):
 if self.pause:
 self.pause = False
 self.pause_after = True # stop at next iteration
 self.event_source.start() # restart temporarily
 if kb_event.key == 'F':
 self.increment *= 2
 elif kb_event.key == 'B':
 self.increment = max(1, int(self.increment / 2))
 self.event = kb_event

 def on_keyboard_release(self, kb_event):
 if kb_event.key in (' ', 'B', 'F', 'N', 'P'):
 if self.pause_after:
 self.pause = True
 self.pause_after = False
 self.event_source.stop() # pause again
 self.event = None

 def save_movie(self, filename, fps=30, video_encoder='html5', codec="h264",
 bitrate=-1, start=None, stop=None, interval=None,
 num_frames=None, metadata=None):
 '''
 Save the animation to a movie file.

 Parameters

 filename : :obj:`str`
 Name of the file where the movie will be saved.
 fps : int, optional (default: 30)
 Frame per second.
 video_encoder : :obj:`str`, optional (default 'html5')
 Movie encoding format; either 'ffmpeg', 'html5', or 'imagemagick'.
 codec : :obj:`str`, optional (default: "h264")
 Codec to use for writing movie; if None, default `animation.codec`
 from `matplotlib` will be used.
 bitrate : int, optional (default: -1)
 Controls size/quality tradeoff for movie. Default (-1) lets utility
 auto-determine.
 start : float, optional (default: initial time)
 Start time, corresponding to the first spike time that will appear
 on the video.
 stop : float, optional (default: final time)
 Stop time, corresponding to the last spike time that will appear
 on the video.
 interval : int, optional (default: None)
 Timestep increment for each new frame. Default saves all
 timesteps (often heavy). E.g. setting `interval` to 10 will make
 the file 10 times lighter.
 num_frames : int, optional (default: None)
 Total number of frames that should be saved.
 metadata : :obj:`dict`, optional (default: None)
 Metadata for the video (e.g. 'title', 'artist', 'comment',
 'copyright')

 Notes

 * ``ffmpeg`` is required for 'ffmpeg' and 'html5' encoders.
 To get available formats, type ``ffmpeg -formats`` in a terminal;
 type ``ffmpeg -codecs | grep EV`` for available codecs.
 * Imagemagick is required for 'imagemagick' encoder.
 '''
 if interval is not None and num_frames is not None:
 raise InvalidArgument("Incompatible arguments `interval` and "
 "`num_frames` provided. Choose one.")
 elif interval is None and num_frames is None:
 self.increment = 1
 self.save_count = self.num_frames
 elif interval is None:
 self.increment = max(1, int(self.num_frames / num_frames))
 self.save_count = num_frames
 else:
 self.increment = interval
 self.save_count = int(self.num_frames / interval)
 start_frame = 0
 stop_frame = self.save_count
 if start is not None:
 start_frame = int(start / self.dt / self.increment) + 1
 self.spks.set_xlim(left=start)
 self.second.set_xlim(left=start)
 if stop is not None:
 stop_frame = int(stop / self.dt / self.increment) + 1
 self.spks.set_xlim(right=stop)
 self.second.set_xlim(right=stop)
 _save_movie(
 self, filename, fps, video_encoder, codec, bitrate, metadata,
 self.fig.dpi, start_frame, stop_frame)

[docs]class Animation2d(_SpikeAnimator, anim.FuncAnimation):

 '''
 Class to plot the raster plot, firing-rate, and average trajectory in
 a 2D phase-space for a network activity.
 '''

 def __init__(self, source, multimeter, start=0., timewindow=None,
 trace=5., x='time', y='V_m', sort_neurons=None,
 network=None, interval=50, vector_field=False, **kwargs):
 '''
 Generate a SubplotAnimation instance to plot a network activity.

 Parameters

 source : tuple
 NEST gid of the ``spike_detector``(s) which recorded the network.
 multimeter : tuple
 NEST gid of the ``multimeter``(s) which recorded the network.
 timewindow : double, optional (default: None)
 Time window which will be shown for the spikes and self.second.
 trace : double, optional (default: 5.)
 Interval of time (ms) over which the data is overlayed in red.
 x : str, optional (default: "time")
 Name of the `x`-axis variable (must be either "time" or the name
 of a NEST recordable in the `multimeter`).
 y : str, optional (default: "V_m")
 Name of the `y`-axis variable (must be either "time" or the name
 of a NEST recordable in the `multimeter`).
 vector_field : bool, optional (default: False)
 Whether the :math:`\dot{x}` and :math:`\dot{y}` arrows should be
 added to phase space. Requires additional 'dotx' and 'doty'
 arguments which are user defined functions to compute the
 derivatives of `x` and `x` in time. These functions take 3
 parameters, which are `x`, `y`, and `time_dependent`, where the
 last parameter is a list of doubles associated to recordables
 from the neuron model (see example for details). These recordables
 must be declared in a `time_dependent` parameter.
 sort_neurons : str or list, optional (default: None)
 Sort neurons using a topological property ("in-degree",
 "out-degree", "total-degree" or "betweenness"), an activity-related
 property ("firing_rate", 'B2') or a user-defined list of sorted
 neuron ids. Sorting is performed by increasing value of the
 `sort_neurons` property from bottom to top inside each group.
 **kwargs : dict, optional (default: {})
 Optional arguments such as 'make_rate', 'num_xarrows',
 'num_yarrows', 'dotx', 'doty', 'time_dependent', 'recordables',
 'arrow_scale'.
 '''
 import matplotlib.pyplot as plt
 import nest

 x = "times" if x == "time" else x
 y = "times" if y == "time" else y

 # get data
 data_mm = nest.GetStatus(multimeter)[0]["events"]
 self.times = data_mm["times"]

 self.num_frames = len(self.times)

 idx_start = np.where(self.times >= start)[0][0]
 self.idx_start = idx_start
 self.times = self.times[idx_start:]

 dt = self.times[1] - self.times[0]
 self.simtime = self.times[-1]
 self.start = start
 self.duration = self.simtime - start
 self.trace = trace
 self.vector_field = vector_field
 if timewindow is None:
 self.timewindow = self.duration
 else:
 self.timewindow = min(timewindow, self.duration)

 # init _SpikeAnimator parent class (create figure and right axes)
 if 'make_rate' not in kwargs:
 kwargs['make_rate'] = True
 super(Animation2d, self).__init__(
 source, sort_neurons=sort_neurons, network=network,
 **kwargs)

 # Data and axis for phase-space
 self.x = data_mm[x][idx_start:] / self.num_neurons
 self.y = data_mm[y][idx_start:] / self.num_neurons

 self.ps = plt.subplot2grid((2, 4), (0, 0), rowspan=2, colspan=2)
 self.ps.grid(False)

 # lines
 self.line_ps_ = Line2D([], [], color='black')
 self.line_ps_a = Line2D([], [], color='red', linewidth=2)
 self.line_ps_e = Line2D(
 [], [], color='red', marker='o', markeredgecolor='r')
 lines = [self.line_ps_, self.line_ps_a, self.line_ps_e]
 xlim = (_min_axis(self.x.min()), _max_axis(self.x.max()))
 self.set_axis(
 self.ps, xlabel=_convert_axis(x), ylabel=_convert_axis(y),
 lines=lines, xdata=self.x, ydata=self.y, xlim=xlim)

 # For quiver plot (vector field)
 nx = kwargs.get('num_xarrows', 20)
 ny = kwargs.get('num_yarrows', 20)
 scale = kwargs.get('arrow_scale', 30.)
 if self.vector_field:
 time_dependent_rec = kwargs.get('time_dependent', [])
 self.time_dependent = [
 data_mm[key][idx_start:] / self.num_neurons
 for key in time_dependent_rec
]
 self.dotx, self.doty = kwargs['dotx'], kwargs['doty']
 xx = np.repeat(np.linspace(xlim[0], xlim[1], nx), ny)
 yy = np.tile(np.linspace(self.y.min(), self.y.max(), ny), nx)
 self.q = self.ps.quiver(xx, yy, [], [], scale=scale, color='grey')

 plt.tight_layout()

 anim.FuncAnimation.__init__(self, self.fig, self._draw, self._gen_data,
 interval=interval, blit=True)

 #---
 # Animation instructions

 def _gen_data(self):
 i = -1
 imax = len(self.x) - 1
 while i < imax - self.increment:
 if not self.pause:
 if self.event is not None:
 if self.event.key == 'N':
 i += self.increment
 elif self.event.key == 'P':
 i -= self.increment
 self.event = None
 else:
 i += self.increment
 yield i

 def _draw(self, framedata):
 i = int(framedata)

 head = i - 1
 head_slice = ((self.times > (self.times[i] - self.trace))
 & (self.times < self.times[i]))
 spike_slice = ((self.spikes > (self.times[i] - self.trace))
 & (self.spikes <= self.times[i]))
 spike_cum = self.spikes < self.times[i]

 lines = []
 if self.vector_field:
 time_dep = [arr[i] for arr in self.time_dependent]
 u = self.dotx(self.q.X, self.q.Y, time_dep)
 v = self.doty(self.q.X, self.q.Y, time_dep)
 self.q.set_UVC(u, v)
 lines.append(self.q)

 self.line_ps_.set_data(self.x[:i], self.y[:i])
 self.line_ps_a.set_data(self.x[head_slice], self.y[head_slice])
 self.line_ps_e.set_data(self.x[i], self.y[i])

 lines.extend([self.line_ps_, self.line_ps_a, self.line_ps_e,
 self.line_spks_, self.line_spks_a, self.line_second_,
 self.line_second_a, self.line_second_e])

 super(Animation2d, self)._draw(
 i, head, head_slice, spike_cum, spike_slice)

 return lines

 def _init_draw(self):
 '''
 Remove ticks from spks/second axes, save background,
 then restore state to allow for moveable axes and labels.
 '''
 xlim = self.spks.get_xlim()
 xlabel = self.spks.get_xlabel()
 # remove
 self.spks.set_xticks([])
 self.spks.set_xticklabels([])
 self.spks.set_xlabel("")
 self.second.set_xticks([])
 self.second.set_xticklabels([])
 self.second.set_xlabel("")
 # background
 self.fig.canvas.draw()
 self.bg = self.fig.canvas.copy_from_bbox(self.fig.bbox)
 # restore
 self.spks.set_xticks(self.xticks)
 self.spks.set_xticklabels(self.xlabels)
 self.spks.set_xlim(*xlim)
 self.spks.set_xlabel(xlabel)
 self.second.set_xticks(self.xticks)
 self.second.set_xticklabels(self.xlabels)
 self.second.set_xlim(*xlim)
 self.second.set_xlabel(xlabel)
 if self.vector_field:
 self.q.set_UVC([], [])
 # initialize empty lines
 lines = [self.line_ps_, self.line_ps_a, self.line_ps_e,
 self.line_spks_, self.line_spks_a,
 self.line_second_, self.line_second_a, self.line_second_e]
 for l in lines:
 l.set_data([], [])

[docs]class AnimationNetwork(_SpikeAnimator, anim.FuncAnimation):

 '''
 Class to plot the raster plot, firing-rate, and space-embedded spiking
 activity (neurons on the graph representation flash when spiking) in time.
 '''

 def __init__(self, source, network, resolution=1., start=0.,
 timewindow=None, trace=5., show_spikes=False,
 sort_neurons=None, decimate_connections=False,
 interval=50, repeat=True, resting_size=None, active_size=None,
 **kwargs):
 '''
 Generate a SubplotAnimation instance to plot a network activity.

 Parameters

 source : tuple
 NEST gid of the ``spike_detector``(s) which recorded the network.
 network : :class:`~nngt.SpatialNetwork`
 Network embedded in space to plot the actvity of the neurons in
 space.
 resolution : double, optional (default: None)
 Time resolution of the animation.
 timewindow : double, optional (default: None)
 Time window which will be shown for the spikes and self.second.
 trace : double, optional (default: 5.)
 Interval of time (ms) over which the data is overlayed in red.
 show_spikes : bool, optional (default: True)
 Whether a spike trajectory should be displayed on the network.
 sort_neurons : str or list, optional (default: None)
 Sort neurons using a topological property ("in-degree",
 "out-degree", "total-degree" or "betweenness"), an activity-related
 property ("firing_rate", 'B2') or a user-defined list of sorted
 neuron ids. Sorting is performed by increasing value of the
 `sort_neurons` property from bottom to top inside each group.
 **kwargs : dict, optional (default: {})
 Optional arguments such as 'make_rate', or all arguments for the
 :func:`nngt.plot.draw_network`.
 '''
 import matplotlib.pyplot as plt
 import nest
 from nngt.simulation.nest_activity import _get_data

 self.network = weakref.ref(network)
 self.simtime = _get_data(source)[-1, 1]
 self.times = np.arange(start, self.simtime + resolution, resolution)

 self.num_frames = len(self.times)
 self.start = start
 self.duration = self.simtime - start
 self.trace = trace
 self.show_spikes = show_spikes
 if timewindow is None:
 self.timewindow = self.duration
 else:
 self.timewindow = min(timewindow, self.duration)

 # init _SpikeAnimator parent class (create figure and right axes)
 #~ self.decim_conn = 1 if decimate is not None else decimate
 self.kwargs = kwargs
 cs = kwargs.get('chunksize', 10000)
 mpl.rcParams['agg.path.chunksize'] = cs
 if 'make_rate' not in kwargs:
 kwargs['make_rate'] = True
 super(AnimationNetwork, self).__init__(
 source, sort_neurons=sort_neurons, network=network,
 **kwargs)

 self.env = plt.subplot2grid((2, 4), (0, 0), rowspan=2, colspan=2)

 # Data and axis for network representation
 bbox = self.env.get_window_extent().transformed(
 self.fig.dpi_scale_trans.inverted())
 area_px = bbox.width * bbox.height * self.fig.dpi**2
 # neuron size
 n_size = (resting_size if resting_size is not None
 else max(2, 0.5*np.sqrt(area_px/self.num_neurons)))
 if active_size is None:
 active_size = n_size + 2
 pos = network.get_positions() # positions of the neurons
 self.x = pos[:, 0]
 self.y = pos[:, 1]

 # neurons
 self.line_neurons = Line2D(
 [], [], ls='None', marker='o', color='black', ms=n_size, mew=0)
 self.line_neurons_a = Line2D(
 [], [], ls='None', marker='o', color='red', ms=active_size, mew=0)
 self.lines_env = [self.line_neurons, self.line_neurons_a]
 xlim = (_min_axis(self.x.min()), _max_axis(self.x.max()))
 self.set_axis(self.env, xlabel='Network', ylabel='',
 lines=self.lines_env, xdata=self.x, ydata=self.y, xlim=xlim)
 # spike trajectory
 if show_spikes:
 self.line_st_a = Line2D([], [], color='red', linewidth=1)
 self.line_st_e = Line2D(
 [], [], color='red', marker='d', ms=2, markeredgecolor='r')
 self.lines_env.extend((self.line_st_a, self.line_st_e))
 # remove the axes and grid from env
 self.env.set_xticks([])
 self.env.set_yticks([])
 self.env.set_xticklabels([])
 self.env.set_yticklabels([])
 self.env.grid(None)

 plt.tight_layout()

 anim.FuncAnimation.__init__(
 self, self.fig, self._draw, self._gen_data, repeat=repeat,
 interval=interval, blit=True)

 #---
 # Animation instructions

 def _gen_data(self):
 i = -1
 imax = len(self.times) - 1
 while i < imax - self.increment:
 if not self.pause:
 if self.event is not None:
 if self.event.key == 'N':
 i += self.increment
 elif self.event.key == 'P':
 i -= self.increment
 else:
 i += self.increment
 yield i

 def _draw(self, framedata):
 i = int(framedata)
 if i == 0: # initialize neurons and connections
 self.line_neurons.set_data(self.x, self.y)
 #~ self.line_connections.set_data(self.x_conn, self.y_conn)

 head = i - 1
 head_slice = ((self.times > self.times[i] - self.trace)
 & (self.times < self.times[i]))
 spike_slice = ((self.spikes > self.times[i] - self.trace)
 & (self.spikes <= self.times[i]))
 spike_cum = self.spikes < self.times[i]

 pos_ids = self.network().id_from_nest_gid(self.senders[spike_slice])
 self.line_neurons_a.set_data(self.x[pos_ids], self.y[pos_ids])

 if self.show_spikes:
 # @todo: make this work for heterogeneous delays
 time = self.times[i]
 delays = np.average(self.network().get_delays())
 departures = self.spikes[spikes_slice]
 arrivals = departures + delays
 # get the spikers
 ids_dep = self.nids[self.senders[spikes_slice]]
 degrees = network.get_degrees('out', nodes=ids_dep)
 ids_dep = np.repeat(ids_dep, degrees) # repeat based on out-degree
 x_dep = self.x[ids_dep]
 y_dep = self.y[ids_dep]
 # get their out-neighbours
 #~ for d, a in zip(departures, arrivals):

 super(AnimationNetwork, self)._draw(
 i, head, head_slice, spike_cum, spike_slice)

 return [self.line_neurons, self.line_neurons_a, self.line_spks_,
 self.line_spks_a, self.line_second_, self.line_second_a,
 self.line_second_e]

 def _init_draw(self):
 '''
 Remove ticks from spks/second axes, save background,
 then restore state to allow for moveable axes and labels.
 '''
 # remove
 xlim = self.spks.get_xlim()
 xlabel = self.spks.get_xlabel()
 self.spks.set_xticks([])
 self.spks.set_xticklabels([])
 self.spks.set_xlabel("")
 self.second.set_xticks([])
 self.second.set_xticklabels([])
 self.second.set_xlabel("")
 # background
 self.fig.canvas.draw()
 self.bg = self.fig.canvas.copy_from_bbox(self.fig.bbox)
 # restore
 self.spks.set_xticks(self.xticks)
 self.spks.set_xticklabels(self.xlabels)
 self.spks.set_xlim(*xlim)
 self.spks.set_xlabel(xlabel)
 self.second.set_xticks(self.xticks)
 self.second.set_xticklabels(self.xlabels)
 self.second.set_xlim(*xlim)
 self.second.set_xlabel(xlabel)
 # initialize empty lines
 lines = [self.line_spks_, self.line_spks_a, self.line_neurons_a,
 self.line_second_, self.line_second_a, self.line_second_e,
 self.line_neurons]
 for l in lines:
 l.set_data([], [])
 # initialize the neurons and connections between neurons
 draw_network(self.network(), ncolor='k', axis=self.env, show=False,
 simple_nodes=True, decimate_connections=-1, tight=False,
 **self.kwargs)
 if self.network().is_spatial():
 shape = self.network().shape
 xmin, ymin, xmax, ymax = shape.bounds
 dx = 0.02*(xmax-xmin)
 dy = 0.02*(ymax-ymin)
 self.env.set_xlim(xmin-dx, xmax+dx)
 self.env.set_ylim(ymin-dy, ymax+dy)
 self.line_neurons = self.env.lines[0]

 #~ self.line_neurons.set_data(self.x, self.y)
 #~ num_edges = self.network().edge_nb()
 #~ self.x_conn = np.zeros(3*num_edges)
 #~ self.y_conn = np.zeros(3*num_edges)
 #~ adj_mat = self.network().adjacency_matrix()
 #~ edges = adj_mat.nonzero()
 #~ self.x_conn[::3] = self.x[edges[0]] # x position of source nodes
 #~ self.x_conn[1::3] = self.x[edges[1]] # x position of target nodes
 #~ self.x_conn[2::3] = np.NaN # NaN to separate
 #~ self.y_conn[::3] = self.y[edges[0]] # y position of source nodes
 #~ self.y_conn[1::3] = self.y[edges[1]] # y position of target nodes
 #~ self.y_conn[2::3] = np.NaN # NaN to separate
 #~ self.env.plot(
 #~ self.x_conn[::self.decim_conn], self.y_conn[::self.decim_conn],
 #~ color='k', alpha=0.3, lw=1)

Tools

def _max_axis(value, min_val=0.):
 if np.isclose(value, 0.):
 return -0.02*min_val
 elif np.sign(value) > 0.:
 return 1.02*value
 else:
 return 0.98*value

def _min_axis(value, max_val=0.):
 if np.isclose(value, 0.):
 return -0.02*max_val
 elif np.sign(value) < 0.:
 return 1.02*value
 else:
 return 0.98*value

def _convert_axis(axis_name):
 lowercase = axis_name.lower()
 if lowercase == "times":
 return "Time (ms)"
 new_name = "$"
 i = axis_name.find("_")
 if i != -1:
 start = lowercase[:i]
 if start in ("tau", "alpha", "beta", "gamma", "delta"):
 new_name += "\\" + axis_name[:i] + "_{" + axis_name[i+1:] + "}$"
 elif start in ("v", "e"):
 new_name += axis_name[:i] + "_{" + axis_name[i+1:] + "}$ (mV)"
 elif start == "i":
 new_name += axis_name[:i] + "_{" + axis_name[i+1:] + "}$ (pA)"
 else:
 new_name += axis_name[:i] + "_{" + axis_name[i+1:] + "}$"
 else:
 if lowercase in ("tau", "alpha", "beta", "gamma", "delta"):
 new_name += "\\" + lowercase + "$"
 elif lowercase == "w":
 new_name = "w (pA)"
 else:
 new_name += lowercase + "$"
 return new_name

def _save_movie(animation, filename, fps, video_encoder, codec, bitrate,
 metadata, dpi, start, stop):
 if filename.endswith('.mp4') or filename.endswith('.avi'):
 ffcodec = 'h264' if filename.endswith('.mp4') else 'xvid'
 fig = animation.fig
 canvas_width, canvas_height = fig.get_size_inches()*fig.dpi
 # Open an ffmpeg process
 cmdstring = ('ffmpeg',
 '-y', '-r', str(fps), # overwrite, 1fps
 '-s', '%dx%d' % (canvas_width, canvas_height), # size of image string
 '-pix_fmt', 'argb', # format
 '-f', 'rawvideo', '-i', '-', # tell ffmpeg to expect raw video from the pipe
 '-vcodec', ffcodec, filename) # output encoding
 p = subprocess.Popen(cmdstring, stdin=subprocess.PIPE)

 # Draw frames and write to the pipe
 for i in range(start, stop):
 frame = int(i*animation.increment)
 # draw the frame
 animation._draw(frame)
 fig.canvas.draw()

 # extract the image as an ARGB string
 string = fig.canvas.tostring_argb()

 # write to pipe
 p.stdin.write(string)

 # Finish up
 p.communicate()
 animation._init_draw()
 else:
 if metadata is None:
 metadata = {"artist": "NNGT"}
 encoder = 'ffmpeg' if video_encoder == 'html5' else video_encoder
 Writer = anim.writers[encoder]
 if video_encoder == 'html5':
 codec = 'libx264'
 writer = Writer(codec=codec, fps=fps, bitrate=bitrate, metadata=metadata)
 animation.save(filename, writer=writer, dpi=dpi)

def _vector_field(q, dotx_func, doty_func, x, y, Is):
 '''
 Add the vector field of the x and y derivatives in phase space.

 Parameters

 q : :class:`matplotlib.quiver.Quiver`
 Phase space quiver object.
 dotx_func : function
 User provided function giving :math:`\dot{x} = f(x, y, Is(t))`.
 doty_func : function
 User provided function giving :math:`\dot{y} = g(x, y, Is(t))`.
 x : :class:`numpy.ndarray`.
 y : :class:`numpy.ndarray`.
 Is : float
 Current (time dependent data).
 '''
 q.set_UVC(dotx_func(x, y, Is), doty_func(x, y, Is))

 Source code for nngt.plot.custom_plt

#!/usr/bin/env python
#-*- coding:utf-8 -*-

""" Matplotlib customization """

import itertools
import logging

import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.colors as clrs
from matplotlib.markers import MarkerStyle as MS

import nngt
from nngt.lib.logger import _log_message

logger = logging.getLogger(__name__)

Customize PyPlot

with_seaborn = False

[docs]def palette_continuous(numbers=None):
 pal = cm.get_cmap(nngt._config["palette_continuous"])
 if numbers is None:
 return pal
 else:
 return pal(numbers)

[docs]def palette_discrete(numbers=None):
 pal = cm.get_cmap(nngt._config["palette_discrete"])
 if numbers is None:
 return pal
 else:
 return pal(numbers)

markers list
markers = [m for m in MS().filled_markers if m != '.']

if nngt._config["color_lib"] == "seaborn":
 try:
 import seaborn as sns
 with_seaborn = True
 sns.set_style("whitegrid")

 def sns_palette(c):
 if isinstance(c, float):
 pal = sns.color_palette(nngt._config["palette"], 100)
 return pal[int(c*100)]
 else:
 return sns.color_palette(nngt._config["palette"], len(c))

 palette_continuous = sns_palette
 except ImportError as e:
 _log_message(logger, "WARNING",
 "`seaborn` requested but could not set it: {}.".format(e))

if not with_seaborn:
 try:
 mpl.rcParams['font.size'] = 12
 mpl.rcParams['font.family'] = 'serif'
 if nngt._config['use_tex']:
 mpl.rc('text', usetex=True)
 mpl.rcParams['axes.labelsize'] = mpl.rcParams['font.size']
 mpl.rcParams['axes.titlesize'] = 1.2*mpl.rcParams['font.size']
 mpl.rcParams['legend.fontsize'] = mpl.rcParams['font.size']
 mpl.rcParams['xtick.labelsize'] = mpl.rcParams['font.size']
 mpl.rcParams['ytick.labelsize'] = mpl.rcParams['font.size']
 mpl.rcParams['savefig.dpi'] = 300
 mpl.rcParams['savefig.format'] = 'pdf'
 mpl.rcParams['xtick.major.size'] = 3
 mpl.rcParams['xtick.minor.size'] = 3
 mpl.rcParams['xtick.major.width'] = 1
 mpl.rcParams['xtick.minor.width'] = 1
 mpl.rcParams['ytick.major.size'] = 3
 mpl.rcParams['ytick.minor.size'] = 3
 mpl.rcParams['ytick.major.width'] = 1
 mpl.rcParams['ytick.minor.width'] = 1
 mpl.rcParams['legend.frameon'] = False
 mpl.rcParams['legend.numpoints'] = 1
 mpl.rcParams['axes.linewidth'] = 1
 mpl.rcParams['axes.grid'] = True
 mpl.rcParams['grid.linestyle'] = ':'
 mpl.rcParams['path.simplify'] = True
 except Exception as e:
 _log_message(logger, "WARNING",
 "Error configuring `matplotlib`: {}.".format(e))

def format_exponent(ax, axis='y', pos=(1.,0.), valign="top", halign="right"):
 import matplotlib.pyplot as plt
 # Change the ticklabel format to scientific format
 ax.ticklabel_format(axis=axis, style='sci', scilimits=(-3, 2))
 # Get the appropriate axis
 if axis == 'y':
 ax_axis = ax.yaxis
 else:
 ax_axis = ax.xaxis
 # Run plt.tight_layout() because otherwise the offset text doesn't update
 plt.tight_layout()
 ##### THIS IS A BUG
 ##### Well, at least it's sub-optimal because you might not
 ##### want to use tight_layout(). If anyone has a better way of
 ##### ensuring the offset text is updated appropriately
 ##### please comment!

 # Get the offset value
 offset = ax_axis.get_offset_text().get_text()
 if len(offset) > 0:
 # Get that exponent value and change it into latex format
 minus_sign = u'\u2212'
 expo = float(offset.replace(minus_sign, '-').split('e')[-1])
 offset_text = r'x$\mathregular{10^{%d}}$' %expo
 # Turn off the offset text that's calculated automatically
 ax_axis.offsetText.set_visible(False)
 ax.text(pos[0], pos[1], offset_text, transform=ax.transAxes,
 horizontalalignment=halign,
 verticalalignment=valign)
 return ax

 Source code for nngt.plot.plt_networks

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from itertools import cycle
from collections import defaultdict

import numpy as np
from matplotlib.artist import Artist
from matplotlib.patches import FancyArrowPatch, ArrowStyle, FancyArrow, Circle
from matplotlib.patches import Arc, RegularPolygon, PathPatch
from matplotlib.cm import get_cmap
from matplotlib.collections import PatchCollection, PathCollection
from matplotlib.colors import ListedColormap, Normalize, ColorConverter
from matplotlib.markers import MarkerStyle
from matplotlib.transforms import Affine2D
from mpl_toolkits.axes_grid1 import make_axes_locatable

import nngt
from nngt.lib import POS, nonstring_container, is_integer
from .custom_plt import palette_continuous, palette_discrete, format_exponent
from .chord_diag import chord_diagram as _chord_diag
from .hive_helpers import *

'''
Network plotting
================

Implemented

Simple representation for spatial graphs, random distribution if non-spatial.
Support for edge-size (according to betweenness or synaptic weight).

Objectives

Implement the spring-block minimization.

If edges have varying size, plot only those that are visible (size > min)

'''

__all__ = ["chord_diagram", "draw_network", "hive_plot", "library_draw"]

Drawing

[docs]def draw_network(network, nsize="total-degree", ncolor="group", nshape="o",
 nborder_color="k", nborder_width=0.5, esize=1., ecolor="k",
 ealpha=0.5, max_nsize=None, max_esize=2., curved_edges=False,
 threshold=0.5, decimate_connections=None, spatial=True,
 restrict_sources=None, restrict_targets=None,
 restrict_nodes=None, restrict_edges=None,
 show_environment=True, fast=False, size=(600, 600),
 xlims=None, ylims=None, dpi=75, axis=None, colorbar=False,
 cb_label=None, layout=None, show=False, **kwargs):
 '''
 Draw a given graph/network.

 Parameters

 network : :class:`~nngt.Graph` or subclass
 The graph/network to plot.
 nsize : float, array of float or string, optional (default: "total-degree")
 Size of the nodes as a percentage of the canvas length. Otherwise, it
 can be a string that correlates the size to a node attribute among
 "in/out/total-degree", "in/out/total-strength", or "betweenness".
 ncolor : float, array of floats or string, optional (default: 0.5)
 Color of the nodes; if a float in [0, 1], position of the color in the
 current palette, otherwise a string that correlates the color to a node
 attribute among "in/out/total-degree", "betweenness" or "group".
 nshape : char, array of chars, or groups, optional (default: "o")
 Shape of the nodes (see `Matplotlib markers <http://matplotlib.org/api/
 markers_api.html?highlight=marker#module-matplotlib.markers>`_).
 When using groups, they must be pairwise disjoint; markers will be
 selected iteratively from the matplotlib default markers.
 nborder_color : char, float or array, optional (default: "k")
 Color of the node's border using predefined `Matplotlib colors
 <http://matplotlib.org/api/colors_api.html?highlight=color
 #module-matplotlib.colors>`_).
 or floats in [0, 1] defining the position in the palette.
 nborder_width : float or array of floats, optional (default: 0.5)
 Width of the border in percent of canvas size.
 esize : float, str, or array of floats, optional (default: 0.5)
 Width of the edges in percent of canvas length. Available string values
 are "betweenness" and "weight".
 ecolor : str, char, float or array, optional (default: "k")
 Edge color. If ecolor="groups", edges color will depend on the source
 and target groups, i.e. only edges from and toward same groups will
 have the same color.
 max_esize : float, optional (default: 5.)
 If a custom property is entered as `esize`, this normalizes the edge
 width between 0. and `max_esize`.
 threshold : float, optional (default: 0.5)
 Size under which edges are not plotted.
 decimate_connections : int, optional (default: keep all connections)
 Plot only one connection every `decimate_connections`.
 Use -1 to hide all edges.
 spatial : bool, optional (default: True)
 If True, use the neurons' positions to draw them.
 restrict_sources : str, group, or list, optional (default: all)
 Only draw edges starting from a restricted set of source nodes.
 restrict_targets : str, group, or list, optional (default: all)
 Only draw edges ending on a restricted set of target nodes.
 restrict_nodes : str, group, or list, optional (default: plot all nodes)
 Only draw a subset of nodes.
 restrict_edges : list of edges, optional (default: all)
 Only draw a subset of edges.
 show_environment : bool, optional (default: True)
 Plot the environment if the graph is spatial.
 fast : bool, optional (default: False)
 Use a faster algorithm to plot the edges. Zooming on the drawing made
 using this method leaves the size of the nodes and edges unchanged, it
 is therefore not recommended when size consistency matters, e.g. for
 some spatial representations.
 size : tuple of ints, optional (default: (600,600))
 (width, height) tuple for the canvas size (in px).
 dpi : int, optional (default: 75)
 Resolution (dot per inch).
 axis : matplotlib axis, optional (default: create new axis)
 Axis on which the network will be plotted.
 colorbar : bool, optional (default: False)
 Whether to display a colorbar for the node colors or not.
 cb_label : str, optional (default: None)
 A label for the colorbar.
 layout : str, optional (default: random or spatial positions)
 Name of a standard layout to structure the network. Available layouts
 are: "circular" or "random". If no layout is provided and the network
 is spatial, then node positions will be used by default.
 show : bool, optional (default: True)
 Display the plot immediately.
 **kwargs : dict
 Optional keyword arguments including `node_cmap` to set the
 nodes colormap (default is "magma" for continuous variables and
 "Set1" for groups) and "title" to add a title to the plot.
 '''
 import matplotlib.pyplot as plt

 # figure and axes
 size_inches = (size[0]/float(dpi), size[1]/float(dpi))

 if axis is None:
 fig = plt.figure(facecolor='white', figsize=size_inches,
 dpi=dpi)
 axis = fig.add_subplot(111, frameon=0, aspect=1)

 axis.set_axis_off()

 pos = None

 # restrict sources and targets
 restrict_sources = _convert_to_nodes(restrict_sources,
 "restrict_sources", network)

 restrict_targets = _convert_to_nodes(restrict_targets,
 "restrict_targets", network)

 restrict_nodes = _convert_to_nodes(restrict_nodes,
 "restrict_nodes", network)

 if restrict_nodes is not None and restrict_sources is not None:
 restrict_sources = \
 set(restrict_nodes).intersection(restrict_sources)
 elif restrict_nodes is not None:
 restrict_sources = set(restrict_nodes)

 if restrict_nodes is not None and restrict_targets is not None:
 restrict_targets = \
 set(restrict_nodes).intersection(restrict_targets)
 elif restrict_nodes is not None:
 restrict_targets = set(restrict_nodes)

 # get nodes and edges
 n = network.node_nb() if restrict_nodes is None \
 else len(restrict_nodes)

 adj_mat = network.adjacency_matrix(weights=None)

 if restrict_sources is not None:
 remove = np.array(
 [1 if node not in restrict_sources else 0
 for node in range(network.node_nb())],
 dtype=bool)
 adj_mat[remove] = 0

 if restrict_targets is not None:
 remove = np.array(
 [1 if node not in restrict_targets else 0
 for node in range(network.node_nb())],
 dtype=bool)
 adj_mat[:, remove] = 0

 edges = (np.array(adj_mat.nonzero()).T if restrict_edges is None else
 restrict_edges)

 e = len(edges)

 # compute properties
 decimate_connections = 1 if decimate_connections is None\
 else decimate_connections

 # get node and edge shape/size properties
 simple_nodes = kwargs.get("simple_nodes", False)

 if fast:
 simple_nodes = True

 max_nsize = (20 if simple_nodes else 5) if max_nsize is None else max_nsize

 markers, nsize, esize = _node_edge_shape_size(
 network, nshape, nsize, max_nsize, esize, max_esize, restrict_nodes,
 edges, size, threshold, simple_nodes=simple_nodes)

 # node color information
 default_ncmap = (palette_discrete() if not nonstring_container(ncolor) and
 ncolor == "group" else palette_continuous())

 nalpha = kwargs.get("nalpha", 1)

 ncmap = get_cmap(kwargs.get("node_cmap", default_ncmap))
 node_color, nticks, ntickslabels, nlabel = \
 _node_color(network, restrict_nodes, ncolor)

 if nonstring_container(ncolor):
 assert len(ncolor) == n, "For color arrays, one " +\
 "color per node is required."
 ncolor = "custom"

 c = node_color

 if not nonstring_container(nborder_color):
 nborder_color = np.repeat(nborder_color, n)

 # check edge color
 group_based = False

 default_ecmap = (palette_discrete() if not nonstring_container(ncolor) and
 ecolor == "group" else palette_continuous())

 if isinstance(ecolor, float):
 ecolor = np.repeat(ecolor, e)
 elif ecolor == "groups" or ecolor == "group":
 if not network.is_network():
 raise TypeError(
 "The graph must be a Network to use `ecolor='groups'`.")

 group_based = True
 ecolor = {}

 for i, src in enumerate(network.population):
 if network.population[src].ids:
 idx1 = network.population[src].ids[0]
 for j, tgt in enumerate(network.population):
 if network.population[tgt].ids:
 idx2 = network.population[tgt].ids[0]
 if src == tgt:
 ecolor[(src, tgt)] = node_color[idx1]
 else:
 ecolor[(src, tgt)] = \
 np.abs(0.8*node_color[idx1]
 - 0.2*node_color[idx2])

 # draw
 pos = np.zeros((n, 2))

 if layout == "circular":
 pos = _circular_layout(network, nsize)
 elif layout is None and spatial and network.is_spatial():
 if show_environment:
 nngt.geometry.plot.plot_shape(network.shape, axis=axis,
 show=False)

 nodes = None if restrict_nodes is None else list(restrict_nodes)

 pos = network.get_positions(nodes=nodes)
 elif nonstring_container(layout):
 assert np.shape(layout) == (n, 2), "One position per node is required."
 pos = np.asarray(layout)
 else:
 pos[:, 0] = size[0]*(np.random.uniform(size=n)-0.5)
 pos[:, 1] = size[1]*(np.random.uniform(size=n)-0.5)

 # make nodes
 nodes = []

 if nonstring_container(c) and not isinstance(c[0], str):
 # make the colorbar for the nodes
 cmap = ncmap
 if colorbar:
 clist = np.unique(c, axis=0) if ncolor == "group" else None
 cnorm = None
 if ncolor.startswith("group"):
 cmap = _discrete_cmap(len(nticks), ncmap, clist=clist)
 cnorm = Normalize(nticks[0]-0.5, nticks[-1] + 0.5)
 else:
 cnorm = Normalize(np.min(c), np.max(c))
 sm = plt.cm.ScalarMappable(cmap=cmap, norm=cnorm)
 c = cnorm(c)
 if ncolor.startswith("group"):
 sm.set_array(nticks)
 else:
 sm.set_array(c)
 plt.subplots_adjust(right=0.95)
 divider = make_axes_locatable(axis)
 cax = divider.append_axes("right", size="5%", pad=0.05)
 if ncolor.startswith("group"):
 cb = plt.colorbar(sm, ticks=nticks, cax=cax, shrink=0.8)
 cb.set_ticklabels(ntickslabels)
 if nlabel:
 cb.set_label(nlabel)
 else:
 cb = plt.colorbar(sm, cax=cax, shrink=0.8)

 if cb_label is not None:
 cb.ax.set_ylabel(cb_label)
 else:
 cmin, cmax = np.min(c), np.max(c)
 if cmin != cmax:
 c = (c - cmin)/(cmax - cmin)
 c = cmap(c)
 else:
 if not nonstring_container(c) and not isinstance(c, str):
 minc = np.min(node_color)

 c = np.array(
 [ncmap((node_color - minc)/(np.max(node_color) - minc))]*n)

 # plot nodes
 if simple_nodes:
 if nonstring_container(nshape):
 # matplotlib scatter does not support marker arrays
 if isinstance(nshape[0], nngt.Group):
 for g in nshape:
 ids = g.ids if restrict_nodes is None \
 else list(set(g.ids).intersection(restrict_nodes))

 axis.scatter(pos[ids, 0], pos[ids, 1], color=c[ids],
 s=0.5*np.array(nsize)[ids],
 marker=markers[ids[0]], zorder=2,
 edgecolors=nborder_color,
 linewidths=nborder_width, alpha=nalpha)
 else:
 ids = range(network.node_nb()) if restrict_nodes is None \
 else restrict_nodes

 for i in ids:
 axis.plot(
 pos[i, 0], pos[i, 1], color=c[i], ms=0.5*nsize[i],
 marker=nshape[i], ls="", zorder=2,
 mec=nborder_color[i], mew=nborder_width, alpha=nalpha)
 else:
 axis.scatter(pos[:, 0], pos[:, 1], color=c, s=0.5*np.array(nsize),
 marker=nshape, zorder=2, edgecolor=nborder_color,
 linewidths=nborder_width, alpha=nalpha)
 else:
 axis.set_aspect(1.)

 if network.is_network():
 for group in network.population.values():
 idx = group.ids if restrict_nodes is None \
 else list(set(restrict_nodes).intersection(group.ids))
 for i, fc in zip(idx, c[idx]):
 m = MarkerStyle(markers[i]).get_path()
 transform = Affine2D().scale(
 0.5*nsize[i]).translate(pos[i][0], pos[i][1])
 patch = PathPatch(m.transformed(transform), facecolor=fc,
 edgecolor=nborder_color[i], alpha=nalpha)
 nodes.append(patch)
 else:
 for i, ci in enumerate(c):
 m = MarkerStyle(markers[i]).get_path()
 transform = Affine2D().scale(0.5*nsize[i]).translate(
 pos[i][0], pos[i][1])
 patch = PathPatch(m.transformed(transform), facecolor=ci,
 edgecolor=nborder_color[i], alpha=nalpha)
 nodes.append(patch)

 nodes = PatchCollection(nodes, match_original=True, alpha=nalpha)
 nodes.set_zorder(2)
 axis.add_collection(nodes)

 if not show_environment or not spatial or not network.is_spatial():
 # axis.get_data()
 _set_ax_lim(axis, pos[:, 0], pos[:, 1], xlims, ylims)

 # use quiver to draw the edges
 if e and decimate_connections != -1:
 avg_size = np.average(nsize)
 arr_style = ArrowStyle.Simple(head_length=0.15*avg_size,
 head_width=0.1*avg_size,
 tail_width=0.05*avg_size)
 arrows = []
 if group_based:
 for src_name, src_group in network.population.items():
 for tgt_name, tgt_group in network.population.items():
 s_ids = src_group.ids
 if restrict_sources is not None:
 s_ids = list(set(restrict_sources).intersection(s_ids))
 t_ids = tgt_group.ids
 if restrict_targets is not None:
 t_ids = list(set(restrict_targets).intersection(t_ids))
 if t_ids and s_ids:
 s_min, s_max = np.min(s_ids), np.max(s_ids) + 1
 t_min, t_max = np.min(t_ids), np.max(t_ids) + 1
 edges = np.array(
 adj_mat[s_min:s_max, t_min:t_max].nonzero(),
 dtype=int)
 edges[0, :] += s_min
 edges[1, :] += t_min
 if nonstring_container(esize):
 keep = (esize > 0)
 edges = edges[:, keep]
 esize = esize[keep]
 if decimate_connections > 1:
 edges = edges[:, ::decimate_connections]
 if nonstring_container(esize):
 esize = esize[::decimate_connections]
 # plot
 ec = default_ecmap(ecolor[(src_name, tgt_name)])
 if fast:
 dl = 0.5*np.max(nsize)
 arrow_x = pos[edges[1], 0] - pos[edges[0], 0]
 arrow_x -= np.sign(arrow_x) * dl
 arrow_y = pos[edges[1], 1] - pos[edges[0], 1]
 arrow_x -= np.sign(arrow_y) * dl
 axis.quiver(
 pos[edges[0], 0], pos[edges[0], 1], arrow_x,
 arrow_y, scale_units='xy', angles='xy',
 scale=1, alpha=ealpha, width=1.5e-3,
 linewidths=0.5*esize, edgecolors=ec, zorder=1)
 else:
 for s, t in zip(edges[0], edges[1]):
 xs, ys = pos[s, 0], pos[s, 1]
 xt, yt = pos[t, 0], pos[t, 1]
 dl = 0.5*nsize[t]
 dx = xt-xs
 dx -= np.sign(dx) * dl
 dy = yt-ys
 dy -= np.sign(dy) * dl

 if curved_edges:
 arrow = FancyArrowPatch(
 posA=(xs, ys), posB=(xt, yt),
 arrowstyle=arr_style,
 connectionstyle='arc3,rad=0.1',
 alpha=ealpha, fc=ec, lw=0.5)
 axis.add_patch(arrow)
 else:
 arrows.append(FancyArrow(
 xs, ys, dx, dy, width=0.3*avg_size,
 head_length=0.7*avg_size,
 head_width=0.7*avg_size,
 length_includes_head=True,
 alpha=ealpha, fc=ec, lw=0.5))
 else:
 if e and decimate_connections != -1:
 # keep only large edges
 if nonstring_container(esize):
 keep = (esize > 0)
 edges = edges[keep]
 if nonstring_container(ecolor):
 ecolor = ecolor[keep]
 esize = esize[keep]

 if decimate_connections > 1:
 edges = edges[::decimate_connections]
 if nonstring_container(esize):
 esize = esize[::decimate_connections]
 if nonstring_container(ecolor):
 ecolor = ecolor[::decimate_connections]

 # keep only desired edges
 if None not in (restrict_sources, restrict_targets):
 new_edges = []

 for edge in edges:
 s, t = edge

 if s in restrict_sources and t in restrict_targets:
 new_edges.append(edge)

 edges = np.array(new_edges, dtype=int)

 if restrict_nodes is not None:
 nodes = list(restrict_nodes)
 nodes.sort()

 for i, node in enumerate(nodes):
 edges[edges == node] = i
 elif restrict_sources is not None:
 new_edges = []

 for edge in edges:
 s, _ = edge

 if s in restrict_sources:
 new_edges.append(edge)

 edges = np.array(new_edges, dtype=int)
 elif restrict_targets is not None:
 new_edges = []

 for edge in edges:
 _, t = edge

 if t in restrict_targets:
 new_edges.append(edge)

 edges = np.array(new_edges, dtype=int)

 if isinstance(ecolor, str):
 ecolor = [ecolor for i in range(0, e, decimate_connections)]

 if len(edges) and fast:
 dl = 0.5*np.max(nsize) if not simple_nodes else 0.

 arrow_x = pos[edges[:, 1], 0] - pos[edges[:, 0], 0]
 arrow_x -= np.sign(arrow_x) * dl
 arrow_y = pos[edges[:, 1], 1] - pos[edges[:, 0], 1]
 arrow_x -= np.sign(arrow_y) * dl

 axis.quiver(pos[edges[:, 0], 0], pos[edges[:, 0], 1], arrow_x,
 arrow_y, scale_units='xy', angles='xy', scale=1,
 alpha=ealpha, width=1.5e-3, linewidths=0.5*esize,
 ec=ecolor, fc=ecolor, zorder=1)
 elif len(edges):
 for i, (s, t) in enumerate(edges):
 xs, ys = pos[s, 0], pos[s, 1]
 xt, yt = pos[t, 0], pos[t, 1]

 if curved_edges:
 arrow = FancyArrowPatch(
 posA=(xs, ys), posB=(xt, yt), arrowstyle=arr_style,
 connectionstyle='arc3,rad=0.1',
 alpha=ealpha, fc=ecolor[i], lw=0.5)
 axis.add_patch(arrow)
 else:
 dl = 0.5*nsize[t]
 dx = xt-xs
 dx -= np.sign(dx) * dl
 dy = yt-ys
 dy -= np.sign(dy) * dl
 arrows.append(FancyArrow(
 xs, ys, dx, dy, width=0.3*avg_size,
 head_length=0.7*avg_size, head_width=0.7*avg_size,
 length_includes_head=True, alpha=ealpha,
 fc=ecolor[i], lw=0.5))

 if not fast:
 arrows = PatchCollection(arrows, match_original=True, alpha=ealpha)
 arrows.set_zorder(1)
 axis.add_collection(arrows)

 if kwargs.get('tight', True):
 plt.tight_layout()
 plt.subplots_adjust(
 hspace=0., wspace=0., left=0., right=0.95 if colorbar else 1.,
 top=1., bottom=0.)

 if show:
 plt.show()

[docs]def hive_plot(network, radial, axes=None, axes_bins=None, axes_range=None,
 axes_angles=None, axes_labels=None, axes_units=None,
 intra_connections=True, highlight_nodes=None,
 highlight_edges=None, nsize=None, esize=None, max_nsize=10,
 max_esize=1, axes_colors=None, edge_colors=None, edge_alpha=0.05,
 nborder_color="k", nborder_width=0.2, show_names=True,
 show_circles=False, axis=None, tight=True, show=False):
 '''
 Draw a hive plot of the graph.

 Note

 For directed networks, the direction of intra-axis connections is
 counter-clockwise.
 For inter-axes connections, the default edge color is closest to the color
 of the source group (i.e. from a red group to a blue group, edge color will
 be a reddish violet , while from blue to red, it will be a blueish violet).

 Parameters

 network : :class:`~nngt.Graph`
 Graph to plot.
 radial : str, list of str or array-like
 Values that will be used to place the nodes on the axes. Either one
 identical property is used for all axes (traditional hive plot) or
 one radial coordinate per axis is used (custom hive plot).
 If radial is a string or a list of strings, then these must correspond
 to the names of node attributes stored in the graph.
 axes : str, or list of str, optional (default: one per radial coordinate)
 Name of the attribute(s) that will be used to make each of the axes
 (i.e. each group of nodes).
 This can be either "groups" if the graph has a structure or is a
 :class:`~nngt.Network`, a list of (Meta)Group names, or any (list of)
 node attribute(s).
 If a single node attribute is used, `axes_bins` must be provided to
 make one axis for each range of values.
 If there are multiple radial coordinates, then leaving `axes` blanck
 will plot all nodes on each of the axes (one per radial coordinate).
 axes_bins : int or array-like, optional (default: all nodes on each axis)
 Required if there is a single radial coordinate and a single axis
 entry: provides the bins that will be used to separate the nodes
 into groups (one per axis). For N axes, there must therefore be N + 1
 entries in `axes_bins`, or `axis_bins` must be equal to N, in which
 case the nodes are separated into N evenly sized bins.
 axes_units : str, optional
 Units used to scale the axes. Either "native" to have them scaled
 between the minimal and maximal radial coordinates among all axes,
 "rank", to use the min and max ranks of the nodes on all axes, or
 "normed", to have each axis go from zero (minimal local radial
 coordinate) to one (maximal local radial coordinate).
 "native" is the default if there is a single radial coordinate,
 "normed" is the default for multiple coordinates.
 axes_angles : list of angles, optional (default: automatic)
 Angles for each of the axes, by increasing degree. If
 `intra_connections` is True, then angles of duplicate axes must be
 adjacent, e.g. ``[a1, a1bis, a2, a2bis, a3, a3bis]``.
 axes_labels : str or list of str, optional
 Label of each axis. For binned axes, it can be automatically formatted
 via the three entries ``{name}``, ``{start}``, ``{stop}``.
 E.g. "{name} in [{start}, {stop}]" would give "CC in [0, 0.2]" for
 a first axis and "CC in [0.2, 0.4]" for a second axis.
 intra_connections : bool, optional (default: True)
 Show connections between nodes belonging to the same axis. If true,
 then each axis is duplicated to display intra-axis connections.
 highlight_nodes : list of nodes, optional (default: all nodes)
 Highlight a subset of nodes and their connections, all other nodes
 and connections will be gray.
 highlight_edges : list of edges, optional (default: all edges)
 Highlight a subset of edges; all other connections will be gray.
 nsize : float, str, or array-like, optional (default: automatic)
 Size of the nodes on the axes. Either a fixed size, the name of a
 node attribute, or a list of user-defined values.
 esize : float or str, optional (default: 1)
 Size of the edges. Either a fixed size or the name of an edge
 attribute.
 max_nsize : float, optional (default: 10)
 Maximum node size if `nsize` is an attribute or a list of
 user-defined values.
 max_esize : float, optional (default: 1)
 Maximum edge size if `esize` is an attribute.
 axes_colors : valid matplotlib color/colormap, optional (default: Set1)
 Color associated to each axis.
 nborder_color : matplotlib color, optional (default: "k")
 Color of the node's border.
 or floats in [0, 1] defining the position in the palette.
 nborder_width : float, optional (default: 0.2)
 Width of the border.
 edge_colors : valid matplotlib color/colormap, optional (default: auto)
 Color of the edges. By default it is the intermediate color between
 two axes colors. To provide custom colors, they must be provided as
 a dictionnary of axes edges ``{(0, 0): "r", (0, 1): "g", (1, 0): "b"}``
 with default color being black.
 edge_alpha : float, optional (default: 0.05)
 Edge opacity.
 show_names : bool, optional (default: True)
 Show axes names and properties.
 show_circles : bool, optional (default: False)
 Show the circles associated to the maximum value of each axis.
 axis : matplotlib axis, optional (default: create new axis)
 Axis on which the network will be plotted.
 tight : bool, optional (default: True)
 Set figure layout to tight (set to False if plotting multiple axes on
 a single figure).
 show : bool, optional (default: True)
 Display the plot immediately.
 '''
 import matplotlib.pyplot as plt

 # get numer of axes and radial coordinates
 num_axes, num_radial = _get_axes_radial_coord(
 radial, axes, axes_bins, network)

 # get axes names, associated nodes, and radial values
 ax_names, ax_nodes, ax_radco = _get_axes_nodes(
 network, radial, axes, axes_bins, num_axes, num_radial)

 # get highlighted nodes and edges
 if highlight_nodes:
 highlight_nodes = set(highlight_nodes)
 else:
 highlight_nodes= set()

 if highlight_edges is not None:
 highlight_edges = {tuple(e) for e in highlight_edges}

 # get units, maximum values for the axes, renormalize radial values
 if axes_units is None:
 axes_units = "normed" if num_radial > 1 else "native"

 radial_values = _get_radial_values(ax_radco, axes_units, network)

 # compute the angles
 angles = None

 if axes_angles is None:
 dtheta = 2 * np.pi / num_axes

 if intra_connections:
 angles = []

 for i in range(num_axes):
 angles.extend(((i - 0.125)*dtheta, (i + 0.125)*dtheta))
 else:
 angles = [i*dtheta for i in range(num_axes)]
 else:
 angles = [a*np.pi/180 for a in ax_angles]

 # renormalize the sizes
 nsize = _get_size(nsize, max_nsize, ax_nodes, network)

 nedges = network.edge_nb()

 esize = np.ones(nedges) if esize is None else network.edge_attributes[esize]
 esize *= max_esize / esize.max()

 esize = {tuple(e): s for e, s in zip(network.edges_array, esize)}

 # get the colors
 ncolors, ecolors = _get_colors(axes_colors, edge_colors, angles, num_axes,
 intra_connections, network)

 # make the figure
 if axis is None:
 _, axis = plt.subplots()

 # plot the nodes and axes
 node_pos = []
 max_radii = []

 for i, (nn, rr) in enumerate(zip(ax_nodes, radial_values)):
 if len(nn):
 # max radii
 rax = np.array([RMIN, rr[nn].max()])

 max_radii.extend([rax[-1]]*(1 + intra_connections))

 # plot max radii
 if show_circles:
 aa = np.arange(0, 2*np.pi, 0.02)
 xx = rax[-1]*np.cos(aa)
 yy = rax[-1]*np.sin(aa)
 axis.plot(xx, yy, color="grey", alpha=0.2, zorder=1)

 # comppute angles
 aa = [angles[2*i] if intra_connections else angles[i]]

 if intra_connections:
 aa += [angles[2*i+1]]

 for j, a in enumerate(aa):
 # plot axes lines
 lw = 1 if j % 2 else 2

 axis.plot(rax*np.cos(a), rax*np.sin(a), color="grey", lw=lw,
 zorder=1)

 # compute node positions
 xx = rr*np.cos(a)
 yy = rr*np.sin(a)

 node_pos.append(np.array([xx, yy]).T)

 if highlight_nodes:
 greys = list(set(nn).difference(highlight_nodes))

 _plot_nodes(greys, nsize, xx, yy, "grey",
 nborder_width, nborder_color, axis, zorder=3)

 hlght = (nn if not highlight_nodes
 else list(highlight_nodes.intersection(nn)))

 _plot_nodes(hlght, nsize, xx, yy, ncolors[i],
 nborder_width, nborder_color, axis, zorder=4)
 else:
 node_pos.extend([[]]*(1 + intra_connections))
 max_radii.extend([RMIN]*(1 + intra_connections))

 # plot the edges
 xs, ys = [], []

 for i, n1 in enumerate(ax_nodes):
 targets = ax_nodes if network.is_directed() else ax_nodes[i:]

 for j, n2 in enumerate(ax_nodes):
 # ignore i = j if intra_connections is True
 if i == j and not intra_connections:
 continue

 # find which axes should be used
 idx_s, idx_t = _get_ax_angles(
 angles, i, j, intra_connections)

 # get the edges
 edges = network.get_edges(source_node=n1, target_node=n2)

 if len(edges):
 color = ecolors[(i, j)]

 paths_greys = []
 paths_hghlt = []

 lw = []

 for (ns, nt) in edges:
 pstart = node_pos[idx_s][ns]
 pstop = node_pos[idx_t][nt]

 contains = True

 if highlight_edges is not None:
 contains = (ns, nt) in highlight_edges
 elif highlight_nodes is not None:
 contains = \
 ns in highlight_nodes or nt in highlight_nodes

 if highlight_edges is None or contains:
 paths_hghlt.append(_plot_bezier(
 pstart, pstop, angles[idx_s], angles[idx_t],
 radial_values[i][ns], radial_values[j][nt], i, j,
 num_axes, xs, ys))

 lw.append(esize[(ns, nt)])
 else:
 paths_greys.append(_plot_bezier(
 pstart, pstop, angles[idx_s], angles[idx_t],
 radial_values[i][ns], radial_values[j][nt], i, j,
 num_axes, xs, ys))

 if paths_greys:
 pcol = PathCollection(
 paths_greys, facecolors="none", edgecolors="grey",
 alpha=0.1*edge_alpha, zorder=1)

 axis.add_collection(pcol)

 alpha = 0.7 if highlight_nodes else edge_alpha

 pcol = PathCollection(paths_hghlt, facecolors="none", lw=lw,
 edgecolors=color, alpha=alpha, zorder=2)

 axis.add_collection(pcol)

 _set_names_lims(ax_names, angles, max_radii, xs, ys, intra_connections,
 show_names, axis, show_circles)

 axis.set_aspect(1)
 axis.axis('off')

 if tight:
 plt.tight_layout()

 if show:
 plt.show()

[docs]def library_draw(network, nsize="total-degree", ncolor="group", nshape="o",
 nborder_color="k", nborder_width=0.5, esize=1., ecolor="k",
 ealpha=0.5, max_nsize=5., max_esize=2., curved_edges=False,
 threshold=0.5, decimate_connections=None, spatial=True,
 restrict_sources=None, restrict_targets=None,
 restrict_nodes=None, restrict_edges=None,
 show_environment=True, size=(600, 600), xlims=None,
 ylims=None, dpi=75, axis=None, colorbar=False,
 show_labels=False, layout=None, show=False, **kwargs):
 '''
 Draw a given :class:`~nngt.Graph` using the underlying library's drawing
 functions.

 .. versionadded:: 2.0

 .. warning::
 When using igraph or graph-tool, if you want to use the `axis`
 argument, then you must first switch the matplotlib backend to its
 cairo version using e.g. ``plt.switch_backend("Qt5Cairo")`` if your
 normal backend is Qt5 ("Qt5Agg").

 Parameters

 network : :class:`~nngt.Graph` or subclass
 The graph/network to plot.
 nsize : float, array of float or string, optional (default: "total-degree")
 Size of the nodes as a percentage of the canvas length. Otherwise, it
 can be a string that correlates the size to a node attribute among
 "in/out/total-degree", or "betweenness".
 ncolor : float, array of floats or string, optional (default: 0.5)
 Color of the nodes; if a float in [0, 1], position of the color in the
 current palette, otherwise a string that correlates the color to a node
 attribute among "in/out/total-degree", "betweenness" or "group".
 nshape : char, array of chars, or groups, optional (default: "o")
 Shape of the nodes (see `Matplotlib markers <http://matplotlib.org/api/
 markers_api.html?highlight=marker#module-matplotlib.markers>`_).
 When using groups, they must be pairwise disjoint; markers will be
 selected iteratively from the matplotlib default markers.
 nborder_color : char, float or array, optional (default: "k")
 Color of the node's border using predefined `Matplotlib colors
 <http://matplotlib.org/api/colors_api.html?highlight=color
 #module-matplotlib.colors>`_).
 or floats in [0, 1] defining the position in the palette.
 nborder_width : float or array of floats, optional (default: 0.5)
 Width of the border in percent of canvas size.
 esize : float, str, or array of floats, optional (default: 0.5)
 Width of the edges in percent of canvas length. Available string values
 are "betweenness" and "weight".
 ecolor : str, char, float or array, optional (default: "k")
 Edge color. If ecolor="groups", edges color will depend on the source
 and target groups, i.e. only edges from and toward same groups will
 have the same color.
 max_esize : float, optional (default: 5.)
 If a custom property is entered as `esize`, this normalizes the edge
 width between 0. and `max_esize`.
 threshold : float, optional (default: 0.5)
 Size under which edges are not plotted.
 decimate_connections : int, optional (default: keep all connections)
 Plot only one connection every `decimate_connections`.
 Use -1 to hide all edges.
 spatial : bool, optional (default: True)
 If True, use the neurons' positions to draw them.
 restrict_sources : str, group, or list, optional (default: all)
 Only draw edges starting from a restricted set of source nodes.
 restrict_targets : str, group, or list, optional (default: all)
 Only draw edges ending on a restricted set of target nodes.
 restrict_nodes : str, group, or list, optional (default: plot all nodes)
 Only draw a subset of nodes.
 restrict_edges : list of edges, optional (default: all)
 Only draw a subset of edges.
 show_environment : bool, optional (default: True)
 Plot the environment if the graph is spatial.
 fast : bool, optional (default: False)
 Use a faster algorithm to plot the edges. This method leads to less
 pretty plots and zooming on the graph will make the edges start or
 ending in places that will differ more or less strongly from the actual
 node positions.
 size : tuple of ints, optional (default: (600, 600))
 (width, height) tuple for the canvas size (in px).
 dpi : int, optional (default: 75)
 Resolution (dot per inch).
 colorbar : bool, optional (default: False)
 Whether to display a colorbar for the node colors or not.
 axis : matplotlib axis, optional (default: create new axis)
 Axis on which the network will be plotted.
 layout : str, optional (default: library-dependent or spatial positions)
 Name of a standard layout to structure the network. Available layouts
 are: "circular", "spring-block", "random". If no layout is
 provided and the network is spatial, then node positions will be
 used by default.
 show : bool, optional (default: True)
 Display the plot immediately.
 **kwargs : dict
 Optional keyword arguments including `node_cmap` to set the
 nodes colormap (default is "magma" for continuous variables and
 "Set1" for groups) and the boolean `simple_nodes` to make node
 plotting faster.
 '''
 import matplotlib as mpl
 import matplotlib.pyplot as plt

 # backend and axis
 if nngt.get_config("backend") in ("graph-tool", "igraph"):
 mpl_backend = mpl.get_backend()

 if mpl_backend.startswith("Qt4"):
 if mpl_backend != "Qt4Cairo":
 plt.switch_backend("Qt4Cairo")
 elif mpl_backend.startswith("Qt5"):
 if mpl_backend != "Qt5Cairo":
 plt.switch_backend("Qt5Cairo")
 elif mpl_backend.startswith("GTK"):
 if mpl_backend != "GTK3Cairo":
 plt.switch_backend("GTK3Cairo")
 elif mpl_backend != "cairo":
 plt.switch_backend("cairo")

 if axis is None:
 size_inches = (size[0]/float(dpi), size[1]/float(dpi))
 fig, axis = plt.subplots(figsize=size_inches)

 axis.axis('off')

 # default plot
 if nngt.get_config("backend") == "nngt":
 draw_network(
 network, nsize=nsize, ncolor=ncolor, nshape=nshape,
 nborder_color=nborder_color, nborder_width=nborder_width,
 esize=esize, ecolor=ecolor, ealpha=ealpha, max_nsize=max_nsize,
 max_esize=max_esize, curved_edges=curved_edges,
 threshold=threshold, decimate_connections=decimate_connections,
 spatial=spatial, restrict_nodes=restrict_nodes,
 show_environment=show_environment, size=size, axis=axis,
 layout=layout, show=show, **kwargs)

 # otherwise, preapre data
 restrict_nodes = _convert_to_nodes(restrict_nodes,
 "restrict_nodes", network)

 # shize and shape
 markers, nsize, esize = _node_edge_shape_size(
 network, nshape, nsize, max_nsize, esize, max_esize, restrict_nodes,
 restrict_edges, size, threshold)

 # node color information
 default_ncmap = (palette_discrete() if not nonstring_container(ncolor) and
 ncolor == "group" else palette_continuous())

 ncmap = get_cmap(kwargs.get("node_cmap", default_ncmap))

 node_color, nticks, ntickslabels, nlabel = \
 _node_color(network, restrict_nodes, ncolor)

 # edge color
 ecolor = _edge_prop(network, ecolor)
 esize = _edge_prop(network, esize)

 if nonstring_container(esize) and len(esize):
 esize *= max_esize / np.max(esize)

 # environment
 if spatial and network.is_spatial():
 if show_environment:
 nngt.geometry.plot.plot_shape(network.shape, axis=axis, show=False)

 # do the plot
 if nngt.get_config("backend") == "graph-tool":
 from graph_tool.draw import (graph_draw, sfdp_layout, random_layout)

 graph = network.graph

 # resize
 if nonstring_container(nsize):
 nsize *= 0.05

 nborder_width *= 0.1

 esize *= 0.02

 # positions
 pos = None

 if layout is None:
 if isinstance(network, nngt.SpatialGraph) and spatial:
 xy = network.get_positions()
 pos = graph.new_vp("vector<double>", vals=xy)
 else:
 weights = (None if not network.is_weighted()
 else graph.edge_properties['weight'])
 pos = sfdp_layout(graph, eweight=weights)
 elif layout == "random":
 pos = random_layout(graph)
 elif layout == "circular":
 pos = graph.new_vp("vector<double>",
 vals=_circular_layout(network, nsize))
 elif nonstring_container(layout):
 assert np.shape(layout) == (network.node_nb(), 2), \
 "One position per node in the network is required."
 pos = graph.new_vp("vector<double>", vals=layout)
 else:
 # spring block
 weights = (None if not network.is_weighted()
 else graph.edge_properties['weight'])
 pos = sfdp_layout(graph, eweight=weights)

 convert_shape = {
 "o": "circle",
 "v": "triangle",
 "^": "triangle",
 "s": "square",
 "p": "pentagon",
 "h": "hexagon",
 "H": "hexagon",
 }

 shape_dict = defaultdict(
 lambda k: "circle" if k not in convert_shape.values() else k)

 for k, v in convert_shape.items():
 shape_dict[k] = v

 vprops = {
 "shape": shape_dict[nshape],
 "fill_color": _to_gt_prop(graph, node_color, ncmap, color=True),
 "color": _to_gt_prop(graph, nborder_color, ncmap, color=True),
 "size": _to_gt_prop(graph, nsize, ncmap),
 "pen_width": _to_gt_prop(graph, nborder_width, ncmap),
 }

 if vprops["fill_color"] is None:
 vprops["fill_color"] = [0.640625, 0, 0, 0.9]

 eprops = None if network.edge_nb() == 0 else {
 "color": _to_gt_prop(graph, ecolor, palette_continuous(),
 ptype='edge', color=True),
 "pen_width": _to_gt_prop(graph, esize, None, ptype='edge'),
 }

 if restrict_edges is not None:
 efilt = network.graph.new_ep(
 "bool", vals=np.zeros(network.edge_nb(), dtype=bool))
 eids = [network.edge_id(e) for e in restrict_edges]

 efilt.a[eids] = 1

 network.graph.set_edge_filter(efilt)

 graph_draw(network.graph, pos=pos, vprops=vprops, eprops=eprops,
 output_size=size, mplfig=axis)

 if restrict_edges is not None:
 # clear edge filter
 network.graph.set_edge_filter(None)
 elif nngt.get_config("backend") == "networkx":
 import networkx as nx

 pos = None

 if layout is None:
 if isinstance(network, nngt.SpatialGraph) and spatial:
 xy = network.get_positions()
 pos = {i: coords for i, coords in enumerate(xy)}
 elif layout == "circular":
 pos = nx.circular_layout(network.graph)
 elif layout == "random":
 pos = nx.random_layout(network.graph)
 elif nonstring_container(layout):
 assert np.shape(layout) == (network.node_nb(), 2), \
 "One position per node in the network is required."
 pos = {i: coords for i, coords in enumerate(layout)}
 else:
 pos = nx.spring_layout(network.graph)

 # normalize sizes compared to igraph
 nsize = _increase_nx_size(nsize)

 nborder_width = _increase_nx_size(nborder_width, 2)

 edges = None if restrict_edges is None else list(restrict_edges)

 nx.draw_networkx(
 network.graph, pos=pos, ax=axis, nodelist=restrict_nodes,
 edgelist=edges, node_size=nsize, node_color=node_color,
 node_shape=nshape, linewidths=nborder_width, edge_color=ecolor,
 edge_cmap=palette_continuous(), cmap=ncmap,
 with_labels=show_labels, width=esize, edgecolors=nborder_color)
 elif nngt.get_config("backend") == "igraph":
 from igraph import Layout, PrecalculatedPalette

 pos = None

 if layout is None:
 if isinstance(network, nngt.SpatialGraph) and spatial:
 xy = network.get_positions()
 pos = Layout(xy)
 elif layout == "circular":
 pos = network.graph.layout_circle()
 elif layout == "random":
 pos = network.graph.layout_random()

 palette = PrecalculatedPalette(ncmap(np.linspace(0, 1, 256)))

 # convert color to igraph-format
 node_color = _to_ig_color(node_color)
 ecolor = _to_ig_color(ecolor)

 convert_shape = {
 "o": "circle",
 "v": "triangle-down",
 "^": "triangle-up",
 "s": "rectangle",
 }

 shape_dict = defaultdict(
 lambda k: "circle" if k not in convert_shape.values() else k)

 for k, v in convert_shape.items():
 shape_dict[k] = v

 visual_style = {
 "vertex_size": nsize,
 "vertex_color": node_color,
 "vertex_shape": shape_dict[nshape],
 "edge_width": esize,
 "edge_color": ecolor,
 "layout": pos,
 "palette": palette,
 }

 graph = network.graph

 if restrict_edges is not None:
 eids = [network.edge_id(e) for e in restrict_edges]
 graph = network.graph.subgraph_edges(eids, delete_vertices=False)

 graph_artist = GraphArtist(graph, axis, **visual_style)

 axis.artists.append(graph_artist)

 if "title" in kwargs:
 axis.set_title(kwargs["title"])

 if show:
 plt.show()

[docs]def chord_diagram(network, weights=True, names=None, order=None, width=0.1,
 pad=2., gap=0.03, chordwidth=0.7, axis=None, colors=None,
 cmap=None, alpha=0.7, use_gradient=False, show=False,
 **kwargs):
 """
 Plot a chord diagram.

 Parameters

 network : a :class:`nngt.Graph` object
 Network used to plot the chord diagram.
 weights : bool or str, optional (default: 'weight' attribute)
 Weights used to plot the connections.
 names : str or list of str, optional (default: no names)
 Names of the nodes that will be displayed, either a node attribute
 or a custom list (must be ordered following the nodes' indices).
 order : list, optional (default: order of the matrix entries)
 Order in which the arcs should be placed around the trigonometric
 circle.
 width : float, optional (default: 0.1)
 Width/thickness of the ideogram arc.
 pad : float, optional (default: 2)
 Distance between two neighboring ideogram arcs. Unit: degree.
 gap : float, optional (default: 0.03)
 Distance between the arc and the beginning of the cord.
 chordwidth : float, optional (default: 0.7)
 Position of the control points for the chords, controlling their shape.
 axis : matplotlib axis, optional (default: new axis)
 Matplotlib axis where the plot should be drawn.
 colors : list, optional (default: from `cmap`)
 List of user defined colors or floats.
 cmap : str or colormap object (default: viridis)
 Colormap to use.
 alpha : float in [0, 1], optional (default: 0.7)
 Opacity of the chord diagram.
 use_gradient : bool, optional (default: False)
 Whether a gradient should be use so that chord extremities have the
 same color as the arc they belong to.
 **kwargs : keyword arguments
 Available kwargs are "fontsize" and "sort" (either "size" or
 "distance"), "zero_entry_size" (in degrees, default: 0.5),
 "rotate_names" (a bool or list of bools) to rotate (some of) the
 names by 90°.
 """
 ww = 'weight' if weights is True else weights
 nn = network.node_attributes[names] if isinstance(names, str) else names

 mat = network.adjacency_matrix(weights=ww)

 return _chord_diag(
 mat, nn, order=order, width=width, pad=pad, gap=gap,
 chordwidth=chordwidth, ax=axis, colors=colors, cmap=cmap, alpha=alpha,
 use_gradient=use_gradient, show=show, **kwargs)

Tools

def _node_edge_shape_size(network, nshape, nsize, max_nsize, esize, max_esize,
 restrict_nodes, edges, size, threshold,
 simple_nodes=False):
 ''' Returns the shape and size of the nodes and edges '''
 n = network.node_nb() if restrict_nodes is None else len(restrict_nodes)
 e = len(edges) if edges is not None else network.edge_nb()

 # markers
 markers = nshape

 if nonstring_container(nshape):
 if isinstance(nshape[0], nngt.Group):
 # check disjunction
 for i, g in enumerate(nshape):
 for j in range(i + 1, len(nshape)):
 if not set(g.ids).isdisjoint(nshape[j].ids):
 raise ValueError("Groups passed to `nshape` "
 "must be disjoint.")

 mm = cycle(MarkerStyle.filled_markers)

 shapes = np.full(network.node_nb(), "", dtype=object)

 for g, m in zip(nshape, mm):
 shapes[g.ids] = m

 markers = list(shapes)
 elif len(nshape) != network.node_nb():
 raise ValueError("When passing an array of markers to "
 "`nshape`, one entry per node in the "
 "network must be provided.")
 else:
 markers = [nshape for _ in range(network.node_nb())]

 # size
 if isinstance(nsize, str):
 if e:
 nsize = _node_size(network, restrict_nodes, nsize)
 nsize *= max_nsize / np.max(nsize)
 else:
 nsize = np.ones(n, dtype=float)
 elif isinstance(nsize, (float, int, np.number)):
 nsize = np.full(n, nsize, dtype=float)
 elif nonstring_container(nsize):
 nsize *= max_nsize / np.max(nsize)

 nsize *= 0.01 * size[0]

 if e:
 if isinstance(esize, str):
 esize = _edge_size(network, edges, esize)
 esize *= max_esize
 esize[esize < threshold] = 0.

 esize *= 0.005 * size[0] # border on each side (so 0.5 %)
 else:
 esize = np.array([])

 return markers, nsize, esize

def _set_ax_lim(ax, xdata, ydata, xlims, ylims):
 if xlims is not None:
 ax.set_xlim(*xlims)
 else:
 x_min, x_max = np.min(xdata), np.max(xdata)
 width = x_max - x_min
 ax.set_xlim(x_min - 0.05*width, x_max + 0.05*width)
 if ylims is not None:
 ax.set_ylim(*ylims)
 else:
 y_min, y_max = np.min(ydata), np.max(ydata)
 height = y_max - y_min
 ax.set_ylim(y_min - 0.05*height, y_max + 0.05*height)

def _node_size(network, restrict_nodes, nsize):
 restrict_nodes = None if restrict_nodes is None else list(restrict_nodes)

 n = network.node_nb() if restrict_nodes is None else len(restrict_nodes)

 size = np.ones(n, dtype=float)

 if "degree" in nsize:
 deg_type = nsize[:nsize.index("-")]
 size = network.get_degrees(deg_type,
 nodes=restrict_nodes).astype(float)
 if np.isclose(size.min(), 0):
 size[np.isclose(size, 0)] = 0.5
 if size.max() > 15*size.min():
 size = np.power(size, 0.4)
 elif "strength" in nsize:
 deg_type = nsize[:nsize.index("-")]
 size = network.get_degrees(deg_type, weights='weight',
 nodes=restrict_nodes)
 if np.isclose(size.min(), 0):
 size[np.isclose(size, 0)] = 0.5
 if size.max() > 15*size.min():
 size = np.power(size, 0.4)
 elif nsize == "betweenness":
 betw = None

 if restrict_nodes is None:
 betw = network.get_betweenness("node").astype(float)
 else:
 betw = network.get_betweenness(
 "node").astype(float)[restrict_nodes]

 if network.is_connected("weak") == 1:
 size *= betw
 if size.max() > 15*size.min():
 min_size = size[size!=0].min()
 size[size == 0.] = min_size
 size = np.log(size)
 if size.min()<0:
 size -= 1.1*size.min()
 elif nsize == "clustering":
 size *= nngt.analysis.local_clustering(network, nodes=restrict_nodes)
 elif nsize in nngt.analyze_graph:
 if restrict_nodes is None:
 size *= nngt.analyze_graph[nsize](network)
 else:
 size *= nngt.analyze_graph[nsize](network)[restrict_nodes]

 if np.any(size):
 size /= size.max()

 return size.astype(float)

def _edge_size(network, edges, esize):
 num_edges = len(edges) if edges is not None else network.edge_nb()

 size = np.repeat(1., num_edges)

 if num_edges:
 max_size = 1.

 if nonstring_container(esize):
 max_size = np.max(esize)
 elif esize == "betweenness":
 betw = network.get_betweenness("edge")

 max_size = np.max(betw)

 size = betw if restrict_nodes is None else betw[restrict_nodes]
 elif esize == "weight":
 size = network.get_weights(edges=edges)

 max_size = np.max(network.get_weights())

 if np.any(size):
 size /= max_size

 return size

def _node_color(network, restrict_nodes, ncolor):
 '''
 Return an array of colors, a set of ticks, and a label for the colorbar
 of the nodes (if necessary).
 '''
 color = ncolor
 nticks = None
 ntickslabels = None
 nlabel = ""

 n = network.node_nb() if restrict_nodes is None else len(restrict_nodes)

 if restrict_nodes is not None:
 restrict_nodes = set(restrict_nodes)

 if isinstance(ncolor, float):
 color = np.repeat(ncolor, n)
 elif isinstance(ncolor, str):
 if ncolor == "group" or ncolor == "groups":
 color = np.zeros(n)
 if network.structure is not None:
 l = len(network.structure)
 c = np.linspace(0, 1, l)
 tmp = 0
 for i, group in enumerate(network.structure.values()):
 if restrict_nodes is None:
 color[group.ids] = c[i]
 else:
 ids = restrict_nodes.intersection(group.ids)
 for j in range(len(ids)):
 color[tmp + j] = c[i]
 tmp += len(ids)

 nlabel = "Neuron groups"
 nticks = list(range(len(network.structure)))
 ntickslabels = [s.replace("_", " ")
 for s in network.structure.keys()]
 else:
 values = None
 if "degree" in ncolor:
 dtype = ncolor[:ncolor.find("-")]
 values = network.get_degrees(dtype, nodes=restrict_nodes)
 elif ncolor == "betweenness":
 if restrict_nodes is None:
 values = network.get_betweenness("node")
 else:
 values = network.get_betweenness(
 "node")[list(restrict_nodes)]
 elif ncolor in network.node_attributes:
 values = network.get_node_attributes(
 name=ncolor, nodes=restrict_nodes)
 elif ncolor == "clustering" :
 values = nngt.analysis.local_clustering(
 network, nodes=restrict_nodes)
 elif ncolor in nngt.analyze_graph:
 if restrict_nodes is None:
 values = nngt.analyze_graph[ncolor](network)
 else:
 values = nngt.analyze_graph[ncolor](
 network)[list(restrict_nodes)]
 elif ncolor in ColorConverter.colors or ncolor.startswith("#"):
 color = np.repeat(ncolor, n)
 else:
 raise RuntimeError("Invalid `ncolor`: {}.".format(ncolor))

 if values is not None:
 vmin, vmax = np.min(values), np.max(values)
 #~ color = (values - vmin) / (vmax - vmin)
 color = values

 nlabel = "Node " + ncolor.replace("_", " ")
 setval = set(values)
 if len(setval) <= 10:
 nticks = list(setval)
 nticks.sort()
 ntickslabels = nticks
 else:
 nticks = np.linspace(vmin, vmax, 10)
 ntickslabels = nticks
 else:
 nlabel = "Custom node colors"
 uniques = np.unique(ncolor, axis=0)
 if len(uniques) <= 10:
 nticks = uniques
 else:
 nticks = np.linspace(np.min(ncolor), np.max(ncolor), 10)
 ntickslabels = nticks

 return color, nticks, ntickslabels, nlabel

def _edge_prop(network, value):
 prop = value

 enum = network.edge_nb()

 if isinstance(value, str) and value not in ColorConverter.colors:
 if value in network.edge_attributes:
 color = network.edge_attributes[value]
 elif value == "betweenness":
 prop = network.get_betweenness("edge")
 else:
 raise RuntimeError("Invalid `value`: {}.".format(value))

 return prop

def _discrete_cmap(N, base_cmap=None, clist=None):
 '''
 Create an N-bin discrete colormap from the specified input map

 Parameters

 N : number of values
 base_cmap : str, None, or cmap object
 clist : list of colors

 # Modified from Jake VanderPlas
 # License: BSD-style
 '''
 import matplotlib.pyplot as plt
 # Note that if base_cmap is a string or None, you can simply do
 # return plt.cm.get_cmap(base_cmap, N)
 # The following works for string, None, or a colormap instance:
 base = plt.cm.get_cmap(base_cmap, N)
 color_list = base(np.linspace(0, 1, N)) if clist is None else clist
 cmap_name = base.name + str(N)
 try:
 return base.from_list(cmap_name, color_list, N)
 except:
 return ListedColormap(color_list, cmap_name, N=N)

def _convert_to_nodes(node_restriction, name, network):
 if nonstring_container(node_restriction):
 if isinstance(node_restriction[0], str):
 assert network.structure is not None, \
 "`" + name + "` can be string only for Network or graph " \
 "with a `structure`."
 ids = set()
 for name in node_restriction:
 ids.update(network.structure[name].ids)
 return ids
 elif isinstance(node_restriction[0], nngt.Group):
 ids = set()
 for g in node_restriction:
 ids.update(g.ids)
 return ids

 return set(node_restriction)
 elif isinstance(node_restriction, str):
 assert network.is_network(), \
 "`" + name + "` can be string only for Network."
 return set(network.structure[node_restriction].ids)
 elif isinstance(node_restriction, nngt.Group):
 return set(node_restriction.ids)
 elif node_restriction is not None:
 raise ValueError(
 "Invalid `" + name + "`: '{}'".format(node_restriction))

 return node_restriction

def _custom_arrows(sources, targets, angle):
 '''
 Create a curved arrow between `source` and `target` as the combination of
 the arc of a circle and a triangle.

 The initial and final angle α between the source-target line and
 the arrow is linked to the radius of the circle, r and the distance d
 between the points:

 .. math:: r = \frac{d}{2 \cdot \tan(\alpha)}

 The beginning and the end of the arc are given through initial and final
 angles, respectively θ_1 and θ_2, which are given with
 respect to the y-axis; This leads to $\alpha = 0.5(\theta_1 - \theta_2)$.
 '''
 # compute the distances between the points
 pass
 #~ # compute the radius and the position of the center of the circle

 #~ #========Line
 #~ arc = Arc([centX,centY],radius,radius,angle=angle_,
 #~ theta1=0,theta2=theta2_,capstyle='round',linestyle='-',lw=10,color=color_)
 #~ ax.add_patch(arc)

 #~ #========Create the arrow head
 #~ endX=centX+(radius/2)*np.cos(rad(theta2_+angle_)) #Do trig to determine end position
 #~ endY=centY+(radius/2)*np.sin(rad(theta2_+angle_))

 #~ ax.add_patch(#Create triangle as arrow head
 #~ RegularPolygon(
 #~ (endX, endY), # (x,y)
 #~ 3, # number of vertices
 #~ radius/9, # radius
 #~ rad(angle_+theta2_), # orientation
 #~ color=color_
 #~)
 #~)

def _to_ig_color(color):
 import igraph as ig

 if isinstance(color, str) and color not in ig.known_colors:
 color = str(ColorConverter.to_rgb(color))[1:-1]
 elif nonstring_container(color) and len(color):
 # need to convert floating point colors to [0, 255] integers
 if is_integer(color[0]) or isinstance(color[0], float):
 vmin = np.min(color)
 vmax = np.max(color)
 vint = vmax - vmin
 if vint > 0:
 color = [int(255 * (v - vmin) / vint) for v in color]
 else:
 color = [0]*len(color)
 else:
 for i, c in enumerate(color):
 if isinstance(color, str) and color not in ig.known_colors:
 color[i] = str(ColorConverter.to_rgb(color))[1:-1]

 return color

def _increase_nx_size(size, factor=4):

 if isinstance(size, float) or is_integer(size):
 return factor*size
 elif nonstring_container(size) and len(size):
 if isinstance(size[0], float) or is_integer(size[0]):
 return factor*np.asarray(size)

 return size

def _to_gt_prop(graph, value, cmap, ptype='node', color=False):
 pmap = (graph.new_vertex_property if ptype == 'node'
 else graph.new_edge_property)

 if nonstring_container(value) and len(value):
 if isinstance(value[0], str):
 if color:
 # custom namedcolors
 return pmap("vector<double>",
 vals=[ColorConverter.to_rgba(v) for v in value])
 else:
 return pmap("string", vals=value)
 elif nonstring_container(value[0]):
 # direct rgb(a) description
 return pmap("vector<double>", vals=value)

 # numbers
 if color:
 vmin, vmax = np.min(value), np.max(value)

 normalized = None

 if vmax - vmin > 0:
 normalized = (np.array(value) - vmin) / (vmax - vmin)
 else:
 return normalized

 return pmap("vector<double>", vals=[cmap(v) for v in normalized])

 return pmap("double", vals=value)

 return value

class GraphArtist(Artist):
 """
 Matplotlib artist class that draws igraph graphs.

 Only Cairo-based backends are supported.

 Adapted from: https://stackoverflow.com/a/36154077/5962321
 """

 def __init__(self, graph, axis, palette=None, *args, **kwds):
 """Constructs a graph artist that draws the given graph within
 the given bounding box.

 `graph` must be an instance of `igraph.Graph`.
 `bbox` must either be an instance of `igraph.drawing.BoundingBox`
 or a 4-tuple (`left`, `top`, `width`, `height`). The tuple
 will be passed on to the constructor of `BoundingBox`.
 `palette` is an igraph palette that is used to transform
 numeric color IDs to RGB values. If `None`, a default grayscale
 palette is used from igraph.

 All the remaining positional and keyword arguments are passed
 on intact to `igraph.Graph.__plot__`.
 """
 from igraph import BoundingBox, palettes

 super().__init__()

 self.graph = graph
 self.palette = palette or palettes["gray"]
 self.bbox = BoundingBox(axis.bbox.bounds)
 self.args = args
 self.kwds = kwds

 def draw(self, renderer):
 from matplotlib.backends.backend_cairo import RendererCairo

 if not isinstance(renderer, RendererCairo):
 raise TypeError(
 "graph plotting is supported only on Cairo backends")

 self.graph.__plot__(renderer.gc.ctx, self.bbox, self.palette,
 *self.args, **self.kwds)

def _circular_layout(graph, node_size):
 max_nsize = np.max(node_size)

 # chose radius such that r*dtheta > max_nsize
 dtheta = 2*np.pi / graph.node_nb()

 r = 1.1*max_nsize / dtheta

 thetas = np.array([i*dtheta for i in range(graph.node_nb())])
 x = r*np.cos(thetas)
 y = r*np.sin(thetas)

 return np.array((x, y)).T

 Source code for nngt.plot.plt_properties

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Tools to plot graph properties """

import numpy as np

import nngt
from nngt.lib import InvalidArgument, nonstring_container
from nngt.analysis import (degree_distrib, betweenness_distrib,
 node_attributes, binning)
from .custom_plt import palette_continuous, palette_discrete, format_exponent

__all__ = [
 'degree_distribution',
 'betweenness_distribution',
 'edge_attributes_distribution',
 'node_attributes_distribution',
 'compare_population_attributes',
 "correlation_to_attribute",
]

Plotting distributions

[docs]def degree_distribution(network, deg_type="total", nodes=None,
 num_bins='doane', weights=False, logx=False,
 logy=False, axis=None, axis_num=None, colors=None,
 norm=False, show=True, title=None, **kwargs):
 '''
 Plotting the degree distribution of a graph.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 The graph to analyze.
 deg_type : string or N-tuple, optional (default: "total")
 Type of degree to consider ("in", "out", or "total")
 nodes : list or numpy.array of ints, optional (default: all nodes)
 Restrict the distribution to a set of nodes.
 num_bins : str, int or N-tuple, optional (default: 'doane'):
 Number of bins used to sample the distribution. Defaults to 'doane'.
 Use to 'auto' for numpy automatic selection or 'bayes' for unsupervised
 Bayesian blocks method.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 logx : bool, optional (default: False)
 Use log-spaced bins.
 logy : bool, optional (default: False)
 Use logscale for the degree count.
 axis : :class:`matplotlib.axes.Axes` instance, optional (default: new one)
 Axis which should be used to plot the histogram, if None, a new one is
 created.
 show : bool, optional (default: True)
 Show the Figure right away if True, else keep it warm for later use.
 **kwargs : keyword arguments for :func:`matplotlib.axes.Axes.bar`.
 '''
 import matplotlib.pyplot as plt

 if axis is None:
 fig, axis = plt.subplots()

 empty_axis = axis.has_data()

 axis.axis('tight')

 if "alpha" not in kwargs:
 kwargs["alpha"] = 1 if isinstance(deg_type, str) else 0.5

 labels = kwargs.get('label', None)

 if not nonstring_container(labels) and labels is not None:
 labels = [labels]

 # get degrees
 mincounts, maxcounts, allbins = np.inf, 0, []

 if isinstance(deg_type, str):
 counts, bins = degree_distrib(network, deg_type, nodes,
 weights, logx, num_bins)
 bottom_count = -1 if logy else 0
 if norm:
 counts = counts / float(np.sum(counts))
 if logy:
 counts = counts.astype(float)
 counts[counts<1] = 0.1
 counts = np.log(counts)

 max_nnz = np.where(counts > 0)[0][-1]
 maxcounts, mincounts = counts.max(), np.min(counts[counts > 0])
 allbins.extend(bins)

 if "label" not in kwargs:
 kwargs["label"] = deg_type[0].upper() + deg_type[1:] + " degree"
 axis.bar(
 bins[:-1], counts, np.diff(bins), bottom=bottom_count, **kwargs)
 else:
 if colors is None:
 colors = palette_continuous(np.linspace(0.,0.5, len(deg_type)))

 if not nonstring_container(num_bins):
 num_bins = [num_bins for _ in range(len(deg_type))]

 for i, s_type in enumerate(deg_type):
 counts, bins = degree_distrib(network, s_type, nodes,
 weights, logx, num_bins[i])

 bottom_count = -1 if logy else 0

 if norm:
 counts = counts / float(np.sum(counts))
 if logy:
 counts = counts.astype(float)
 counts[counts<1] = 0.1
 counts = np.log(counts) + 1

 maxcounts_tmp = counts.max()
 mincounts_tmp = np.min(counts[counts>0])

 mincounts = min(mincounts, mincounts_tmp)
 maxcounts = max(maxcounts, maxcounts_tmp)

 allbins.extend(bins)

 if labels is None:
 kwargs['label'] = s_type[0].upper() + s_type[1:] + " degree"
 else:
 kwargs['label'] = labels[i]

 axis.bar(
 bins[:-1], counts, np.diff(bins), color=colors[i],
 bottom=bottom_count, align='edge', **kwargs)

 axis.set_xlabel("Degree")
 axis.set_ylabel("Node count")
 title_start = (deg_type[0].upper() + deg_type[1:] + '-d'
 if isinstance(deg_type, str) else 'D')
 if title != "":
 str_title = title
 if title is None:
 str_title = "{}egree distribution for {}".format(
 title_start, network.name)
 axis.set_title(str_title, x=0., y=1.05, loc='left')

 # restore ylims and xlims and adapt if necessary
 _set_scale(axis, np.array(allbins), mincounts, maxcounts, logx, logy)

 plt.legend()

 if show:
 plt.show()

def attribute_distribution(network, attribute, num_bins='auto', logx=False,
 logy=False, axis=None, norm=False, show=True):
 '''
 Plotting the distribution of a graph attribute (e.g. "weight", or
 "distance" is the graph is spatial).

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 Graph to analyze.
 attribute : string or tuple of strings
 Name of a graph attribute.
 num_bins : int or 'auto', optional (default: 'auto'):
 Number of bins used to sample the distribution. Defaults to
 unsupervised Bayesian blocks method.
 logx : bool, optional (default: False)
 use log-spaced bins.
 logy : bool, optional (default: False)
 use logscale for the degree count.
 axis : :class:`matplotlib.axis.Axis` instance, optional (default: new one)
 Axis which should be used to plot the histogram, if None, a new one is
 created.
 show : bool, optional (default: True)
 Show the Figure right away if True, else keep it warm for later use.
 '''
 import matplotlib.pyplot as plt
 if axis is None:
 axis = plt.gca()

 mincounts, maxcounts, bins = 0, 0, None

 if isinstance(attribute, str):
 values = network.get_edge_attributes(name=attribute)
 counts, bins = _hist(
 values, num_bins, norm, logx, attribute, axis, **kwargs)
 maxcounts, mincounts = counts.max(), np.min(counts[counts>0])
 maxbins, minbins = bins.max(), bins.min()
 else:
 raise NotImplementedError("Multiple attribute plotting not ready yet")
 #~ colors = palette(np.linspace(0.,0.5,len(deg_type)))
 #~ m = ["o", "s", "D", "x"]
 #~ lines, legends = [], []
 #~ for i,s_type in enumerate(deg_type):
 #~ counts,bins = degree_distrib(network, s_type, nodes,
 #~ weights, logx, num_bins)
 #~ maxcounts_tmp,mincounts_tmp = counts.max(),counts.min()
 #~ maxbins_tmp,minbins_tmp = bins.max(),bins.min()
 #~ maxcounts = max(maxcounts,maxcounts_tmp)
 #~ maxbins = max(maxbins,maxbins_tmp)
 #~ minbins = min(minbins,minbins_tmp)
 #~ lines.append(ax1.scatter(bins, counts, c=colors[i], marker=m[i]))
 #~ legends.append(attribute)
 #~ ax1.legend(lines, legends)
 if nngt._config['use_tex']:
 axis.set_xlabel(attribute.replace("_", "_"))

 axis.set_ylabel("Node count")

 _set_scale(ax1, bins, mincounts, maxcounts, logx, logy)

 axis.set_title(
 "Attribute distribution for {}".format(network.name), x=0., y=1.05,
 loc='left')

 plt.legend()

 axis.axis('tight')

 if show:
 plt.show()

[docs]def betweenness_distribution(
 network, btype="both", weights=False, nodes=None, logx=False, logy=False,
 num_nbins=None, num_ebins=None, axes=None, colors=None, norm=False,
 legend_location='right', show=True, **kwargs):
 '''
 Plotting the betweenness distribution of a graph.

 Parameters

 graph : :class:`~nngt.Graph` or subclass
 the graph to analyze.
 btype : string, optional (default: "both")
 type of betweenness to display ("node", "edge" or "both")
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.
 nodes : list or numpy.array of ints, optional (default: all nodes)
 Restrict the distribution to a set of nodes (taken into account only
 for the node attribute).
 logx : bool, optional (default: False)
 use log-spaced bins.
 logy : bool, optional (default: False)
 use logscale for the degree count.
 num_nbins : int or 'auto', optional (default: None):
 Number of bins used to sample the node distribution. Defaults to
 `max(num_nodes / 50., 10)`.
 num_ebins : int or 'auto', optional (default: None):
 Number of bins used to sample the edge distribution. Defaults to
 `max(num_edges / 500., 10)` ('auto' method will be slow).
 axes : list of :class:`matplotlib.axis.Axis`, optional (default: new ones)
 Axes which should be used to plot the histogram, if None, new ones are
 created.
 legend_location : str, optional (default; 'right')
 Location of the legend.
 show : bool, optional (default: True)
 Show the Figure right away if True, else keep it warm for later use.
 '''
 import matplotlib.pyplot as plt

 if btype not in ("node", "edge", "both"):
 raise InvalidArgument('`btype` must be one of the following: '
 '"node", "edge", "both".')

 num_axes = 2 if btype == "both" else 1

 # create new axes or get them from existing ones
 ax = None

 if axes is None:
 fig, ax = plt.subplots()
 fig.patch.set_visible(False)
 ax.grid(False, axis='y')
 axes = [ax.twinx()]
 if num_axes == 2:
 ax2 = ax.twiny()
 axes.append(ax2)
 ax.grid(False, axis='x')
 ax.yaxis.tick_right()
 ax.yaxis.set_label_position("right")
 else:
 ax.set_yticks([])
 else:
 ax = axes[0]

 ax1 = axes[0]

 ax1.yaxis.tick_left()
 ax1.yaxis.set_label_position("left")
 ax2 = axes[-1]

 # get betweenness
 if num_ebins is None:
 num_ebins = int(max(network.edge_nb() / 500., 10))

 if num_nbins is None:
 num_nbins = int(max(network.node_nb() / 50., 10))

 ncounts, nbins, ecounts, ebins = betweenness_distrib(
 network, weights, nodes=nodes, num_nbins=num_nbins,
 num_ebins=num_ebins, log=logx)

 if norm:
 ncounts = ncounts / float(np.sum(ncounts))
 ecounts = ecounts / np.sum(ecounts)

 if colors is None:
 colors = palette_continuous(np.linspace(0.05, 0.5, 2))

 alpha = kwargs.get("alpha", None)

 if alpha is None:
 kwargs["alpha"] = 0.5 if btype == "both" else 1

 x = 0 if legend_location == 'left' else 1

 # plot
 if btype in ("node", "both"):
 ax1.bar(
 nbins[:-1], ncounts, np.diff(nbins), color=colors[0], align='edge',
 **kwargs)

 ax1.legend(
 ["Node betweenness"], bbox_to_anchor=[x, 1],
 loc='upper ' + legend_location)

 ax.set_xlabel("Node betweenness")
 ax1.set_ylabel("Node count")
 ax1.ticklabel_format(axis='x', style='sci', scilimits=(-3, 2))

 _set_scale(ax1, nbins, np.min(ncounts[ncounts>0]), ncounts.max(),
 logx, logy)
 if btype in ("edge", "both"):
 ax2.bar(
 ebins[:-1], ecounts, np.diff(ebins), color=colors[-1],
 align='edge', **kwargs)

 ax2.legend(
 ["Edge betweenness"], bbox_to_anchor=[x, 1],
 loc='upper ' + legend_location)

 ax2.set_xlim([ebins.min(), ebins.max()])
 ax.set_ylim([0, 1.1*ecounts.max()])
 ax2.set_xlabel("Edge betweenness")
 ax.set_ylabel("Edge count")
 ax2.ticklabel_format(axis='x', style='sci', scilimits=(-3, 2))

 _set_scale(ax2, ebins, np.min(ecounts[ecounts>0]), ecounts.max(),
 logx, logy)
 if btype == "both":
 ax2.legend(
 ["Edge betweenness"], bbox_to_anchor=[x, 0.88],
 loc='upper ' + legend_location)
 ax1.legend(
 ["Node betweenness"], bbox_to_anchor=[x, 0.88],
 loc='lower ' + legend_location)
 #~ ax1.spines['top'].set_color('none')
 #~ ax1.spines['right'].set_color('none')
 plt.subplots_adjust(top=0.85)
 #~ ax.xaxis.set_label_position("top")
 ax1.grid(False)
 ax2.grid(False)
 if not logx:
 ax2 = format_exponent(ax2, 'x', (1., 1.1))
 ax1 = format_exponent(ax1, 'x', (1., -0.05))

 y = 1.15 if btype == "both" else 1.05

 ax1.set_title(
 "Betweenness distribution for {}".format(network.name), x=0., y=y,
 loc='left')

 # ~ ax1.axis('tight')
 # ~ ax2.axis('tight')
 plt.tight_layout()

 if show:
 plt.show()

Plotting node attributes

[docs]def node_attributes_distribution(network, attributes, nodes=None,
 num_bins='auto', logx=False, logy=False,
 norm=False, title=None, colors=None,
 show=True, **kwargs):
 '''
 Return node `attributes` for a set of `nodes`.

 Parameters

 network : :class:`~nngt.Graph`
 The graph where the `nodes` belong.
 attributes : str or list
 Attributes which should be returned, among:
 * "betweenness"
 * "clustering"
 * "closeness"
 * "in-degree", "out-degree", "total-degree"
 * "subgraph_centrality"
 * "b2" (requires NEST)
 * "firing_rate" (requires NEST)
 nodes : list, optional (default: all nodes)
 Nodes for which the attributes should be returned.
 num_bins : int or list, optional (default: 'auto')
 Number of bins to plot the distributions. If only one int is provided,
 it is used for all attributes, otherwise a list containing one int per
 attribute in `attributes` is required. Defaults to unsupervised
 Bayesian blocks method.
 logx : bool or list, optional (default: False)
 Use log-spaced bins.
 logy : bool or list, optional (default: False)
 use logscale for the node count.
 '''
 import matplotlib.pyplot as plt

 if not nonstring_container(attributes):
 attributes = [attributes]
 else:
 attributes = [name for name in attributes]

 num_attr = len(attributes)
 num_bins = _format_arg(num_bins, num_attr, 'num_bins')
 colors = _format_arg(colors, num_attr, 'num_bins')
 logx = _format_arg(logx, num_attr, 'logx')
 logy = _format_arg(logy, num_attr, 'logy')
 num_plot = 0

 # kwargs that will not be passed:
 ignore = ["degree", "betweenness"] + attributes
 new_kwargs = {k: v for k, v in kwargs.items() if k not in ignore}
 fig = None
 if new_kwargs == kwargs:
 fig = plt.figure()
 else:
 fig = plt.figure(plt.get_fignums()[-1])
 fig.patch.set_visible(False)

 # plot degrees if required
 degrees = []
 for name in attributes:
 if "degree" in name.lower():
 degrees.append(name[:name.find("-")])

 if degrees:
 # get the indices where a degree-related attribute is required
 indices, colors_deg, logx_deg, logy_deg = [], [], 0, 0
 for i, name in enumerate(attributes):
 if "degree" in name:
 indices.append(i)
 if colors is not None:
 colors_deg.append(colors[i])
 logx_deg += logx[i]
 logy_deg += logy[i]
 colors_deg = None if colors is None else colors_deg
 indices.sort()
 deg_bin = [num_bins[i] for i in indices]
 for idx in indices[::-1]:
 del num_bins[idx]
 del attributes[idx]
 del logx[idx]
 del logy[idx]
 if colors is not None:
 del colors[idx]
 if "degree" in kwargs:
 degree_distribution(
 network, deg_type=degrees, nodes=nodes, num_bins=deg_bin,
 logx=logx_deg, logy=logy_deg, norm=norm, axis=kwargs["degree"],
 colors=colors_deg, show=False, **new_kwargs)
 else:
 fig, ax = _set_new_plot(
 fignum=fig.number, num_new_plots=1,
 names=['Degree distribution'])
 degree_distribution(
 network, deg_type=degrees, nodes=nodes, num_bins=deg_bin,
 logx=logx_deg, logy=logy_deg, axis=ax[0], colors=colors_deg,
 norm=norm, show=False)
 num_plot += 1

 # plot betweenness if needed
 if "betweenness" in attributes:
 idx = attributes.index("betweenness")
 if "betweenness" in kwargs:
 betweenness_distribution(
 network, btype="node", nodes=nodes, logx=logx[idx],
 logy=logy[idx], axes=kwargs["betweenness"],
 colors=[colors[idx]], norm=norm, show=False, **new_kwargs)
 else:
 fig, axes = _set_new_plot(
 fignum=fig.number, num_new_plots=1,
 names=['Betweenness distribution'])
 betweenness_distribution(
 network, btype="node", nodes=nodes, logx=logx[idx],
 logy=logy[idx], norm=norm, axes=axes, show=False)
 del attributes[idx]
 del num_bins[idx]
 del logx[idx]
 del logy[idx]
 if colors is not None:
 del colors[idx]
 num_plot += 1

 # plot the remaining attributes
 values = node_attributes(network, attributes, nodes=nodes)
 for i, (attr, val) in enumerate(values.items()):
 if attr in kwargs:
 new_kwargs['color'] = colors[i]
 counts, bins = _hist(
 val, num_bins[i], norm, logx[i], attr, kwargs[attr],
 **new_kwargs)
 else:
 fig, ax = _set_new_plot(fignum=fig.number, names=[attr])
 counts, bins = _hist(
 val, num_bins[i], norm, logx[i], attr, ax[0], **kwargs)
 end_attr = attr[1:]
 if nngt._config["use_tex"]:
 end_attr = end_attr.replace("_", "_")
 ax[0].set_title("{}{} distribution for {}".format(
 attr[0].upper(), end_attr, network.name), y=1.05)
 ax[0].set_ylabel("Node count")
 ax[0].set_xlabel(attr[0].upper() + end_attr)
 _set_scale(ax[0], bins, np.min(counts[counts>0]),
 counts.max(), logx[i], logy[i])
 num_plot += 1

 # adjust space, set title, and show
 _format_and_show(fig, num_plot, values, title, show)

[docs]def edge_attributes_distribution(network, attributes, edges=None,
 num_bins='auto', logx=False, logy=False,
 norm=False, title=None, colors=None,
 show=True, **kwargs):
 '''
 Return node `attributes` for a set of `nodes`.

 .. versionadded:: 1.0.3

 Parameters

 network : :class:`~nngt.Graph`
 The graph where the `nodes` belong.
 attributes : str or list
 Attributes which should be returned (e.g. "betweenness", "delay",
 "weight").
 edges : list, optional (default: all edges)
 Edges for which the attributes should be returned.
 num_bins : int or list, optional (default: 'auto')
 Number of bins to plot the distributions. If only one int is provided,
 it is used for all attributes, otherwise a list containing one int per
 attribute in `attributes` is required. Defaults to unsupervised
 Bayesian blocks method.
 logx : bool or list, optional (default: False)
 Use log-spaced bins.
 logy : bool or list, optional (default: False)
 use logscale for the node count.
 '''
 import matplotlib.pyplot as plt
 if not nonstring_container(attributes):
 attributes = [attributes]
 else:
 attributes = [name for name in attributes]

 num_attr = len(attributes)
 num_bins = _format_arg(num_bins, num_attr, 'num_bins')
 colors = _format_arg(colors, num_attr, 'num_bins')
 logx = _format_arg(logx, num_attr, 'logx')
 logy = _format_arg(logy, num_attr, 'logy')
 num_plot = 0

 # kwargs that will not be passed:
 ignore = ["weight", "delay", "betweenness"] + attributes
 new_kwargs = {k: v for k, v in kwargs.items() if k not in ignore}

 fig = plt.figure()
 fig.patch.set_visible(False)

 # plot betweenness if needed
 if "betweenness" in attributes:
 idx = attributes.index("betweenness")
 fig, axes = _set_new_plot(
 fignum=fig.number, num_new_plots=1,
 names=['Betweenness distribution'])
 betweenness_distribution(
 network, btype="edges", edges=edges, logx=logx[idx],
 logy=logy[idx], norm=norm, axes=axes, show=False)

 del attributes[idx]
 del num_bins[idx]
 del logx[idx]
 del logy[idx]

 if colors is not None:
 del colors[idx]

 num_plot += 1

 # plot the remaining attributes
 for i, attr in enumerate(attributes):
 val = network.get_edge_attributes(edges=edges, name=attr)

 if attr in kwargs:
 new_kwargs['color'] = colors[i]
 counts, bins = _hist(
 val, num_bins[i], norm, logx[i], attr, kwargs[attr],
 **new_kwargs)
 else:
 fig, ax = _set_new_plot(fignum=fig.number, names=[attr])

 counts, bins = _hist(
 val, num_bins[i], norm, logx[i], attr, ax[0], **kwargs)

 end_attr = attr[1:]

 if nngt._config["use_tex"]:
 end_attr = end_attr.replace("_", "_")

 ax[0].set_title("{}{} distribution for {}".format(
 attr[0].upper(), end_attr, network.name), y=1.05)
 ax[0].set_ylabel("Node count")
 ax[0].set_xlabel(attr[0].upper() + end_attr)
 _set_scale(ax[0], bins, np.min(counts[counts>0]), counts.max(),
 logx[i], logy[i])
 num_plot += 1

 # adjust space, set title, and show
 _format_and_show(fig, num_plot, attributes, title, show)

[docs]def correlation_to_attribute(network, reference_attribute, other_attributes,
 attribute_type="node", nodes=None, edges=None,
 fig=None, title=None, show=True):
 '''
 For each node plot the value of `reference_attributes` against each of the
 `other_attributes` to check for correlations.

 .. versionchanged :: 2.0
 Added `fig` argument.

 Parameters

 network : :class:`~nngt.Graph`
 The graph where the `nodes` belong.
 reference_attribute : str or array-like
 Attribute which should serve as reference, among:

 * "betweenness"
 * "clustering"
 * "in-degree", "out-degree", "total-degree"
 * "in-strength", "out-strength", "total-strength"
 * "subgraph_centrality"
 * "b2" (requires NEST)
 * "firing_rate" (requires NEST)
 * a custom array of values, in which case one entry per node in `nodes`
 is required.
 other_attributes : str or list
 Attributes that will be compared to the reference.
 attribute_type : str, optional (default: 'node')
 Whether we are dealing with 'node' or 'edge' attributes
 nodes : list, optional (default: all nodes)
 Nodes for which the attributes should be returned.
 edges : list, optional (default: all edges)
 Edges for which the attributes should be returned.
 fig : :class:`matplotlib.figure.Figure`, optional (default: new Figure)
 Figure to which the plot should be added.
 title : str, optional (default: automatic).
 Custom title, use "" to remove the automatic title.
 show : bool, optional (default: True)
 Whether the plot should be displayed immediately.
 '''
 import matplotlib.pyplot as plt

 if not nonstring_container(other_attributes):
 other_attributes = [other_attributes]

 fig = plt.figure() if fig is None else fig
 fig.patch.set_visible(False)

 # get reference data
 ref_data = reference_attribute

 if isinstance(reference_attribute, str):
 if attribute_type == "node":
 ref_data = node_attributes(network, reference_attribute,
 nodes=nodes)
 else:
 ref_data = network.get_edge_attributes(edges=edges,
 name=reference_attribute)
 else:
 reference_attribute = "user defined attribute"

 # plot the remaining attributes
 assert isinstance(other_attributes, (str, list)), \
 "Only attribute names are allowed for `other_attributes`"

 values = {}

 if attribute_type == "node":
 values = node_attributes(network, other_attributes, nodes=nodes)
 else:
 for name in other_attributes:
 values[name] = network.get_edge_attributes(edges=edges, name=name)

 fig, axes = _set_new_plot(fignum=fig.number, names=other_attributes)

 for i, (attr, val) in enumerate(values.items()):
 end_attr = attr[1:]
 end_ref_attr = reference_attribute[1:]

 if nngt._config["use_tex"]:
 end_attr = end_attr.replace("_", "_")
 end_ref_attr = end_ref_attr.replace("_", "_")

 # reference nodes
 axes[i].plot(val, ref_data, ls="", marker="o")
 axes[i].set_xlabel(attr[0].upper() + end_attr)
 axes[i].set_ylabel(reference_attribute[0].upper() + end_ref_attr)
 axes[i].set_title(
 "{}{} vs {}".format(
 reference_attribute[0].upper(), end_ref_attr, attr[0] + \
 end_attr),
 loc='left', x=0., y=1.05)

 fig.suptitle(network.name)

 plt.tight_layout()

 # adjust space, set title, and show
 _format_and_show(fig, 0, values, title, show)

[docs]def compare_population_attributes(network, attributes, nodes=None,
 reference_nodes=None, num_bins='auto',
 reference_color="gray", title=None,
 logx=False, logy=False, show=True, **kwargs):
 '''
 Compare node `attributes` between two sets of nodes. Since number of nodes
 can vary, normalized distributions are used.

 Parameters

 network : :class:`~nngt.Graph`
 The graph where the `nodes` belong.
 attributes : str or list
 Attributes which should be returned, among:
 * "betweenness"
 * "clustering"
 * "in-degree", "out-degree", "total-degree"
 * "subgraph_centrality"
 * "b2" (requires NEST)
 * "firing_rate" (requires NEST)
 nodes : list, optional (default: all nodes)
 Nodes for which the attributes should be returned.
 reference_nodes : list, optional (default: all nodes)
 Reference nodes for which the attributes should be returned in order
 to compare with `nodes`.
 num_bins : int or list, optional (default: 'auto')
 Number of bins to plot the distributions. If only one int is provided,
 it is used for all attributes, otherwize a list containing one int per
 attribute in `attributes` is required. Defaults to unsupervised
 Bayesian blocks method.
 logx : bool or list, optional (default: False)
 Use log-spaced bins.
 logy : bool or list, optional (default: False)
 use logscale for the node count.
 '''
 import matplotlib.pyplot as plt
 if not isinstance(reference_color, str):
 raise InvalidArgument("`reference_color` must be a valid matplotlib "
 "color string.")
 # plot the non reference nodes
 node_attributes_distribution(network, attributes, nodes=nodes,
 num_bins=num_bins, logx=logx, logy=logx,
 norm=True, title=title, show=False, **kwargs)
 # get the last figure and put the axes to a dict
 # (order is degree, betweenness, attributes)
 fig = plt.figure(plt.get_fignums()[-1])
 fig.patch.set_visible(False)
 axes = fig.get_axes()
 ref_kwargs = kwargs.copy()
 ref_kwargs.update({'alpha': 0.5})
 for ax in axes:
 if ax.name == 'Degree distribution':
 ref_kwargs['degree'] = ax
 elif ax.name == 'Betweenness distribution':
 ref_kwargs['betweenness'] = [ax] # expect list
 else:
 ref_kwargs[ax.name] = ax
 node_attributes_distribution(
 network, attributes, nodes=reference_nodes, num_bins=num_bins,
 logx=logx, logy=logx, colors=reference_color, norm=True, title=title,
 show=show, **ref_kwargs)

Histogram

def _hist(values, num_bins, norm, logx, label, axis, **kwargs):
 '''
 Compute and draw the histogram.

 Returns

 counts, bins
 '''
 bins = binning(values, bins=num_bins, log=logx)

 counts, bins = np.histogram(values, bins=bins)

 if norm:
 counts = np.divide(counts, float(np.sum(counts)))

 axis.bar(
 bins[:-1], counts, np.diff(bins), label=label, **kwargs)

 if logx:
 axis.set_xscale("log")

 return counts, bins

Figure management

def _set_new_plot(fignum=None, num_new_plots=1, names=None, sharex=None):
 import matplotlib.pyplot as plt
 # get the figure and compute the new number of rows and cols
 fig = plt.figure(num=fignum)
 num_axes = len(fig.axes) + num_new_plots
 if names is not None:
 num_axes = len(fig.axes) + len(names)
 num_new_plots = len(names)
 num_cols = max(int(np.ceil(np.sqrt(num_axes))), 1)
 ratio = num_axes/float(num_cols)
 num_rows = int(ratio)
 if int(ratio) != int(np.ceil(ratio)):
 num_rows += 1
 # change the geometry
 for i in range(num_axes - num_new_plots):
 fig.axes[i].change_geometry(num_rows, num_cols, i+1)
 lst_new_axes = []
 n_old = num_axes-num_new_plots+1
 for i in range(num_new_plots):
 if fig.axes:
 lst_new_axes.append(
 fig.add_subplot(num_rows, num_cols, n_old+i, sharex=sharex))
 else:
 lst_new_axes.append(fig.add_subplot(num_rows, num_cols, n_old+i))
 if names is not None:
 lst_new_axes[-1].name = names[i]
 return fig, lst_new_axes

def _log_format(y, pos):
 '''
 Needed to move log values by one, so first increment, then decrement
 '''
 # rounding err for 4 so add 0.4 to avoid it
 #~ return '{}'.format(int(np.e*np.e**(y-1) + 0.4)) if y > -1 else 0
 return y

def _set_scale(ax1, xbins, mincounts, maxcounts, logx, logy):
 if logx:
 minposbin = xbins[xbins > 0][0]
 ax1.set_xscale("symlog", linthresh=0.2*minposbin)
 next_power = np.ceil(np.log10(xbins.max()))
 ax1.set_xlim([0.8*xbins.min(), 10**next_power])
 else:
 maxbins, minbins = xbins.max(), xbins.min()
 bin_margin = 0.05*(maxbins - minbins)
 if minbins - bin_margin < ax1.get_xlim()[0]:
 ax1.set_xlim(left=(minbins - bin_margin))
 if maxbins + bin_margin > ax1.get_xlim()[1]:
 ax1.set_xlim(right=(maxbins + bin_margin))

 if logy:
 ax1.set_ylim(0, 2*maxcounts)
 ax1.set_yscale("symlog", linthresh=1)
 else:
 if 1.05*maxcounts > ax1.get_ylim()[1]:
 ax1.set_ylim([0, 1.05*maxcounts])

def _set_ax_lims(ax, maxx, minx, maxy, miny, logx=False, logy=False):
 if ax.has_data():
 xlims = ax.get_xlim()
 ylims = ax.get_ylim()
 if not logx:
 Dx = maxx - minx
 minx = minx - 0.01*Dx
 maxx = maxx + 0.01*Dx
 Dy = maxy - miny
 miny = miny - 0.01*Dy
 maxy = maxy + 0.01*Dy
 else:
 minx /= 1.5
 maxx *= 1.5
 if minx > xlims[0]:
 minx = xlims[0]
 if maxx < xlims[1]:
 maxx = xlims[1]
 if miny > ylims[0]:
 miny = ylims[0]
 if maxy < ylims[1]:
 maxy = ylims[1]
 _set_xlim(ax, maxx, minx, logx)
 _set_ylim(ax, maxy, miny, logy)

def _set_xlim(ax, maxx, minx, log):
 if log:
 ax.set_xscale("log")
 ax.set_xlim([max(minx, 1e-10)/1.5, 1.5*maxx])
 else:
 Dx = maxx - minx
 ax.set_xlim([minx - 0.01*Dx, maxx + 0.01*Dx])

def _set_ylim(ax, maxy, miny, log):
 if log:
 ax.set_yscale("log")
 ax.set_ylim([max(miny, 1e-10)/1.5, 1.5*maxy])
 else:
 Dy = maxy - miny
 ax.set_ylim([miny - 0.01*Dy, maxy + 0.01*Dy])

def _format_and_show(fig, num_plot, values, title, show):
 import matplotlib.pyplot as plt
 num_cols = max(int(np.ceil(np.sqrt(num_plot + len(values)))), 1)
 ratio = (num_plot + len(values)) / float(num_cols)
 num_rows = int(ratio)
 if int(ratio) != int(np.ceil(ratio)):
 num_rows += 1
 #~ plt.subplots_adjust(hspace=num_rows*0.2, wspace=num_cols*0.1, left=0.075,
 #~ right=0.95, top=0.9, bottom=0.075)
 if title is not None:
 fig.suptitle(title)
 if show:
 plt.show()

def _format_arg(arg, num_expected, arg_name):
 if nonstring_container(arg):
 assert len(arg) == num_expected, "One entry per attribute " +\
 "required for `" + arg_name + "`."
 elif arg is not None:
 arg = [arg for _ in range(num_expected)]
 return arg

 Source code for nngt.simulation.nest_activity

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

""" Analyze the activity of a network """

from collections import namedtuple
from copy import deepcopy
import weakref

import nest
import numpy as np

from nngt.lib import InvalidArgument, nonstring_container
from .nest_utils import nest_version, _get_nest_gids

__all__ = [
 "ActivityRecord",
 "activity_types",
 "analyze_raster",
 "get_recording",
]

Finding the various activities

[docs]class ActivityRecord:

 '''
 Class to record the properties of the simulated activity.
 '''

 def __init__(self, spike_data, phases, properties, parameters=None):
 '''
 Initialize the instance using `spike_data` (store proxy to an optional
 `network`) and compute the properties of provided data.

 Parameters

 spike_data : 2D array
 Array of shape (num_spikes, 2), containing the senders on the 1st
 row and the times on the 2nd row.
 phases : dict
 Limits of the different phases in the simulated period.
 properties : dict
 Values of the different properties of the activity (e.g.
 "firing_rate", "IBI"...).
 parameters : dict, optional (default: None)
 Parameters used to compute the phases.

 Note

 The firing rate is computed as num_spikes / total simulation time,
 the period is the sum of an IBI and a bursting period.
 '''
 self._data = spike_data
 self._phases = phases.copy()
 self._properties = properties.copy()
 self.parameters = parameters

[docs] def simplify():
 raise NotImplementedError("Will be implemented soon.")

 @property
 def data(self):
 '''
 Returns the (N, 2) array of (senders, spike times).
 '''
 return self._data

 @property
 def phases(self):
 '''
 Return the phases detected:

 - "bursting" for periods of high activity where a large fraction
 of the network is recruited.
 - "quiescent" for periods of low activity
 - "mixed" for firing rate in between "quiescent" and "bursting".
 - "localized" for periods of high activity but where only a small
 fraction of the network is recruited.

 Note

 See `parameters` for details on the conditions used to
 differenciate these phases.
 '''
 return self._phases

 @property
 def properties(self):
 '''
 Returns the properties of the activity.
 Contains the following entries:

 - "firing_rate": average value in Hz for 1 neuron in the network.
 - "bursting": True if there were bursts of activity detected.
 - "burst_duration", "IBI", "ISI", and "period" in ms, if
 "bursting" is True.
 - "SpB" (Spikes per Burst): average number of spikes per neuron
 during a burst.
 '''
 return self._properties

Analyse activity

[docs]def get_recording(network, record, recorder=None, nodes=None):
 '''
 Return the evolution of some recorded values for each neuron.

 Parameters

 network : :class:`nngt.Network`
 Network for which the activity was simulated.
 record : str or list
 Name of the record(s) to obtain.
 recorder : tuple of ints, optional (default: all multimeters)
 GID of the "spike_detector" objects recording the network activity.
 nodes : array-like, optional (default: all nodes)
 NNGT ids of the nodes for which the recording should be returned.

 Returns

 values : dict of dict of arrays
 Dictionary containing, for each `record`, an M array with the
 recorded values for n-th neuron is stored under entry `n` (integer).
 A `times` entry is also added; it should be the same size for all
 records, otherwise an error will be raised.

 Examples

 After the creation of a :class:`~nngt.Network` called ``net``, use the
 following code: ::

 import nest

 rec, _ = monitor_nodes(
 net.nest_gids, "multimeter", {"record_from": ["V_m"]}, net)
 nest.Simulate(100.)
 recording = nngt.simulation.get_recording(net, "V_m")

 # access the membrane potential of first neuron + the times
 V_m = recording["V_m"][0]
 times = recording["times"]
 '''
 if nodes is None:
 nodes = [network.id_from_nest_gid(n) for n in network.nest_gids]

 gids = _get_nest_gids([network.nest_gids[n] for n in nodes])

 if not nonstring_container(record):
 record = [record]

 values = {rec: {} for rec in record}

 if recorder is None:
 if nest_version == 3:
 recorder = nest.GetNodes(properties={'model': 'multimeter'})
 else:
 recorder = nest.GetNodes((0,), properties={'model': 'multimeter'})

 times = None

 for rec in recorder:
 events = nest.GetStatus(rec, "events")[0]
 senders = events["senders"]

 if times is not None:
 assert times == events["times"], "Different times between the " +\
 "recorders; check the params."

 times = events["times"]
 values["times"] = times[senders == senders[0]]

 for rec_name in record:
 for idx, gid in zip(nodes, gids):
 ids = (senders == senders[gid])

 values[rec_name][idx] = events[rec_name][ids]

 return values

[docs]def activity_types(spike_detector, limits, network=None,
 phase_coeff=(0.5, 10.), mbis=0.5, mfb=0.2, mflb=0.05,
 skip_bursts=0, simplify=False, fignums=[], show=False):
 '''
 Analyze the spiking pattern of a neural network.

 @todo:
 think about inserting t=0. and t=simtime at the beginning and at the
 end of ``times``.

 Parameters

 spike_detector : NEST node(s) (tuple or list of tuples)
 The recording device that monitored the network's spikes.
 limits : tuple of floats
 Time limits of the simulation region which should be studied (in ms).
 network : :class:`~nngt.Network`, optional (default: None)
 Neural network that was analyzed
 phase_coeff : tuple of floats, optional (default: (0.2, 5.))
 A phase is considered 'bursting' when the interspike between all spikes
 that compose it is smaller than ``phase_coeff[0] / avg_rate`` (where
 ``avg_rate`` is the average firing rate), 'quiescent' when it is
 greater that ``phase_coeff[1] / avg_rate``, 'mixed' otherwise.
 mbis : float, optional (default: 0.5)
 Maximum interspike interval allowed for two spikes to be considered in
 the same burst (in ms).
 mfb : float, optional (default: 0.2)
 Minimal fraction of the neurons that should participate for a burst to
 be validated (i.e. if the interspike is smaller that the limit BUT the
 number of participating neurons is too small, the phase will be
 considered as 'localized').
 mflb : float, optional (default: 0.05)
 Minimal fraction of the neurons that should participate for a local
 burst to be validated (i.e. if the interspike is smaller that the limit
 BUT the number of participating neurons is too small, the phase will be
 considered as 'mixed').
 skip_bursts : int, optional (default: 0)
 Skip the `skip_bursts` first bursts to consider only the permanent
 regime.
 simplify: bool, optional (default: False)
 If ``True``, 'mixed' phases that are contiguous to a burst are
 incorporated to it.
 return_steps : bool, optional (default: False)
 If ``True``, a second dictionary, `phases_steps` will also be returned.
 @todo: not implemented yet
 fignums : list, optional (default: [])
 Indices of figures on which the periods can be drawn.
 show : bool, optional (default: False)
 Whether the figures should be displayed.

 Note

 Effects of `skip_bursts` and `limits[0]` are cumulative: the `limits[0]`
 first milliseconds are ignored, then the `skip_bursts` first bursts of the
 remaining activity are ignored.

 Returns

 phases : dict
 Dictionary containing the time intervals (in ms) for all four phases
 (`bursting', `quiescent', `mixed', and `localized`) as lists.
 E.g: ``phases["bursting"]`` could give ``[[123.5,334.2],
 [857.1,1000.6]]``.
 '''
 # check if there are several recorders
 senders, times = [], []

 if True in nest.GetStatus(spike_detector, "to_file"):
 for fpath in nest.GetStatus(spike_detector, "record_to"):
 data = _get_data(fpath)
 times.extend(data[:, 1])
 senders.extend(data[:, 0])
 else:
 for events in nest.GetStatus(spike_detector, "events"):
 times.extend(events["times"])
 senders.extend(events["senders"])

 idx_sort = np.argsort(times)
 times = np.array(times)[idx_sort]
 senders = np.array(senders)[idx_sort]

 # compute phases and properties
 data = np.array((senders, times))

 phases, fr = _analysis(times, senders, limits, network=network,
 phase_coeff=phase_coeff, mbis=mbis, mfb=mfb, mflb=mflb,
 simplify=simplify)

 properties = _compute_properties(data, phases, fr, skip_bursts)

 kwargs = {
 "limits": limits,
 "phase_coeff": phase_coeff,
 "mbis": mbis,
 "mfb": mfb,
 "mflb": mflb,
 "simplify": simplify
 }

 # plot if required
 if show:
 _plot_phases(phases, fignums)

 return ActivityRecord(data, phases, properties, kwargs)

[docs]def analyze_raster(raster=None, limits=None, network=None,
 phase_coeff=(0.5, 10.), mbis=0.5, mfb=0.2, mflb=0.05,
 skip_bursts=0, skip_ms=0., simplify=False, fignums=[],
 show=False):
 '''
 Return the activity types for a given raster.

 Parameters

 raster : array-like (N, 2) or str
 Either an array containing the ids of the spiking neurons on the first
 column, then the corresponding times on the second column, or the path
 to a NEST .gdf recording.
 limits : tuple of floats
 Time limits of the simulation regrion which should be studied (in ms).
 network : :class:`~nngt.Network`, optional (default: None)
 Network on which the recorded activity was simulated.
 phase_coeff : tuple of floats, optional (default: (0.2, 5.))
 A phase is considered 'bursting' when the interspike between all spikes
 that compose it is smaller than ``phase_coeff[0] / avg_rate`` (where
 ``avg_rate`` is the average firing rate), 'quiescent' when it is
 greater that ``phase_coeff[1] / avg_rate``, 'mixed' otherwise.
 mbis : float, optional (default: 0.5)
 Maximum interspike interval allowed for two spikes to be considered in
 the same burst (in ms).
 mfb : float, optional (default: 0.2)
 Minimal fraction of the neurons that should participate for a burst to
 be validated (i.e. if the interspike is smaller that the limit BUT the
 number of participating neurons is too small, the phase will be
 considered as 'localized').
 mflb : float, optional (default: 0.05)
 Minimal fraction of the neurons that should participate for a local
 burst to be validated (i.e. if the interspike is smaller that the limit
 BUT the number of participating neurons is too small, the phase will be
 considered as 'mixed').
 skip_bursts : int, optional (default: 0)
 Skip the `skip_bursts` first bursts to consider only the permanent
 regime.
 simplify: bool, optional (default: False)
 If ``True``, 'mixed' phases that are contiguous to a burst are
 incorporated to it.
 fignums : list, optional (default: [])
 Indices of figures on which the periods can be drawn.
 show : bool, optional (default: False)
 Whether the figures should be displayed.

 Note

 Effects of `skip_bursts` and `limits[0]` are cumulative: the
 `limits[0]` first milliseconds are ignored, then the `skip_bursts`
 first bursts of the remaining activity are ignored.

 Returns

 activity : ActivityRecord
 Object containing the phases and the properties of the activity
 from these phases.
 '''
 data = _get_data(raster) if isinstance(raster, str) else raster

 if data.any():
 if limits is None:
 limits = [np.min(data[:, 1]), np.max(data[:, 1])]

 kwargs = {
 "limits": limits,
 "phase_coeff": phase_coeff,
 "mbis": mbis,
 "mfb": mfb,
 "mflb": mflb,
 "simplify": simplify
 }

 # compute phases and properties
 phases, fr = _analysis(data[:, 1], data[:, 0], limits, network=network,
 phase_coeff=phase_coeff, mbis=mbis, mfb=mfb, mflb=mflb,
 simplify=simplify)

 properties = _compute_properties(data.T, phases, fr, skip_bursts)

 # plot if required
 if show:
 import matplotlib.pyplot as plt

 if fignums:
 _plot_phases(phases, fignums)
 else:
 fig, ax = plt.subplots()
 ax.scatter(data[:, 1], data[:, 0])
 _plot_phases(phases, [fig.number])

 return ActivityRecord(data, phases, properties, kwargs)

 return ActivityRecord(data, {}, {})

Tools

def _get_data(source):
 '''
 Returns the (times, senders) array.

 Parameters

 source : list or str
 Indices of spike detectors or path to the .gdf files.

 Returns

 data : 2D array of shape (N, 2)
 '''
 data = [[],[]]

 is_string = isinstance(source, str)

 if is_string:
 source = [source]
 elif nonstring_container(source) and isinstance(source[0], str):
 is_string = True

 if is_string:
 for path in source:
 tmp = np.loadtxt(path)
 data[0].extend(tmp[:, 0])
 data[1].extend(tmp[:, 1])
 else:
 source_shape = np.shape(np.squeeze(source))

 if len(source_shape) == 2:
 # source is directly the data
 if source_shape[0] == 2 and source_shape[1] != 2:
 return np.array(source).T
 else:
 return np.array(source)
 else:
 # source contains gids
 source = _get_nest_gids(source)
 events = None

 if nonstring_container(source[0]):
 events = [nest.GetStatus(gid, "events")[0] for gid in source]
 else:
 events = nest.GetStatus(source, "events")
 for ev in events:
 data[0].extend(ev["senders"])
 data[1].extend(ev["times"])

 idx_sort = np.argsort(data[1])

 return np.array(data)[:, idx_sort].T

def _find_phases(times, phases, lim_burst, lim_quiet, simplify):
 '''
 Find the time limits of the different phases.
 '''
 diff = np.diff(times).tolist()[::-1]
 i = 0
 previous = {"bursting": -2, "mixed": -2, "quiescent": -2}

 while diff:
 tau = diff.pop()
 while True:
 if tau < lim_burst: # bursting phase
 if previous["bursting"] == i-1:
 phases["bursting"][-1][1] = times[i+1]
 else:
 if simplify and previous["mixed"] == i-1:
 start_mixed = phases["mixed"][-1][0]
 phases["bursting"].append([start_mixed, times[i+1]])
 del phases["mixed"][-1]
 else:
 phases["bursting"].append([times[i], times[i+1]])
 previous["bursting"] = i
 i+=1
 break
 elif tau > lim_quiet:
 if previous["quiescent"] == i-1:
 phases["quiescent"][-1][1] = times[i+1]
 else:
 phases["quiescent"].append([times[i], times[i+1]])
 previous["quiescent"] = i
 i+=1
 break
 else:
 if previous["mixed"] == i-1:
 phases["mixed"][-1][1] = times[i+1]
 previous["mixed"] = i
 else:
 if simplify and previous["bursting"] == i-1:
 phases["bursting"][-1][1] = times[i+1]
 previous["bursting"] = i
 else:
 phases["mixed"].append([times[i], times[i+1]])
 previous["mixed"] = i
 i+=1
 break

def _check_burst_size(phases, senders, times, network, mflb, mfb):
 '''
 Check that bursting periods involve at least a fraction mfb of the neurons.
 '''
 transfer, destination = [], {}
 n = len(set(senders)) if network is None else network.node_nb()
 for i,burst in enumerate(phases["bursting"]):
 idx_start = np.where(times==burst[0])[0][0]
 idx_end = np.where(times==burst[1])[0][0]
 participating_frac = len(set(senders[idx_start:idx_end])) / float(n)
 if participating_frac < mflb:
 transfer.append(i)
 destination[i] = "mixed"
 elif participating_frac < mfb:
 transfer.append(i)
 destination[i] = "localized"
 for i in transfer[::-1]:
 phase = phases["bursting"].pop(i)
 phases[destination[i]].insert(0, phase)
 remove = []
 i = 0
 while i < len(phases['mixed']):
 mixed = phases['mixed'][i]
 j=i+1
 for span in phases['mixed'][i+1:]:
 if span[0] == mixed[1]:
 mixed[1] = span[1]
 remove.append(j)
 elif span[1] == mixed[0]:
 mixed[0] = span[0]
 remove.append(j)
 j+=1
 i+=1
 remove = list(set(remove))
 remove.sort()
 for i in remove[::-1]:
 del phases["mixed"][i]

def _analysis(times, senders, limits, network=None,
 phase_coeff=(0.5, 10.), mbis=0.5, mfb=0.2, mflb=0.05,
 simplify=False):
 # prepare the phases and check the validity of the data
 phases = {
 "bursting": [],
 "mixed": [],
 "quiescent": [],
 "localized": []
 }
 num_spikes, avg_rate = len(times), 0.
 if num_spikes:
 num_neurons = (len(np.unique(senders)) if network is None
 else network.node_nb())
 # set the studied region
 if limits[0] >= times[0]:
 idx_start = np.where(times >= limits[0])[0][0]
 times = times[idx_start:]
 senders = senders[idx_start:]
 if limits[1] <= times[-1]:
 idx_end = np.where(times <= limits[1])[0][-1]
 times = times[:idx_end]
 senders = senders[:idx_end]
 # get the average firing rate to differenciate the phases
 simtime = limits[1] - limits[0]
 lim_burst, lim_quiet = 0., 0.
 avg_rate = num_spikes / float(simtime)
 lim_burst = max(phase_coeff[0] / avg_rate, mbis)
 lim_quiet = min(phase_coeff[1] / avg_rate, 10.)
 # find the phases
 _find_phases(times, phases, lim_burst, lim_quiet, simplify)
 _check_burst_size(phases, senders, times, network, mflb, mfb)
 avg_rate *= 1000. / float(num_neurons)
 return phases, avg_rate

def _compute_properties(data, phases, fr, skip_bursts):
 '''
 Compute the properties from the spike times and phases.

 Parameters

 data : 2D array, shape (N, 2)
 Spike times and senders.
 phases : dict
 The phases.
 fr : double
 Firing rate.

 Returns

 prop : dict
 Properties of the activity. Contains the following pairs:
 - "firing_rate": average value in Hz for 1 neuron in the network.
 - "bursting": True if there were bursts of activity detected.
 - "burst_duration", "ISI", and "IBI" in ms, if "bursting" is True.
 - "SpB": average number of spikes per burst for one neuron.
 '''
 prop = {}
 times = data[1, :]
 # firing rate (in Hz, normalized for 1 neuron)
 prop["firing_rate"] = fr
 num_bursts = len(phases["bursting"])
 init_val = 0. if num_bursts > skip_bursts else np.NaN
 if num_bursts:
 prop["bursting"] = True
 prop.update({
 "burst_duration": init_val,
 "IBI": init_val,
 "ISI": init_val,
 "SpB": init_val,
 "period": init_val})
 else:
 prop["bursting"] = False
 for i, burst in enumerate(phases["bursting"]):
 if i >= skip_bursts:
 # burst_duration
 prop["burst_duration"] += burst[1] - burst[0]
 # IBI
 if i > 0:
 end_older_burst = phases["bursting"][i-1][1]
 prop["IBI"] += burst[0]-end_older_burst
 # get num_spikes inside the burst, divide by num_neurons
 idxs = np.where((times >= burst[0])*(times <= burst[1]))[0]
 num_spikes = len(times[idxs])
 num_neurons = len(set(data[0, :][idxs]))
 if num_neurons:
 prop["SpB"] += num_spikes / float(num_neurons)
 # ISI
 if num_spikes:
 prop["ISI"] += num_neurons * (burst[1] - burst[0])\
 / float(num_spikes)
 for key in prop.keys():
 if key not in ("bursting", "firing_rate") and num_bursts > skip_bursts:
 prop[key] /= float(num_bursts - skip_bursts)

 if num_bursts > skip_bursts:
 prop["period"] = prop["IBI"] + prop["burst_duration"]

 if num_bursts and prop["SpB"] < 2.:
 prop["ISI"] = np.NaN

 return prop

def _plot_phases(phases, fignums):
 import matplotlib.pyplot as plt
 colors = ('r', 'orange', 'g', 'b')
 names = ('bursting', 'mixed', 'localized', 'quiescent')
 for fignum in fignums:
 fig = plt.figure(fignum)
 for ax in fig.axes:
 for phase, color in zip(names, colors):
 for span in phases[phase]:
 ax.axvspan(span[0], span[1], facecolor=color,
 alpha=0.2)
 plt.show()

 Source code for nngt.simulation.nest_graph

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
nest_graph.py
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

import nest
import numpy as np
import scipy.sparse as ssp
from scipy.optimize import root
from scipy.signal import argrelmax, argrelmin

import nngt
from nngt.lib import InvalidArgument, nonstring_container, WEIGHT, DELAY
from nngt.lib.sorting import _sort_groups
from nngt.lib.test_functions import mpi_checker
from nngt.lib.graph_helpers import _get_syn_param
from .nest_utils import nest_version, _get_nest_gids

__all__ = [
 'make_nest_network',
 'get_nest_adjacency',
 'reproducible_weights'
]

Topology

[docs]@mpi_checker()
def make_nest_network(network, send_only=None, weights=True):
 '''
 Create a new network which will be filled with neurons and
 connector objects to reproduce the topology from the initial network.

 .. versionchanged:: 0.8
 Added `send_only` parameter.

 Parameters

 network: :class:`nngt.Network` or :class:`nngt.SpatialNetwork`
 the network we want to reproduce in NEST.
 send_only : int, str, or list of str, optional (default: None)
 Restrict the nodes that are created in NEST to either inhibitory or
 excitatory neurons `send_only` :math:`\in \{ 1, -1\}` to a group or a
 list of groups.
 weights : bool or str, optional (default: binary edges)
 Whether edge weights should be considered; if ``None`` or ``False``
 then use binary edges; if ``True``, uses the 'weight' edge attribute,
 otherwise uses any valid edge attribute required.

 Returns

 gids : tuple (nodes in NEST)
 GIDs of the neurons in the network.
 '''
 gids = []
 pop = network.population

 send = list(network.population.keys())

 if send_only in (-1, 1):
 send = [g for g in send if pop[g].neuron_type == send_only]
 elif isinstance(send_only, str):
 send = [pop[send_only]]
 elif nonstring_container(send_only):
 send = [g for g in send_only]

 send = [g for g in send if pop[g].ids]

 # link NEST Gids to nngt.Network ids as neurons are created
 num_neurons = network.node_nb()
 ia_nngt_ids = np.full(num_neurons, -1, dtype=int)
 ia_nest_gids = np.full(num_neurons, -1, dtype=int)
 ia_nngt_nest = np.full(num_neurons, -1, dtype=int)
 current_size = 0

 for name in send:
 group = pop[name]
 group_size = len(group.ids)

 if group_size:
 ia_nngt_ids[current_size:current_size + group_size] = group.ids

 # clean up neuron_param dict, separate scalar and non-scalar
 defaults = nest.GetDefaults(group.neuron_model)
 scalar_param = {}
 ns_param = {}

 for key, val in group.neuron_param.items():
 if key in defaults and key != "model":
 if nonstring_container(val):
 ns_param[key] = val
 else:
 scalar_param[key] = val

 # create neurons:
 gids_tmp = nest.Create(group.neuron_model, group_size,
 scalar_param, _warn=False)

 # set non-scalar properties
 for k, v in ns_param.items():
 nest.SetStatus(gids_tmp, k, v, _warn=False)

 # create ids
 idx_nest = ia_nngt_ids[
 np.arange(current_size, current_size + group_size)]

 ia_nest_gids[current_size:current_size + group_size] = gids_tmp
 ia_nngt_nest[idx_nest] = gids_tmp
 current_size += group_size
 gids.extend(gids_tmp)

 # conversions ids/gids
 network.nest_gids = ia_nngt_nest
 network._id_from_nest_gid = {
 gid: idx for (idx, gid) in zip(ia_nngt_ids, ia_nest_gids)
 }

 # get all properties as scipy.sparse.csr matrices
 csr_weights = network.adjacency_matrix(types=False, weights=weights)
 csr_delays = network.adjacency_matrix(types=False, weights=DELAY)

 cspec = 'one_to_one'

 num_conn = 0

 for src_name in send:
 src_group = pop[src_name]
 syn_sign = src_group.neuron_type
 # local connectivity matrix and offset to correct neuron id
 local_csr = csr_weights[src_group.ids, :]
 assert local_csr.shape[1] == network.node_nb()
 arr_idx = np.sort(src_group.ids).astype(int)

 if len(src_group.ids) > 0 and pop.syn_spec is not None:
 # check whether custom synapses should be used
 local_tgt_names = [name for name in send if pop[name].ids]

 for tgt_name in send:
 tgt_group = pop[tgt_name]
 # get list of targets for each
 arr_tgt_idx = np.sort(tgt_group.ids).astype(int)
 keep = local_csr[:, arr_tgt_idx].nonzero()
 local_tgt_ids = arr_tgt_idx[keep[1]]
 local_src_ids = arr_idx[keep[0]]
 if len(local_tgt_ids) and len(local_src_ids):
 # get the synaptic parameters
 syn_spec = _get_syn_param(
 src_name, src_group, tgt_name, tgt_group, pop.syn_spec)
 # using A1 to get data from matrix
 if weights not in {None, False}:
 syn_spec[WEIGHT] = syn_sign *\
 csr_weights[local_src_ids, local_tgt_ids].A1
 else:
 syn_spec[WEIGHT] = np.repeat(syn_sign, len(tgt_ids))

 syn_spec[DELAY] = \
 csr_delays[local_src_ids, local_tgt_ids].A1

 num_conn += len(local_src_ids)

 # check backend
 with_mpi = nngt.get_config("mpi")
 if nngt.get_config("backend") == "nngt" and with_mpi:
 comm = nngt.get_config("mpi_comm")
 for i in range(comm.Get_size()):
 sources = \
 comm.bcast(network.nest_gids[local_src_ids], i)
 targets = \
 comm.bcast(network.nest_gids[local_tgt_ids], i)
 sspec = comm.bcast(syn_spec, i)
 nest.Connect(sources, targets, syn_spec=sspec,
 conn_spec=cspec, _warn=False)
 comm.Barrier()
 else:
 nest.Connect(
 network.nest_gids[local_src_ids],
 network.nest_gids[local_tgt_ids],
 syn_spec=syn_spec, conn_spec=cspec, _warn=False)

 elif len(src_group.ids) > 0:
 # get NEST gids of sources and targets for each edge
 src_ids = network.nest_gids[local_csr.nonzero()[0] + min_sidx]
 tgt_ids = network.nest_gids[local_csr.nonzero()[1]]

 # prepare weights
 syn_spec = {
 WEIGHT: np.repeat(syn_sign, len(src_ids)).astype(float)
 }

 if weights not in {None, False}:
 syn_spec[WEIGHT] *= csr_weights[src_group.ids, :].data

 syn_spec[DELAY] = csr_delays[src_group.ids, :].data

 nest.Connect(src_ids, tgt_ids, syn_spec=syn_spec, conn_spec=cspec,
 _warn=False)

 # tell the populaton that the network it describes was sent to NEST
 network.population._sent_to_nest()

 return tuple(ia_nest_gids[:current_size])

[docs]def get_nest_adjacency(id_converter=None):
 '''
 Get the adjacency matrix describing a NEST network.

 Parameters

 id_converter : dict, optional (default: None)
 A dictionary which maps NEST gids to the desired neurons ids.

 Returns

 mat_adj : :class:`~scipy.sparse.lil_matrix`
 Adjacency matrix of the network.
 '''
 gids = (nest.GetNodes()[0] if nest_version == 2
 else np.asarray(nest.GetNodes()))

 n = len(gids)

 mat_adj = ssp.lil_matrix((n,n))

 if id_converter is None:
 id_converter = {idx: i for i, idx in enumerate(gids)}

 for i in range(n):
 src = id_converter[gids[i]]
 connections = nest.GetConnections(source=(gids[i],))
 info = nest.GetStatus(connections)
 for dic in info:
 mat_adj.rows[src].append(id_converter[dic['target']])
 mat_adj.data[src].append(dic[WEIGHT])

 return mat_adj

Weights

[docs]def reproducible_weights(weights, neuron_model, di_param={}, timestep=0.05,
 simtime=50., num_bins=1000, log=False):
 '''
 Find the values of the connection weights that will give PSP responses of
 `min_weight` and `max_weight` in mV.

 Parameters

 weights : list of floats
 Exact desired synaptic weights.
 neuron_model : string
 Name of the model used.
 di_param : dict, optional (default: {})
 Parameters of the model, default parameters if not supplied.
 timestep : float, optional (default: 0.01)
 Timestep of the simulation in ms.
 simtime : float, optional (default: 10.)
 Simulation time in ms (default: 10).
 num_bins : int, optional (default: 10000)
 Number of bins used to discretize the exact synaptic weights.
 log : bool, optional (default: False)
 Whether bins should use a logarithmic scale.

 Note

 If the parameters used are not the default ones, they MUST be provided,
 otherwise the resulting weights will likely be WRONG.
 '''
 min_weight = np.min(weights)
 max_weight = np.max(weights)

 # get corrected weights
 min_corr, max_corr = _find_extremal_weights(
 min_weight, max_weight, neuron_model, di_param, timestep=timestep,
 simtime=simtime)

 # bin them
 bins = None

 if log:
 log_min = np.log10(min_corr)
 log_max = np.log10(max_corr)
 bins = np.logspace(log_min, log_max, num_bins)
 else:
 bins = np.linspace(min_corr, max_corr, num_bins)

 binned_weights = _get_psp_list(
 bins, neuron_model, di_param, timestep, simtime)

 idx_binning = np.digitize(weights, binned_weights)

 return bins[idx_binning]

Tools

def _value_psp(weight, neuron_model, di_param, timestep, simtime):
 nest.ResetKernel(_warn=False)
 nest.SetKernelStatus({"resolution": timestep})

 # create neuron and recorder
 neuron = nest.Create(neuron_model, params=di_param, _warn=False)
 V_rest = nest.GetStatus(neuron)[0]["E_L"]
 nest.SetStatus(neuron, {"V_m": V_rest}, _warn=False)
 vm = nest.Create("voltmeter", params={"interval": timestep}, _warn=False)
 nest.Connect(vm, neuron, _warn=False)
 # send the initial spike
 sg = nest.Create(
 "spike_generator", params={'spike_times': [timestep],
 'spike_weights': weight},
 _warn=False)

 nest.Connect(sg, neuron, _warn=False)
 nest.Simulate(simtime)

 # get the max and its time
 dvm = nest.GetStatus(vm)[0]
 da_voltage = dvm["events"]["V_m"]
 idx = np.argmax(da_voltage)

 if idx == len(da_voltage - 1):
 raise InvalidArgument("simtime too short: PSP maximum is out of range")
 else:
 val = da_voltage[idx] - V_rest
 return val

def _find_extremal_weights(min_weight, max_weight, neuron_model, di_param={},
 precision=0.1, timestep=0.01, simtime=10.):
 '''
 Find the values of the connection weights that will give PSP responses of
 `min_weight` and `max_weight` in mV.

 Parameters

 min_weight : float
 Minimal weight.
 max_weight : float
 Maximal weight.
 neuron_model : string
 Name of the model used.
 di_param : dict, optional (default: {})
 Parameters of the model, default parameters if not supplied.
 precision : float, optional (default : -1.)
 Precision with which the result should be obtained. If the value is
 equal to or smaller than zero, it will default to 0.1% of the value.
 timestep : float, optional (default: 0.01)
 Timestep of the simulation in ms.
 simtime : float, optional (default: 10.)
 Simulation time in ms (default: 10).

 Note

 If the parameters used are not the default ones, they MUST be provided,
 otherwise the resulting weights will likely be WRONG.
 '''
 # define the function for root finding
 def _func_min(weight):
 val = _value_psp(weight, neuron_model, di_param, timestep, simtime)
 return val - min_weight
 def _func_max(weight):
 val = _value_psp(weight, neuron_model, di_param, timestep, simtime)
 return val - max_weight
 # @todo: find highest and lowest value that result in spike emission
 # get root
 min_w = root(_func_min, min_weight, tol=0.1*min_weight/100.).x[0]
 max_w = root(_func_max, max_weight, tol=0.1*max_weight/100.).x[0]
 return min_w, max_w

def _get_psp_list(bins, neuron_model, di_param, timestep, simtime):
 '''
 Return the list of effective weights from a list of NEST connection
 weights.
 '''
 nest.ResetKernel(_warn=False)
 nest.SetKernelStatus({"resolution": timestep})
 # create neuron and recorder
 neuron = nest.Create(neuron_model, params=di_param, _warn=False)
 vm = nest.Create("voltmeter", params={"interval": timestep}, _warn=False)
 nest.Connect(vm, neuron, _warn=False)
 # send the spikes
 times = [timestep + n*simtime for n in range(len(bins))]
 sg = nest.Create(
 "spike_generator", params={'spike_times': times,
 'spike_weights': bins},
 _warn=False)
 nest.Connect(sg, neuron, _warn=False)
 nest.Simulate((len(bins)+1)*simtime)
 # get the max and its time
 dvm = nest.GetStatus(vm)[0]
 da_voltage = dvm["events"]["V_m"]
 da_times = dvm["events"]["times"]
 da_max_psp = da_voltage[argrelmax(da_voltage)]
 da_min_psp = da_voltage[argrelmin(da_voltage)]
 da_max_psp -= da_min_psp
 if len(bins) != len(da_max_psp):
 raise InvalidArgument("simtime too short: all PSP maxima are not in "
 "range.")
 else:
 return da_max_psp

 Source code for nngt.simulation.nest_plot

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

nest_plot.py

This file is part of the NNGT module
Distributed as a free software, in the hope that it will be useful, under the
terms of the GNU General Public License.

""" Utility functions to plot NEST simulated activity """

import itertools
import logging

from matplotlib.colors import ColorConverter
import numpy as np
import nest

import nngt

from nngt.analysis import total_firing_rate
from nngt.lib import InvalidArgument, nonstring_container, is_integer
from nngt.lib.sorting import _sort_groups, _sort_neurons
from nngt.lib.logger import _log_message
from nngt.plot import palette_discrete, markers
from nngt.plot.plt_properties import _set_new_plot, _set_ax_lims

logger = logging.getLogger(__name__)

Plotting the activity

[docs]def plot_activity(gid_recorder=None, record=None, network=None, gids=None,
 axis=None, show=False, limits=None, histogram=False,
 title=None, fignum=None, label=None, sort=None,
 average=False, normalize=1., decimate=None, transparent=True,
 kernel_center=0., kernel_std=None, resolution=None,
 cut_gaussian=5., **kwargs):
 '''
 Plot the monitored activity.

 .. versionchanged:: 1.2
 Switched `hist` to `histogram` and default value to False.

 .. versionchanged:: 1.0.1
 Added `axis` parameter, restored missing `fignum` parameter.

 Parameters

 gid_recorder : tuple or list of tuples, optional (default: None)
 The gids of the recording devices. If None, then all existing
 "spike_detector"s are used.
 record : tuple or list, optional (default: None)
 List of the monitored variables for each device. If `gid_recorder` is
 None, record can also be None and only spikes are considered.
 network : :class:`~nngt.Network` or subclass, optional (default: None)
 Network which activity will be monitored.
 gids : tuple, optional (default: None)
 NEST gids of the neurons which should be monitored.
 axis : matplotlib axis object, optional (default: new one)
 Axis that should be use to plot the activity. This takes precedence
 over `fignum`.
 show : bool, optional (default: False)
 Whether to show the plot right away or to wait for the next plt.show().
 histogram : bool, optional (default: False)
 Whether to display the histogram when plotting spikes rasters.
 limits : tuple, optional (default: None)
 Time limits of the plot (if not specified, times of first and last
 spike for raster plots).
 title : str, optional (default: None)
 Title of the plot.
 fignum : int, or dict, optional (default: None)
 Plot the activity on an existing figure (from ``figure.number``). This
 parameter is ignored if `axis` is provided.
 label : str or list, optional (default: None)
 Add labels to the plot (one per recorder).
 sort : str or list, optional (default: None)
 Sort neurons using a topological property ("in-degree", "out-degree",
 "total-degree" or "betweenness"), an activity-related property
 ("firing_rate" or neuronal property) or a user-defined list of sorted
 neuron ids. Sorting is performed by increasing value of the `sort`
 property from bottom to top inside each group.
 normalize : float or list, optional (default: None)
 Normalize the recorded results by a given float. If a list is provided,
 there should be one entry per voltmeter or multimeter in the recorders.
 If the recording was done through `monitor_groups`, the population can
 be passed to normalize the data by the nuber of nodes in each group.
 decimate : int or list of ints, optional (default: None)
 Represent only a fraction of the spiking neurons; only one neuron in
 `decimate` will be represented (e.g. setting `decimate` to 5 will lead
 to only 20% of the neurons being represented). If a list is provided,
 it must have one entry per NeuralGroup in the population.
 kernel_center : float, optional (default: 0.)
 Temporal shift of the Gaussian kernel, in ms (for the histogram).
 kernel_std : float, optional (default: 0.5% of simulation time)
 Characteristic width of the Gaussian kernel (standard deviation) in ms
 (for the histogram).
 resolution : float or array, optional (default: `0.1*kernel_std`)
 The resolution at which the firing rate values will be computed.
 Choosing a value smaller than `kernel_std` is strongly advised.
 If resolution is an array, it will be considered as the times were the
 firing rate should be computed (for the histogram).
 cut_gaussian : float, optional (default: 5.)
 Range over which the Gaussian will be computed (for the histogram).
 By default, we consider the 5-sigma range. Decreasing this value will
 increase speed at the cost of lower fidelity; increasing it with
 increase the fidelity at the cost of speed.
 **kwargs : dict
 "color" and "alpha" values can be overriden here.

 Warning

 Sorting with "firing_rate" only works if NEST gids form a continuous
 integer range.

 Returns

 lines : list of lists of :class:`matplotlib.lines.Line2D`
 Lines containing the data that was plotted, grouped by figure.
 '''
 import matplotlib.pyplot as plt
 lst_rec, lst_labels, lines, axes, labels = [], [], {}, {}, {}

 # normalize recorders and recordables
 if gid_recorder is not None:
 assert record is not None, "`record` must also be provided."
 if len(record) != len(gid_recorder):
 raise InvalidArgument('`record` must either be the same for all '
 'recorders, or contain one entry per '
 'recorder in `gid_recorder`')
 for rec in gid_recorder:
 if isinstance(gid_recorder[0], tuple):
 lst_rec.append(rec[0])
 else:
 lst_rec.append(rec)
 else:
 lst_rec = nest.GetNodes(
 (0,), properties={'model': 'spike_detector'})[0]
 record = tuple("spikes" for _ in range(len(lst_rec)))

 # get gids and groups
 gids = network.nest_gids if (gids is None and network is not None) \
 else gids

 if gids is None:
 gids = []
 for rec in lst_rec:
 gids.extend(nest.GetStatus([rec])[0]["events"]["senders"])
 gids = np.unique(gids)

 num_group = 1 if network is None else len(network.population)
 num_lines = max(num_group, len(lst_rec))

 # sorting
 sorted_neurons = np.array([])

 if len(gids):
 sorted_neurons = np.arange(
 np.max(gids) + 1).astype(int) - np.min(gids) + 1

 attr = None

 if sort is not None:
 assert network is not None, "`network` is required for sorting."
 if nonstring_container(sort):
 attr = sort
 sorted_neurons = _sort_neurons(attr, gids, network)
 sort = "user defined sort"
 else:
 data = None
 if sort.lower() in ("firing_rate", "b2"): # get senders
 data = [[], []]
 for rec in lst_rec:
 info = nest.GetStatus([rec])[0]
 if str(info["model"]) == "spike_detector":
 data[0].extend(info["events"]["senders"])
 data[1].extend(info["events"]["times"])
 data = np.array(data).T
 sorted_neurons, attr = _sort_neurons(
 sort, gids, network, data=data, return_attr=True)
 elif network is not None and network.is_spatial():
 sorted_neurons, attr = _sort_neurons(
 "space", gids, network, data=None, return_attr=True)

 # spikes plotting
 colors = palette_discrete(np.linspace(0, 1, num_lines))
 num_raster, num_detec, num_meter = 0, 0, 0
 fignums = fignum if isinstance(fignum, dict) else {}
 decim = []
 if decimate is None:
 decim = [None for _ in range(num_lines)]
 elif is_integer(decimate):
 decim = [decimate for _ in range(num_lines)]
 elif nonstring_container(decimate):
 assert len(decimate) == num_lines, "`decimate` should have one " +\
 "entry per plot."
 decim = decimate
 else:
 raise AttributeError(
 "`decimate` must be either an int or a list of `int`.")

 # set labels
 if label is None:
 lst_labels = [None for _ in range(len(lst_rec))]
 else:
 if isinstance(label, str):
 lst_labels = [label]
 else:
 lst_labels = label
 if len(label) != len(lst_rec):
 _log_message(logger, "WARNING",
 'Incorrect length for `label`: expecting {} but got '
 '{}.\nIgnoring.'.format(len(lst_rec), len(label)))
 lst_labels = [None for _ in range(len(lst_rec))]

 datasets = []
 max_time = 0.

 for rec in lst_rec:
 info = nest.GetStatus([rec])[0]

 if len(info["events"]["times"]):
 max_time = max(max_time, np.max(info["events"]["times"]))

 datasets.append(info)

 if kernel_std is None:
 kernel_std = max_time*0.005

 if resolution is None:
 resolution = 0.5*kernel_std

 # plot
 for info, var, lbl in zip(datasets, record, lst_labels):
 fnum = fignums.get(info["model"], fignum)
 if info["model"] not in labels:
 labels[info["model"]] = []
 lines[info["model"]] = []

 if str(info["model"]) == "spike_detector":
 if "spike_detector" in axes:
 axis = axes["spike_detector"]
 c = colors[num_raster]
 times, senders = info["events"]["times"], info["events"]["senders"]
 sorted_ids = sorted_neurons[senders]
 l = raster_plot(times, sorted_ids, color=c, show=False,
 limits=limits, sort=sort, fignum=fnum, axis=axis,
 decimate=decim[num_raster], sort_attribute=attr,
 network=network, histogram=histogram,
 transparent=transparent,
 hist_ax=axes.get('histogram', None),
 kernel_center=kernel_center,
 kernel_std=kernel_std, resolution=resolution,
 cut_gaussian=cut_gaussian)
 num_raster += 1
 if l:
 fig_raster = l[0].figure.number
 fignums['spike_detector'] = fig_raster
 axes['spike_detector'] = l[0].axes
 labels["spike_detector"].append(lbl)
 lines["spike_detector"].extend(l)
 if histogram:
 axes['histogram'] = l[1].axes
 elif "detector" in str(info["model"]):
 c = colors[num_detec]
 times, senders = info["events"]["times"], info["events"]["senders"]
 sorted_ids = sorted_neurons[senders]
 l = raster_plot(times, sorted_ids, fignum=fnum, color=c, axis=axis,
 show=False, histogram=histogram, limits=limits,
 kernel_center=kernel_center,
 kernel_std=kernel_std, resolution=resolution,
 cut_gaussian=cut_gaussian)
 if l:
 fig_detect = l[0].figure.number
 num_detec += 1
 fignums[info["model"]] = fig_detect
 labels[info["model"]].append(lbl)
 lines[info["model"]].extend(l)
 if histogram:
 axes['histogram'] = l[1].axes
 else:
 da_time = info["events"]["times"]
 # prepare axis setup
 fig = None
 if axis is None:
 fig = plt.figure(fnum)
 fignums[info["model"]] = fig.number
 else:
 fig = axis.get_figure()
 lines_tmp, labels_tmp = [], []
 if nonstring_container(var):
 m_colors = palette_discrete(np.linspace(0, 1, len(var)))
 axes = fig.axes
 if axis is not None:
 # multiple y axes on a single subplot, adapted from
 # https://matplotlib.org/examples/pylab_examples/
 # multiple_yaxis_with_spines.html
 axes = [axis]
 axis.name = var[0]
 if len(var) > 1:
 axes.append(axis.twinx())
 axes[-1].name = var[1]
 if len(var) > 2:
 fig.subplots_adjust(right=0.75)
 for i, name in zip(range(len(var)-2), var[2:]):
 new_ax = axis.twinx()
 new_ax.spines["right"].set_position(
 ("axes", 1.2*(i+1)))
 axes.append(new_ax)
 _make_patch_spines_invisible(new_ax)
 new_ax.spines["right"].set_visible(True)
 axes[-1].name = name
 if not axes:
 axes = _set_new_plot(fig.number, names=var)[1]
 labels_tmp = [lbl for _ in range(len(var))]
 for subvar, c in zip(var, m_colors):
 c = kwargs.get('color', c)
 alpha = kwargs.get('alpha', 1)
 for ax in axes:
 if ax.name == subvar:
 da_subvar = info["events"][subvar]
 if isinstance(normalize, nngt.NeuralPop):
 da_subvar /= normalize[num_meter].size
 elif nonstring_container(normalize):
 da_subvar /= normalize[num_meter]
 elif normalize is not None:
 da_subvar /= normalize
 lines_tmp.extend(
 ax.plot(da_time, da_subvar, color=c,
 alpha=alpha))
 ax.set_ylabel(subvar)
 ax.set_xlabel("time")
 if limits is not None:
 ax.set_xlim(limits[0], limits[1])
 else:
 num_axes, ax = len(fig.axes), axis
 if axis is None:
 ax = fig.add_subplot(num_axes + 1, 1, num_axes + 1)
 da_var = info["events"][var]
 c = kwargs.get('color', None)
 alpha = kwargs.get('alpha', 1)
 lines_tmp.extend(ax.plot(da_time, da_var/normalize, color=c,
 alpha=alpha))
 labels_tmp.append(lbl)
 ax.set_ylabel(var)
 ax.set_xlabel("time")
 labels[info["model"]].extend(labels_tmp)
 lines[info["model"]].extend(lines_tmp)
 num_meter += 1

 if "spike_detector" in axes:
 ax = axes['spike_detector']

 if limits is not None:
 ax.set_xlim(limits[0], limits[1])
 else:
 t_min, t_max, idx_min, idx_max = np.inf, -np.inf, np.inf, -np.inf

 for l in ax.lines:
 t_max = max(np.max(l.get_xdata()), t_max)
 t_min = min(np.min(l.get_xdata()), t_max)
 idx_min = min(np.min(l.get_ydata()), idx_min)
 idx_max = max(np.max(l.get_ydata()), idx_max)

 dt = t_max - t_min
 didx = idx_max - idx_min
 pc = 0.02

 if not np.any(np.isinf((t_max, t_min))):
 ax.set_xlim([t_min - pc*dt, t_max + pc*dt])

 if not np.any(np.isinf((idx_min, idx_max))):
 ax.set_ylim([idx_min - pc*didx, idx_max + pc*didx])

 for recorder in fignums:
 fig = plt.figure(fignums[recorder])
 if title is not None:
 fig.suptitle(title)
 if label is not None:
 fig.legend(lines[recorder], labels[recorder])

 if show:
 plt.show()

 return lines

[docs]def raster_plot(times, senders, limits=None, title="Spike raster",
 histogram=False, num_bins=1000, color="b", decimate=None,
 axis=None, fignum=None, label=None, show=True, sort=None,
 sort_attribute=None, network=None, transparent=True,
 kernel_center=0., kernel_std=30., resolution=None,
 cut_gaussian=5., **kwargs):
 """
 Plotting routine that constructs a raster plot along with
 an optional histogram.

 .. versionchanged:: 1.2
 Switched `hist` to `histogram`.

 .. versionchanged:: 1.0.1
 Added `axis` parameter.

 Parameters

 times : list or :class:`numpy.ndarray`
 Spike times.
 senders : list or :class:`numpy.ndarray`
 Index for the spiking neuron for each time in `times`.
 limits : tuple, optional (default: None)
 Time limits of the plot (if not specified, times of first and last
 spike).
 title : string, optional (default: 'Spike raster')
 Title of the raster plot.
 histogram : bool, optional (default: True)
 Whether to plot the raster's histogram.
 num_bins : int, optional (default: 1000)
 Number of bins for the histogram.
 color : string or float, optional (default: 'b')
 Color of the plot lines and markers.
 decimate : int, optional (default: None)
 Represent only a fraction of the spiking neurons; only one neuron in
 `decimate` will be represented (e.g. setting `decimate` to 10 will lead
 to only 10% of the neurons being represented).
 axis : matplotlib axis object, optional (default: new one)
 Axis that should be use to plot the activity.
 fignum : int, optional (default: None)
 Id of another raster plot to which the new data should be added.
 label : str, optional (default: None)
 Label the current data.
 show : bool, optional (default: True)
 Whether to show the plot right away or to wait for the next plt.show().
 kernel_center : float, optional (default: 0.)
 Temporal shift of the Gaussian kernel, in ms.
 kernel_std : float, optional (default: 30.)
 Characteristic width of the Gaussian kernel (standard deviation) in ms.
 resolution : float or array, optional (default: `0.1*kernel_std`)
 The resolution at which the firing rate values will be computed.
 Choosing a value smaller than `kernel_std` is strongly advised.
 If resolution is an array, it will be considered as the times were the
 firing rate should be computed.
 cut_gaussian : float, optional (default: 5.)
 Range over which the Gaussian will be computed (for the histogram).
 By default, we consider the 5-sigma range. Decreasing this value will
 increase speed at the cost of lower fidelity; increasing it with
 increase the fidelity at the cost of speed.

 Returns

 lines : list of :class:`matplotlib.lines.Line2D`
 Lines containing the data that was plotted.
 """
 import matplotlib.pyplot as plt

 lines = []

 mpl_kwargs = {k: v for k, v in kwargs.items() if k != 'hist_ax'}

 if label is None:
 mpl_kwargs['label'] = label

 # decimate if necessary
 if decimate is not None:
 idx_keep = np.where(np.mod(senders, decimate) == 0)[0]
 senders = senders[idx_keep]
 times = times[idx_keep]

 if len(times):
 if axis is not None:
 fig = axis.get_figure()
 else:
 fig = plt.figure(fignum)
 if transparent:
 fig.patch.set_visible(False)
 ylabel = "Neuron ID"
 xlabel = "Time (ms)"

 delta_t = 0.01*(times[-1]-times[0])

 if histogram:
 ax1, ax2 = None, None
 if kwargs.get("hist_ax", None) is None:
 num_axes = len(fig.axes)
 for i, old_ax in enumerate(fig.axes):
 old_ax.change_geometry(num_axes + 2, 1, i+1)
 ax1 = fig.add_subplot(num_axes + 2, 1, num_axes + 1)
 ax2 = fig.add_subplot(num_axes + 2, 1, num_axes + 2,
 sharex=ax1)
 else:
 ax1 = axis
 ax2 = kwargs["hist_ax"]

 if limits is not None:
 start, stop = limits

 keep = (times >= start)&(times <= stop)
 times = times[keep]
 senders = senders[keep]

 lines.extend(ax1.plot(
 times, senders, c=color, marker="o", linestyle='None',
 mec="k", mew=0.5, ms=4, **mpl_kwargs))

 ax1_lines = ax1.lines

 if len(ax1_lines) > 1:
 t_max = max(ax1_lines[0].get_xdata().max(),times[-1])
 ax1.set_xlim([-delta_t, t_max+delta_t])

 ax1.set_ylabel(ylabel)

 if limits is not None:
 ax1.set_xlim(*limits)

 fr, fr_times = total_firing_rate(
 data=np.array([senders, times]).T, kernel_center=kernel_center,
 kernel_std=kernel_std, resolution=resolution,
 cut_gaussian=cut_gaussian)

 hist_lines = ax2.get_lines()

 if hist_lines:
 data = hist_lines[-1].get_data()
 bottom = data[1]
 if limits is None:
 dt = fr_times[1] - fr_times[0]
 old_times = data[0]
 old_start = int(old_times[0] / dt)
 new_start = int(fr_times[0] / dt)
 old_end = int(old_times[-1] / dt)
 new_end = int(fr_times[-1] / dt)
 diff_start = new_start-old_start
 diff_end = new_end-old_end
 if diff_start > 0:
 bottom = bottom[diff_start:]
 else:
 bottom = np.concatenate(
 (np.zeros(-diff_start), bottom))
 if diff_end > 0:
 bottom = np.concatenate((bottom, np.zeros(diff_end)))
 else:
 bottom = bottom[:diff_end-1]
 b_len, h_len = len(bottom), len(fr)
 if b_len > h_len:
 bottom = bottom[:h_len]
 elif b_len < h_len:
 bottom = np.concatenate(
 (bottom, np.zeros(h_len-b_len)))
 else:
 bottom = bottom[:-1]

 ax2.fill_between(fr_times, fr + bottom, bottom, color=color)
 lines.extend(ax2.plot(fr_times, fr + bottom, ls="", marker=""))
 else:
 ax2.fill_between(fr_times, fr, 0., color=color)
 lines.extend(ax2.plot(fr_times, fr, ls="", marker=""))

 ax2.set_ylabel("Rate (Hz)")
 ax2.set_xlabel(xlabel)
 ax2.set_xlim(ax1.get_xlim())
 _second_axis(sort, sort_attribute, ax1)
 else:
 if axis is not None:
 ax = axis
 else:
 num_axes = len(fig.axes)
 for i, old_ax in enumerate(fig.axes):
 old_ax.change_geometry(num_axes + 1, 1, i+1)
 ax = fig.add_subplot(num_axes + 1, 1, num_axes + 1)

 if limits is not None:
 start, stop = limits

 keep = (times >= start)&(times <= stop)
 times = times[keep]
 senders = senders[keep]

 if network is not None:
 pop = network.population
 colors = palette_discrete(np.linspace(0, 1, len(pop)))
 mm = itertools.cycle(markers)
 for m, (k, v), c in zip(mm, pop.items(), colors):
 keep = np.where(
 np.in1d(senders, network.nest_gids[v.ids]))[0]
 if len(keep):
 if label is None:
 mpl_kwargs['label'] = k
 lines.extend(ax.plot(
 times[keep], senders[keep], c=c, marker=m,
 ls='None', mec='k', mew=0.5, ms=4, **mpl_kwargs))
 else:
 lines.extend(ax.plot(
 times, senders, c=color, marker="o", linestyle='None',
 mec="k", mew=0.5, ms=4, **mpl_kwargs))

 ax.set_ylabel(ylabel)
 ax.set_xlabel(xlabel)

 if limits is not None:
 ax.set_xlim(limits)
 else:
 _set_ax_lims(ax, np.max(times), np.min(times), np.max(senders),
 np.min(senders))

 if label is not None:
 ax.legend(bbox_to_anchor=(1.1, 1.2))
 _second_axis(sort, sort_attribute, ax)

 fig.suptitle(title)

 if show:
 plt.show()
 else:
 _log_message(logger, "WARNING",
 "No activity was detected during the simulation.")

 return lines

#---
Tools
#------------------------
#

def _fill_between_steps(x, y1, y2=0, h_align='mid'):
 '''
 Fills a hole in matplotlib: fill_between for step plots.

 Parameters :

 x : array-like
 Array/vector of index values. These are assumed to be equally-spaced.
 If not, the result will probably look weird...
 y1 : array-like
 Array/vector of values to be filled under.
 y2 : array-Like
 Array/vector or bottom values for filled area. Default is 0.
 '''
 # First, duplicate the x values
 xx = np.repeat(x,2)
 # Now: the average x binwidth
 xstep = np.repeat((x[1:] - x[:-1]), 2)
 xstep = np.concatenate(([xstep[0]], xstep, [xstep[-1]]))
 # Now: add one step at end of row.
 #~ xx = np.append(xx, xx.max() + xstep[-1])

 # Make it possible to change step alignment.
 if h_align == 'mid':
 xx -= xstep / 2.
 elif h_align == 'right':
 xx -= xstep

 # Also, duplicate each y coordinate in both arrays
 y1 = np.repeat(y1,2)#[:-1]
 if type(y2) == np.ndarray:
 y2 = np.repeat(y2,2)#[:-1]

 return xx, y1, y2

def _moving_average (values, window):
 weights = np.repeat(1.0, window)/window
 sma = np.convolve(values, weights, 'same')
 return sma

def _second_axis(sort, sort_attribute, ax):
 import matplotlib.pyplot as plt
 if sort is not None:
 fig = ax.get_figure()
 twin = None
 for axis in fig.axes:
 if axis.get_ylabel() == sort:
 twin = axis
 break
 if twin is None:
 asort = np.argsort(sort_attribute)
 twin = ax.twinx()
 twin.grid(False)
 twin.set_ylabel(sort)
 plt.draw()
 old_ticks = ax.get_yticks()
 twin.set_yticks(old_ticks)
 twin.set_ylim(ax.get_ylim())
 labels = ['' for _ in range(len(old_ticks))]
 idx_max = len(sort_attribute) - 1
 for i, t in enumerate(old_ticks):
 if t >= 0:
 idx = min(int(t), idx_max)
 labels[i] = _sci_format(sort_attribute[asort[idx]])
 twin.set_yticklabels(labels)

def _sci_format(n):
 label = ''
 if np.abs(n) < 0.01 or np.abs(n) >= 1000:
 a = '{:.1E}'.format(n)
 label = '$' + a.split('E')[0].rstrip('0').rstrip('.') + '\\cdot 10^{'
 exponent = a.split('E')[1].lstrip('0')
 if exponent[0] == '-':
 exponent = exponent[0] + exponent[1:].lstrip('0')
 elif exponent[0] == '+':
 exponent = exponent[1:].lstrip('0')
 label += exponent + '}$'
 elif np.abs(n) >= 100:
 label = '{:.0f}'.format(n)
 elif np.abs(n) >= 10:
 label = '{:.1f}'.format(n)
 else:
 label = '{:.2f}'.format(n)
 return label

def _make_patch_spines_invisible(ax):
 ax.set_frame_on(True)
 ax.patch.set_visible(False)
 for sp in ax.spines.values():
 sp.set_visible(False)

 Source code for nngt.simulation.nest_utils

#!/usr/bin/env python
#-*- coding:utf-8 -*-
#
This file is part of the NNGT project to generate and analyze
neuronal networks and their activity.
Copyright (C) 2015-2019 Tanguy Fardet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

nest_utils.py

This file is part of the NNGT module
Distributed as a free software, in the hope that it will be useful, under the
terms of the GNU General Public License.

""" Utility functions to monitor NEST simulated activity """

try:
 from io import BytesIO
except ImportError:
 from BytesIO import BytesIO

import nest
import numpy as np

from nngt.lib import InvalidArgument, nonstring_container
from nngt.lib.rng_tools import _generate_random
from nngt.lib.sorting import _sort_groups

try:
 from nest import NodeCollection
 nest_version = 3
except ImportError:
 nest_version = 2

__all__ = [
 'monitor_groups',
 'monitor_nodes',
 'randomize_neural_states',
 'save_spikes',
 'set_minis',
 'set_noise',
 'set_poisson_input',
 'set_step_currents',
]

#---#
Inducing activity
#------------------------
#

[docs]def set_noise(gids, mean, std):
 '''
 Submit neurons to a current white noise.

 Parameters

 gids : tuple
 NEST gids of the target neurons.
 mean : float
 Mean current value.
 std : float
 Standard deviation of the current

 Returns

 noise : tuple
 The NEST gid of the noise_generator.
 '''
 noise = nest.Create("noise_generator", params={"mean": mean, "std": std},
 _warn=False)

 nest.Connect(noise, list(gids), _warn=False)

 return noise

[docs]def set_poisson_input(gids, rate, syn_spec=None, **kwargs):
 '''
 Submit neurons to a Poissonian rate of spikes.

 .. versionchanged:: 2.0
 Added `kwargs`.

 Parameters

 gids : tuple
 NEST gids of the target neurons.
 rate : float
 Rate of the spike train (in Hz).
 syn_spec : dict, optional (default: static synapse with weight 1)
 Properties of the connection between the ``poisson_generator`` object
 and the target neurons.
 **kwargs : dict
 Other optional parameters for the `poisson_generator`.

 Returns

 poisson_input : tuple
 The NEST gid of the ``poisson_generator``.
 '''
 params = {"rate": rate}
 params.update(kwargs)

 poisson_input = nest.Create(
 "poisson_generator", params=params, _warn=False)

 gids = _get_nest_gids(gids)

 nest.Connect(poisson_input, gids, syn_spec=syn_spec, _warn=False)

 return poisson_input

[docs]def set_minis(network, base_rate, weight, syn_type=1, nodes=None, gids=None):
 '''
 Mimick spontaneous release of neurotransmitters, called miniature PSCs or
 "minis" that can occur at excitatory (mEPSCs) or inhibitory (mIPSCs)
 synapses.
 These minis consists in only a fraction of the usual strength of a spike-
 triggered PSC and can be modeled by a Poisson process.
 This Poisson process occurs independently at every synapse of a neuron, so
 a neuron receiving :math:`k` inputs will be subjected to these events with
 a rate :math:`k*\\lambda`, where :math:`\\lambda` is the base rate.

 Parameters

 network : :class:`~nngt.Network` object
 Network on which the minis should be simulated.
 base_rate : float
 Rate for the Poisson process on one synapse (:math:`\\lambda`), in Hz.
 weight : float or array of size N
 Amplitude of a minitature post-synaptic event.
 syn_type : int, optional (default: 1)
 Synaptic type of the noisy connections. By default, mEPSCs are
 generated, by taking into account only the excitatory degrees and
 synaptic weights. To setup mIPSCs, used `syn_type=-1`.
 nodes : array-like (size N), optional (default: all nodes)
 NNGT ids of the neurons that should be subjected to minis.
 gids : array-like (size N), optional (default: all neurons)
 NEST gids of the neurons that should be subjected to minis.

 Note

 `nodes` and `gids` are not compatible, only one one the two arguments can
 be used in any given call to `set_minis`.
 '''
 assert network.nest_gids is not None, \
 "Create the NEST network before calling `set_minis`."

 # find the target nodes' gids
 if gids is not None and nodes is not None:
 raise InvalidArgument('Only one of `nodes` and `gids` can be set.')
 elif nodes is None and gids is None:
 nodes = range(0, network.node_nb())
 gids = network.nest_gids
 elif gids is not None:
 nodes = [network.id_from_nest_gid(gid) for gid in gids]
 elif nodes is not None:
 gids = network.nest_gids[nodes]

 # convert gids if necessary
 gids = _get_nest_gids(gids)

 if nonstring_container(weight):
 assert len(weight) == len(gids)
 else:
 weight = [weight for _ in range(len(gids))]

 # get the unique degrees and create one poisson_generator per degree
 degrees = network.get_degrees("in", edge_type=syn_type)
 deg_set = set(degrees)
 map_deg_pg = {d: i for i, d in enumerate(deg_set)}
 pgs = nest.Create("poisson_generator", len(deg_set), _warn=False)

 for d, pg in zip(deg_set, pgs):
 nest.SetStatus([pg], {"rate": d*base_rate}, _warn=False)

 # connect
 for i, n in enumerate(nodes):
 gid, d = gids[i], degrees[n]

 if nest_version == 2:
 gid = (gid,)

 w = weight[i]
 pg = [pgs[map_deg_pg[d]]]

 nest.Connect(pg, gid, syn_spec={'weight': w}, _warn=False)

[docs]def set_step_currents(gids, times, currents):
 '''
 Set step-current excitations

 Parameters

 gids : tuple
 NEST gids of the target neurons.
 times : list or :class:`numpy.ndarray`
 List of the times where the current will change (by default the current
 generator is initiated at I=0. for t=0.)
 currents : list or :class:`numpy.ndarray`
 List of the new current value after the associated time value in
 `times`.

 Returns

 noise : tuple
 The NEST gid of the noise_generator.
 '''
 if len(times) != len(currents):
 raise InvalidArgument('Length of `times` and `currents` must be the '
 'same')

 params = {"amplitude_times": times, "amplitude_values":currents}

 scg = nest.Create("step_current_generator", params, _warn=False)

 gids = _get_nest_gids(gids)

 nest.Connect(scg, gids, _warn=False)

 return scg

[docs]def randomize_neural_states(network, instructions, groups=None, nodes=None,
 make_nest=False):
 '''
 Randomize the neural states according to the instructions.

 .. versionchanged:: 0.8
 Changed `ids` to `nodes` argument.

 Parameters

 network : :class:`~nngt.Network` subclass instance
 Network that will be simulated.
 instructions : dict
 Variables to initialize. Allowed keys are "V_m" and "w". Values are
 3-tuples of type ``("distrib_name", double, double)``.
 groups : list of :class:`~nngt.NeuralGroup`, optional (default: None)
 If provided, only the neurons belonging to these groups will have their
 properties randomized.
 nodes : array-like, optional (default: all neurons)
 NNGT ids of the neurons that will have their status randomized.
 make_nest : bool, optional (default: False)
 If ``True`` and network has not been converted to NEST, automatically
 generate the network, else raises an exception.

 Example

 .. code-block:: python

 instructions = {
 "V_m": ("uniform", -80., -60.),
 "w": ("normal", 50., 5.)
 }
 '''
 # check whether network is in NEST
 if network._nest_gids is None:
 if make_nest:
 network.to_nest()
 else:
 raise AttributeError(
 '`network` has not been sent to NEST yet.')
 gids = []

 if nodes is not None and groups is not None:
 raise InvalidArgument('`nodes` and `groups` cannot be set together.')
 elif groups is not None:
 for group in groups:
 gids.extend(group.nest_gids)
 gids = list(set(gids))
 else:
 gids.extend(
 network.nest_gids if nodes is None else network.nest_gids[nodes])

 # convert gids
 gids = _get_nest_gids(gids)

 num_neurons = len(gids)

 for key, val in instructions.items():
 state = _generate_random(num_neurons, val)

 # set the values in NEST
 nest.SetStatus(gids, key, state, _warn=False)

 if nodes is None:
 nodes = network.id_from_nest_gid(gids)

 # store the values in the node attributes
 if key not in ("V_m", "w"):
 if key not in network.node_attributes:
 network.new_node_attribute(key, "double", val=np.NaN)
 network.set_node_attribute(
 key, values=state, nodes=nodes, value_type="double")

Monitoring the activity

[docs]def monitor_groups(group_names, network, nest_recorder=None, params=None):
 '''
 Monitoring the activity of nodes in the network.

 Parameters

 group_name : list of strings
 Names of the groups that should be recorded.
 network : :class:`~nngt.Network` or subclass
 Network which population will be used to differentiate groups.
 nest_recorder : strings or list, optional (default: "spike_detector"0)
 Device(s) to monitor the network.
 params : dict or list of, optional (default: `{}`)
 Dictionarie(s) containing the parameters for each recorder (see
 `NEST documentation <http://www.nest-simulator.org/quickref/#nodes>`_
 for details).

 Returns

 recorders : list or NodeCollection of the recorders' gids
 recordables : list of the recordables' names.
 '''
 if nest_recorder is None:
 nest_recorder = ["spike_detector"]
 elif not nonstring_container(nest_recorder):
 nest_recorder = [nest_recorder]

 if params is None:
 params = [{}]
 elif isinstance(params, dict):
 params = [params]

 recorders = NodeCollection([]) if nest_version == 3 else []
 recordables = []

 for name in group_names:
 gids = network.population[name].nest_gids

 recdr, recdbls = _monitor(gids, nest_recorder, params)

 recorders += recdr
 recordables.extend(recdbls)

 return recorders, recordables

[docs]def monitor_nodes(gids, nest_recorder=None, params=None, network=None):
 '''
 Monitoring the activity of nodes in the network.

 Parameters

 gids : tuple of ints or list of tuples
 GIDs of the neurons in the NEST subnetwork; either one list per
 recorder if they should monitor different neurons or a unique list
 which will be monitored by all devices.
 nest_recorder : strings or list, optional (default: "spike_detector")
 Device(s) to monitor the network.
 params : dict or list of, optional (default: `{}`)
 Dictionarie(s) containing the parameters for each recorder (see
 `NEST documentation <http://www.nest-simulator.org/quickref/#nodes>`_
 for details).
 network : :class:`~nngt.Network` or subclass, optional (default: None)
 Network which population will be used to differentiate groups.

 Returns

 recorders : list or NodeCollection containing the recorders' gids
 recordables : list of the recordables' names.
 '''
 if nest_recorder is None:
 nest_recorder = ["spike_detector"]
 elif not nonstring_container(nest_recorder):
 nest_recorder = [nest_recorder]

 if params is None:
 params = [{}]
 elif isinstance(params, dict):
 params = [params]

 return _monitor(gids, nest_recorder, params)

def _monitor(gids, nest_recorder, params):
 new_record = []
 recorders = NodeCollection([]) if nest_version == 3 else []

 gids = _get_nest_gids(gids)

 for i, rec in enumerate(nest_recorder):
 # multi/volt/conductancemeter
 if "meter" in rec:
 device = None
 di_spec = {"rule": "all_to_all"}

 if not params[i].get("to_accumulator", True):
 device = nest.Create(rec, len(gids), _warn=False)
 di_spec["rule"] = "one_to_one"
 else:
 device = nest.Create(rec, _warn=False)

 recorders += device if nest_version == 3 else list(device)

 device_params = nest.GetDefaults(rec)
 device_params.update(params[i])
 new_record.append(device_params["record_from"])
 nest.SetStatus(device, params[i], _warn=False)
 nest.Connect(device, gids, conn_spec=di_spec, _warn=False)
 # event detectors
 elif "detector" in rec:
 device = nest.Create(rec, _warn=False)

 recorders += device if nest_version == 3 else list(device)

 new_record.append("spikes")
 nest.SetStatus(device, params[i], _warn=False)
 nest.Connect(gids, device, _warn=False)
 else:
 raise InvalidArgument('Invalid recorder item in `nest_recorder`: '
 '{} is unknown.'.format(nest_recorder))
 return recorders, new_record

Saving the activity

[docs]def save_spikes(filename, recorder=None, network=None, save_positions=True,
 **kwargs):
 '''
 Plot the monitored activity.

 .. versionadded:: 0.7

 Parameters

 filename : str
 Path to the file where the activity should be saved.
 recorder : tuple or list of tuples, optional (default: None)
 The NEST gids of the recording devices. If None, then all existing
 "spike_detector"s are used.
 network : :class:`~nngt.Network` or subclass, optional (default: None)
 Network which activity will be monitored.
 save_positions : bool, optional (default: True)
 Whether to include the position of the neurons in the file; this
 requires `network` to be provided.
 **kwargs : see :func:`numpy.savetxt`
 '''
 rcrdrs = NodeCollection([]) if nest_version == 3 else []

 delim = kwargs.get('delimiter', ' ')

 if 'fmt' not in kwargs:
 kwargs['fmt'] = '%d{}%.6f'.format(delim)
 if 'header' not in kwargs:
 kwargs['header'] = 'Neuron{}Time'.format(delim)

 # normalize recorders and recordables
 if recorder is not None:
 for rec in recorder:
 if nest_version == 3:
 if isinstance(rec, NodeCollection):
 rcrdrs += rec
 elif nonstring_container(rec):
 rcrdrs += NodeCollection(rec)
 else:
 rcrdrs += NodeCollection([rec])
 elif nonstring_container(rec):
 rcrdrs.append(rec)
 else:
 rcrdrs.append([rec])

 if nest_version == 3:
 if len(rcrdrs) == 1:
 assert recrdrs.model == "spike_detector", \
 'Only spike_detectors are supported.'
 assert recrdrs.model == ("spike_detector",)*len(rcrdrs), \
 'Only spike_detectors are supported.'
 else:
 assert (nest.GetStatus(rcrdrs, 'model')
 == ('spike_detector',)*len(rcrdrs)), \
 'Only spike_detectors are supported.'
 else:
 if nest_version == 3:
 rcrdrs = nest.GetNodes(properties={'model': 'spike_detector'})
 else:
 rcrdrs = [[n] for n in nest.GetNodes(
 (0,), properties={'model': 'spike_detector'})[0]]

 if network is not None and network.is_spatial() and save_positions:
 save_positions = True
 kwargs['header'] += '{}X{}Y'.format(delim, delim)
 if delim in kwargs['fmt']:
 kwargs['fmt'] += '{}%.6f{}%.6f'.format(delim, delim)
 else:
 save_positions = False

 with open(filename, "wb") as f:
 for rec in rcrdrs:
 data = nest.GetStatus(rec, "events")[0]
 if len(data['senders']):
 if save_positions:
 gids = np.unique(data['senders'])
 gid_to_id = np.zeros(gids[-1] + 1, dtype=int)

 for gid in gids:
 gid_to_id[gid] = network.id_from_nest_gid(gid)

 pos = network.get_positions()
 ids = gid_to_id[data['senders']]
 data = np.array(
 (data['senders'], data['times'], pos[ids, 0],
 pos[ids, 1])).T
 else:
 data = np.array((data['senders'], data['times'])).T

 s = BytesIO()
 np.savetxt(s, data, **kwargs)
 f.write(s.getvalue())

def _get_nest_gids(gids):
 ''' Convert nodes to NodeCollection if NEST is version 3+ '''
 if nest_version == 3:
 if isinstance(gids, NodeCollection):
 return gids

 return NodeCollection(gids)

 return list(gids)

 Source code for playhouse.migrate

"""
Lightweight schema migrations.

NOTE: Currently tested with SQLite and Postgresql. MySQL may be missing some
features.

Example Usage

Instantiate a migrator:

 # Postgres example:
 my_db = PostgresqlDatabase(...)
 migrator = PostgresqlMigrator(my_db)

 # SQLite example:
 my_db = SqliteDatabase('my_database.db')
 migrator = SqliteMigrator(my_db)

Then you will use the `migrate` function to run various `Operation`s which
are generated by the migrator:

 migrate(
 migrator.add_column('some_table', 'column_name', CharField(default=''))
)

Migrations are not run inside a transaction, so if you wish the migration to
run in a transaction you will need to wrap the call to `migrate` in a
transaction block, e.g.:

 with my_db.transaction():
 migrate(...)

Supported Operations

Add new field(s) to an existing model:

 # Create your field instances. For non-null fields you must specify a
 # default value.
 pubdate_field = DateTimeField(null=True)
 comment_field = TextField(default='')

 # Run the migration, specifying the database table, field name and field.
 migrate(
 migrator.add_column('comment_tbl', 'pub_date', pubdate_field),
 migrator.add_column('comment_tbl', 'comment', comment_field),
)

Renaming a field:

 # Specify the table, original name of the column, and its new name.
 migrate(
 migrator.rename_column('story', 'pub_date', 'publish_date'),
 migrator.rename_column('story', 'mod_date', 'modified_date'),
)

Dropping a field:

 migrate(
 migrator.drop_column('story', 'some_old_field'),
)

Making a field nullable or not nullable:

 # Note that when making a field not null that field must not have any
 # NULL values present.
 migrate(
 # Make `pub_date` allow NULL values.
 migrator.drop_not_null('story', 'pub_date'),

 # Prevent `modified_date` from containing NULL values.
 migrator.add_not_null('story', 'modified_date'),
)

Renaming a table:

 migrate(
 migrator.rename_table('story', 'stories_tbl'),
)

Adding an index:

 # Specify the table, column names, and whether the index should be
 # UNIQUE or not.
 migrate(
 # Create an index on the `pub_date` column.
 migrator.add_index('story', ('pub_date',), False),

 # Create a multi-column index on the `pub_date` and `status` fields.
 migrator.add_index('story', ('pub_date', 'status'), False),

 # Create a unique index on the category and title fields.
 migrator.add_index('story', ('category_id', 'title'), True),
)

Dropping an index:

 # Specify the index name.
 migrate(migrator.drop_index('story', 'story_pub_date_status'))

Adding or dropping table constraints:

.. code-block:: python

 # Add a CHECK() constraint to enforce the price cannot be negative.
 migrate(migrator.add_constraint(
 'products',
 'price_check',
 Check('price >= 0')))

 # Remove the price check constraint.
 migrate(migrator.drop_constraint('products', 'price_check'))

 # Add a UNIQUE constraint on the first and last names.
 migrate(migrator.add_unique('person', 'first_name', 'last_name'))
"""
from collections import namedtuple
import functools
import hashlib
import re

from peewee import *
from peewee import CommaNodeList
from peewee import EnclosedNodeList
from peewee import Entity
from peewee import Expression
from peewee import Node
from peewee import NodeList
from peewee import OP
from peewee import callable_
from peewee import sort_models
from peewee import _truncate_constraint_name
try:
 from playhouse.cockroachdb import CockroachDatabase
except ImportError:
 CockroachDatabase = None

class Operation(object):
 """Encapsulate a single schema altering operation."""
 def __init__(self, migrator, method, *args, **kwargs):
 self.migrator = migrator
 self.method = method
 self.args = args
 self.kwargs = kwargs

 def execute(self, node):
 self.migrator.database.execute(node)

 def _handle_result(self, result):
 if isinstance(result, (Node, Context)):
 self.execute(result)
 elif isinstance(result, Operation):
 result.run()
 elif isinstance(result, (list, tuple)):
 for item in result:
 self._handle_result(item)

 def run(self):
 kwargs = self.kwargs.copy()
 kwargs['with_context'] = True
 method = getattr(self.migrator, self.method)
 self._handle_result(method(*self.args, **kwargs))

def operation(fn):
 @functools.wraps(fn)
 def inner(self, *args, **kwargs):
 with_context = kwargs.pop('with_context', False)
 if with_context:
 return fn(self, *args, **kwargs)
 return Operation(self, fn.__name__, *args, **kwargs)
 return inner

def make_index_name(table_name, columns):
 index_name = '_'.join((table_name,) + tuple(columns))
 if len(index_name) > 64:
 index_hash = hashlib.md5(index_name.encode('utf-8')).hexdigest()
 index_name = '%s_%s' % (index_name[:56], index_hash[:7])
 return index_name

class SchemaMigrator(object):
 explicit_create_foreign_key = False
 explicit_delete_foreign_key = False

 def __init__(self, database):
 self.database = database

 def make_context(self):
 return self.database.get_sql_context()

 @classmethod
 def from_database(cls, database):
 if CockroachDatabase and isinstance(database, CockroachDatabase):
 return CockroachDBMigrator(database)
 elif isinstance(database, PostgresqlDatabase):
 return PostgresqlMigrator(database)
 elif isinstance(database, MySQLDatabase):
 return MySQLMigrator(database)
 elif isinstance(database, SqliteDatabase):
 return SqliteMigrator(database)
 raise ValueError('Unsupported database: %s' % database)

 @operation
 def apply_default(self, table, column_name, field):
 default = field.default
 if callable_(default):
 default = default()

 return (self.make_context()
 .literal('UPDATE ')
 .sql(Entity(table))
 .literal(' SET ')
 .sql(Expression(
 Entity(column_name),
 OP.EQ,
 field.db_value(default),
 flat=True)))

 def _alter_table(self, ctx, table):
 return ctx.literal('ALTER TABLE ').sql(Entity(table))

 def _alter_column(self, ctx, table, column):
 return (self
 ._alter_table(ctx, table)
 .literal(' ALTER COLUMN ')
 .sql(Entity(column)))

 @operation
 def alter_add_column(self, table, column_name, field):
 # Make field null at first.
 ctx = self.make_context()
 field_null, field.null = field.null, True

 # Set the field's column-name and name, if it is not set or doesn't
 # match the new value.
 if field.column_name != column_name:
 field.name = field.column_name = column_name

 (self
 ._alter_table(ctx, table)
 .literal(' ADD COLUMN ')
 .sql(field.ddl(ctx)))

 field.null = field_null
 if isinstance(field, ForeignKeyField):
 self.add_inline_fk_sql(ctx, field)
 return ctx

 @operation
 def add_constraint(self, table, name, constraint):
 return (self
 ._alter_table(self.make_context(), table)
 .literal(' ADD CONSTRAINT ')
 .sql(Entity(name))
 .literal(' ')
 .sql(constraint))

 @operation
 def add_unique(self, table, *column_names):
 constraint_name = 'uniq_%s' % '_'.join(column_names)
 constraint = NodeList((
 SQL('UNIQUE'),
 EnclosedNodeList([Entity(column) for column in column_names])))
 return self.add_constraint(table, constraint_name, constraint)

 @operation
 def drop_constraint(self, table, name):
 return (self
 ._alter_table(self.make_context(), table)
 .literal(' DROP CONSTRAINT ')
 .sql(Entity(name)))

 def add_inline_fk_sql(self, ctx, field):
 ctx = (ctx
 .literal(' REFERENCES ')
 .sql(Entity(field.rel_model._meta.table_name))
 .literal(' ')
 .sql(EnclosedNodeList((Entity(field.rel_field.column_name),))))
 if field.on_delete is not None:
 ctx = ctx.literal(' ON DELETE %s' % field.on_delete)
 if field.on_update is not None:
 ctx = ctx.literal(' ON UPDATE %s' % field.on_update)
 return ctx

 @operation
 def add_foreign_key_constraint(self, table, column_name, rel, rel_column,
 on_delete=None, on_update=None):
 constraint = 'fk_%s_%s_refs_%s' % (table, column_name, rel)
 ctx = (self
 .make_context()
 .literal('ALTER TABLE ')
 .sql(Entity(table))
 .literal(' ADD CONSTRAINT ')
 .sql(Entity(_truncate_constraint_name(constraint)))
 .literal(' FOREIGN KEY ')
 .sql(EnclosedNodeList((Entity(column_name),)))
 .literal(' REFERENCES ')
 .sql(Entity(rel))
 .literal(' (')
 .sql(Entity(rel_column))
 .literal(')'))
 if on_delete is not None:
 ctx = ctx.literal(' ON DELETE %s' % on_delete)
 if on_update is not None:
 ctx = ctx.literal(' ON UPDATE %s' % on_update)
 return ctx

 @operation
 def add_column(self, table, column_name, field):
 # Adding a column is complicated by the fact that if there are rows
 # present and the field is non-null, then we need to first add the
 # column as a nullable field, then set the value, then add a not null
 # constraint.
 if not field.null and field.default is None:
 raise ValueError('%s is not null but has no default' % column_name)

 is_foreign_key = isinstance(field, ForeignKeyField)
 if is_foreign_key and not field.rel_field:
 raise ValueError('Foreign keys must specify a `field`.')

 operations = [self.alter_add_column(table, column_name, field)]

 # In the event the field is *not* nullable, update with the default
 # value and set not null.
 if not field.null:
 operations.extend([
 self.apply_default(table, column_name, field),
 self.add_not_null(table, column_name)])

 if is_foreign_key and self.explicit_create_foreign_key:
 operations.append(
 self.add_foreign_key_constraint(
 table,
 column_name,
 field.rel_model._meta.table_name,
 field.rel_field.column_name,
 field.on_delete,
 field.on_update))

 if field.index or field.unique:
 using = getattr(field, 'index_type', None)
 operations.append(self.add_index(table, (column_name,),
 field.unique, using))

 return operations

 @operation
 def drop_foreign_key_constraint(self, table, column_name):
 raise NotImplementedError

 @operation
 def drop_column(self, table, column_name, cascade=True):
 ctx = self.make_context()
 (self._alter_table(ctx, table)
 .literal(' DROP COLUMN ')
 .sql(Entity(column_name)))

 if cascade:
 ctx.literal(' CASCADE')

 fk_columns = [
 foreign_key.column
 for foreign_key in self.database.get_foreign_keys(table)]
 if column_name in fk_columns and self.explicit_delete_foreign_key:
 return [self.drop_foreign_key_constraint(table, column_name), ctx]

 return ctx

 @operation
 def rename_column(self, table, old_name, new_name):
 return (self
 ._alter_table(self.make_context(), table)
 .literal(' RENAME COLUMN ')
 .sql(Entity(old_name))
 .literal(' TO ')
 .sql(Entity(new_name)))

 @operation
 def add_not_null(self, table, column):
 return (self
 ._alter_column(self.make_context(), table, column)
 .literal(' SET NOT NULL'))

 @operation
 def drop_not_null(self, table, column):
 return (self
 ._alter_column(self.make_context(), table, column)
 .literal(' DROP NOT NULL'))

 @operation
 def alter_column_type(self, table, column, field, cast=None):
 # ALTER TABLE <table> ALTER COLUMN <column>
 ctx = self.make_context()
 ctx = (self
 ._alter_column(ctx, table, column)
 .literal(' TYPE ')
 .sql(field.ddl_datatype(ctx)))
 if cast is not None:
 if not isinstance(cast, Node):
 cast = SQL(cast)
 ctx = ctx.literal(' USING ').sql(cast)
 return ctx

 @operation
 def rename_table(self, old_name, new_name):
 return (self
 ._alter_table(self.make_context(), old_name)
 .literal(' RENAME TO ')
 .sql(Entity(new_name)))

 @operation
 def add_index(self, table, columns, unique=False, using=None):
 ctx = self.make_context()
 index_name = make_index_name(table, columns)
 table_obj = Table(table)
 cols = [getattr(table_obj.c, column) for column in columns]
 index = Index(index_name, table_obj, cols, unique=unique, using=using)
 return ctx.sql(index)

 @operation
 def drop_index(self, table, index_name):
 return (self
 .make_context()
 .literal('DROP INDEX ')
 .sql(Entity(index_name)))

class PostgresqlMigrator(SchemaMigrator):
 def _primary_key_columns(self, tbl):
 query = """
 SELECT pg_attribute.attname
 FROM pg_index, pg_class, pg_attribute
 WHERE
 pg_class.oid = '%s'::regclass AND
 indrelid = pg_class.oid AND
 pg_attribute.attrelid = pg_class.oid AND
 pg_attribute.attnum = any(pg_index.indkey) AND
 indisprimary;
 """
 cursor = self.database.execute_sql(query % tbl)
 return [row[0] for row in cursor.fetchall()]

 @operation
 def set_search_path(self, schema_name):
 return (self
 .make_context()
 .literal('SET search_path TO %s' % schema_name))

 @operation
 def rename_table(self, old_name, new_name):
 pk_names = self._primary_key_columns(old_name)
 ParentClass = super(PostgresqlMigrator, self)

 operations = [
 ParentClass.rename_table(old_name, new_name, with_context=True)]

 if len(pk_names) == 1:
 # Check for existence of primary key sequence.
 seq_name = '%s_%s_seq' % (old_name, pk_names[0])
 query = """
 SELECT 1
 FROM information_schema.sequences
 WHERE LOWER(sequence_name) = LOWER(%s)
 """
 cursor = self.database.execute_sql(query, (seq_name,))
 if bool(cursor.fetchone()):
 new_seq_name = '%s_%s_seq' % (new_name, pk_names[0])
 operations.append(ParentClass.rename_table(
 seq_name, new_seq_name))

 return operations

class CockroachDBMigrator(PostgresqlMigrator):
 explicit_create_foreign_key = True

 def add_inline_fk_sql(self, ctx, field):
 pass

 @operation
 def drop_index(self, table, index_name):
 return (self
 .make_context()
 .literal('DROP INDEX ')
 .sql(Entity(index_name))
 .literal(' CASCADE'))

class MySQLColumn(namedtuple('_Column', ('name', 'definition', 'null', 'pk',
 'default', 'extra'))):
 @property
 def is_pk(self):
 return self.pk == 'PRI'

 @property
 def is_unique(self):
 return self.pk == 'UNI'

 @property
 def is_null(self):
 return self.null == 'YES'

 def sql(self, column_name=None, is_null=None):
 if is_null is None:
 is_null = self.is_null
 if column_name is None:
 column_name = self.name
 parts = [
 Entity(column_name),
 SQL(self.definition)]
 if self.is_unique:
 parts.append(SQL('UNIQUE'))
 if is_null:
 parts.append(SQL('NULL'))
 else:
 parts.append(SQL('NOT NULL'))
 if self.is_pk:
 parts.append(SQL('PRIMARY KEY'))
 if self.extra:
 parts.append(SQL(self.extra))
 return NodeList(parts)

class MySQLMigrator(SchemaMigrator):
 explicit_create_foreign_key = True
 explicit_delete_foreign_key = True

 def _alter_column(self, ctx, table, column):
 return (self
 ._alter_table(ctx, table)
 .literal(' MODIFY ')
 .sql(Entity(column)))

 @operation
 def rename_table(self, old_name, new_name):
 return (self
 .make_context()
 .literal('RENAME TABLE ')
 .sql(Entity(old_name))
 .literal(' TO ')
 .sql(Entity(new_name)))

 def _get_column_definition(self, table, column_name):
 cursor = self.database.execute_sql('DESCRIBE `%s`;' % table)
 rows = cursor.fetchall()
 for row in rows:
 column = MySQLColumn(*row)
 if column.name == column_name:
 return column
 return False

 def get_foreign_key_constraint(self, table, column_name):
 cursor = self.database.execute_sql(
 ('SELECT constraint_name '
 'FROM information_schema.key_column_usage WHERE '
 'table_schema = DATABASE() AND '
 'table_name = %s AND '
 'column_name = %s AND '
 'referenced_table_name IS NOT NULL AND '
 'referenced_column_name IS NOT NULL;'),
 (table, column_name))
 result = cursor.fetchone()
 if not result:
 raise AttributeError(
 'Unable to find foreign key constraint for '
 '"%s" on table "%s".' % (table, column_name))
 return result[0]

 @operation
 def drop_foreign_key_constraint(self, table, column_name):
 fk_constraint = self.get_foreign_key_constraint(table, column_name)
 return (self
 ._alter_table(self.make_context(), table)
 .literal(' DROP FOREIGN KEY ')
 .sql(Entity(fk_constraint)))

 def add_inline_fk_sql(self, ctx, field):
 pass

 @operation
 def add_not_null(self, table, column):
 column_def = self._get_column_definition(table, column)
 add_not_null = (self
 ._alter_table(self.make_context(), table)
 .literal(' MODIFY ')
 .sql(column_def.sql(is_null=False)))

 fk_objects = dict(
 (fk.column, fk)
 for fk in self.database.get_foreign_keys(table))
 if column not in fk_objects:
 return add_not_null

 fk_metadata = fk_objects[column]
 return (self.drop_foreign_key_constraint(table, column),
 add_not_null,
 self.add_foreign_key_constraint(
 table,
 column,
 fk_metadata.dest_table,
 fk_metadata.dest_column))

 @operation
 def drop_not_null(self, table, column):
 column = self._get_column_definition(table, column)
 if column.is_pk:
 raise ValueError('Primary keys can not be null')
 return (self
 ._alter_table(self.make_context(), table)
 .literal(' MODIFY ')
 .sql(column.sql(is_null=True)))

 @operation
 def rename_column(self, table, old_name, new_name):
 fk_objects = dict(
 (fk.column, fk)
 for fk in self.database.get_foreign_keys(table))
 is_foreign_key = old_name in fk_objects

 column = self._get_column_definition(table, old_name)
 rename_ctx = (self
 ._alter_table(self.make_context(), table)
 .literal(' CHANGE ')
 .sql(Entity(old_name))
 .literal(' ')
 .sql(column.sql(column_name=new_name)))
 if is_foreign_key:
 fk_metadata = fk_objects[old_name]
 return [
 self.drop_foreign_key_constraint(table, old_name),
 rename_ctx,
 self.add_foreign_key_constraint(
 table,
 new_name,
 fk_metadata.dest_table,
 fk_metadata.dest_column),
]
 else:
 return rename_ctx

 @operation
 def alter_column_type(self, table, column, field, cast=None):
 if cast is not None:
 raise ValueError('alter_column_type() does not support cast with '
 'MySQL.')
 ctx = self.make_context()
 return (self
 ._alter_table(ctx, table)
 .literal(' MODIFY ')
 .sql(Entity(column))
 .literal(' ')
 .sql(field.ddl(ctx)))

 @operation
 def drop_index(self, table, index_name):
 return (self
 .make_context()
 .literal('DROP INDEX ')
 .sql(Entity(index_name))
 .literal(' ON ')
 .sql(Entity(table)))

class SqliteMigrator(SchemaMigrator):
 """
 SQLite supports a subset of ALTER TABLE queries, view the docs for the
 full details http://sqlite.org/lang_altertable.html
 """
 column_re = re.compile('(.+?)\((.+)\)')
 column_split_re = re.compile(r'(?:[^,(]|\([^)]*\))+')
 column_name_re = re.compile(r'''["`']?([\w]+)''')
 fk_re = re.compile(r'FOREIGN KEY\s+\("?([\w]+)"?\)\s+', re.I)

 def _get_column_names(self, table):
 res = self.database.execute_sql('select * from "%s" limit 1' % table)
 return [item[0] for item in res.description]

 def _get_create_table(self, table):
 res = self.database.execute_sql(
 ('select name, sql from sqlite_master '
 'where type=? and LOWER(name)=?'),
 ['table', table.lower()])
 return res.fetchone()

 @operation
 def _update_column(self, table, column_to_update, fn):
 columns = set(column.name.lower()
 for column in self.database.get_columns(table))
 if column_to_update.lower() not in columns:
 raise ValueError('Column "%s" does not exist on "%s"' %
 (column_to_update, table))

 # Get the SQL used to create the given table.
 table, create_table = self._get_create_table(table)

 # Get the indexes and SQL to re-create indexes.
 indexes = self.database.get_indexes(table)

 # Find any foreign keys we may need to remove.
 self.database.get_foreign_keys(table)

 # Make sure the create_table does not contain any newlines or tabs,
 # allowing the regex to work correctly.
 create_table = re.sub(r'\s+', ' ', create_table)

 # Parse out the `CREATE TABLE` and column list portions of the query.
 raw_create, raw_columns = self.column_re.search(create_table).groups()

 # Clean up the individual column definitions.
 split_columns = self.column_split_re.findall(raw_columns)
 column_defs = [col.strip() for col in split_columns]

 new_column_defs = []
 new_column_names = []
 original_column_names = []
 constraint_terms = ('foreign ', 'primary ', 'constraint ', 'check ')

 for column_def in column_defs:
 column_name, = self.column_name_re.match(column_def).groups()

 if column_name == column_to_update:
 new_column_def = fn(column_name, column_def)
 if new_column_def:
 new_column_defs.append(new_column_def)
 original_column_names.append(column_name)
 column_name, = self.column_name_re.match(
 new_column_def).groups()
 new_column_names.append(column_name)
 else:
 new_column_defs.append(column_def)

 # Avoid treating constraints as columns.
 if not column_def.lower().startswith(constraint_terms):
 new_column_names.append(column_name)
 original_column_names.append(column_name)

 # Create a mapping of original columns to new columns.
 original_to_new = dict(zip(original_column_names, new_column_names))
 new_column = original_to_new.get(column_to_update)

 fk_filter_fn = lambda column_def: column_def
 if not new_column:
 # Remove any foreign keys associated with this column.
 fk_filter_fn = lambda column_def: None
 elif new_column != column_to_update:
 # Update any foreign keys for this column.
 fk_filter_fn = lambda column_def: self.fk_re.sub(
 'FOREIGN KEY ("%s") ' % new_column,
 column_def)

 cleaned_columns = []
 for column_def in new_column_defs:
 match = self.fk_re.match(column_def)
 if match is not None and match.groups()[0] == column_to_update:
 column_def = fk_filter_fn(column_def)
 if column_def:
 cleaned_columns.append(column_def)

 # Update the name of the new CREATE TABLE query.
 temp_table = table + '__tmp__'
 rgx = re.compile('("?)%s("?)' % table, re.I)
 create = rgx.sub(
 '\\1%s\\2' % temp_table,
 raw_create)

 # Create the new table.
 columns = ', '.join(cleaned_columns)
 queries = [
 NodeList([SQL('DROP TABLE IF EXISTS'), Entity(temp_table)]),
 SQL('%s (%s)' % (create.strip(), columns))]

 # Populate new table.
 populate_table = NodeList((
 SQL('INSERT INTO'),
 Entity(temp_table),
 EnclosedNodeList([Entity(col) for col in new_column_names]),
 SQL('SELECT'),
 CommaNodeList([Entity(col) for col in original_column_names]),
 SQL('FROM'),
 Entity(table)))
 drop_original = NodeList([SQL('DROP TABLE'), Entity(table)])

 # Drop existing table and rename temp table.
 queries += [
 populate_table,
 drop_original,
 self.rename_table(temp_table, table)]

 # Re-create user-defined indexes. User-defined indexes will have a
 # non-empty SQL attribute.
 for index in filter(lambda idx: idx.sql, indexes):
 if column_to_update not in index.columns:
 queries.append(SQL(index.sql))
 elif new_column:
 sql = self._fix_index(index.sql, column_to_update, new_column)
 if sql is not None:
 queries.append(SQL(sql))

 return queries

 def _fix_index(self, sql, column_to_update, new_column):
 # Split on the name of the column to update. If it splits into two
 # pieces, then there's no ambiguity and we can simply replace the
 # old with the new.
 parts = sql.split(column_to_update)
 if len(parts) == 2:
 return sql.replace(column_to_update, new_column)

 # Find the list of columns in the index expression.
 lhs, rhs = sql.rsplit('(', 1)

 # Apply the same "split in two" logic to the column list portion of
 # the query.
 if len(rhs.split(column_to_update)) == 2:
 return '%s(%s' % (lhs, rhs.replace(column_to_update, new_column))

 # Strip off the trailing parentheses and go through each column.
 parts = rhs.rsplit(')', 1)[0].split(',')
 columns = [part.strip('"`[]\' ') for part in parts]

 # `columns` looks something like: ['status', 'timestamp" DESC']
 # https://www.sqlite.org/lang_keywords.html
 # Strip out any junk after the column name.
 clean = []
 for column in columns:
 if re.match('%s(?:[\'"`\]]?\s|$)' % column_to_update, column):
 column = new_column + column[len(column_to_update):]
 clean.append(column)

 return '%s(%s)' % (lhs, ', '.join('"%s"' % c for c in clean))

 @operation
 def drop_column(self, table, column_name, cascade=True):
 return self._update_column(table, column_name, lambda a, b: None)

 @operation
 def rename_column(self, table, old_name, new_name):
 def _rename(column_name, column_def):
 return column_def.replace(column_name, new_name)
 return self._update_column(table, old_name, _rename)

 @operation
 def add_not_null(self, table, column):
 def _add_not_null(column_name, column_def):
 return column_def + ' NOT NULL'
 return self._update_column(table, column, _add_not_null)

 @operation
 def drop_not_null(self, table, column):
 def _drop_not_null(column_name, column_def):
 return column_def.replace('NOT NULL', '')
 return self._update_column(table, column, _drop_not_null)

 @operation
 def alter_column_type(self, table, column, field, cast=None):
 if cast is not None:
 raise ValueError('alter_column_type() does not support cast with '
 'Sqlite.')
 ctx = self.make_context()
 def _alter_column_type(column_name, column_def):
 node_list = field.ddl(ctx)
 sql, _ = ctx.sql(Entity(column)).sql(node_list).query()
 return sql
 return self._update_column(table, column, _alter_column_type)

 @operation
 def add_constraint(self, table, name, constraint):
 raise NotImplementedError

 @operation
 def drop_constraint(self, table, name):
 raise NotImplementedError

 @operation
 def add_foreign_key_constraint(self, table, column_name, field,
 on_delete=None, on_update=None):
 raise NotImplementedError

[docs]def migrate(*operations, **kwargs):
 for operation in operations:
 operation.run()

Detailed structure

Warning

This section is not up to date anymore!

Here is a small bottom-up approach of the library to justify its structure.

Rationale for the structure

The basis: a graph

The core object is nngt.core.GraphObject that inherits from either gt.Graph or snap.TNEANet and Shape that encodes the spatial structure of the neurons’ environment.
The purpose of GraphObject is simple: implementing a library independant object with a unique set of functions to interact with graphs.

Warning

This object should never be directly modified through its methods but rather using those of the four containing classes. The only reason to access this object should be to perform graph-theoretical measurements on it which do not modify its structure; any other action will lead to undescribed behaviour.

Frontend

Detailed neural networks contain properties that the GraphObject does not know about; because of this, direct modification of the structure can lead to nodes or edges missing properties or to properties assigned to nonexistent nodes or edges.

The user can safely interact with the graph using one of the following classes:

	Graph: container for simple topological graphs with no spatial embedding, nor biological properties

	SpatialGraph: container for spatial graphs without biological properties

	Network: container for topological graphs with biological properties (to interact with NEST)

	SpatialNetwork: container with spatial and biological properties (to interact with NEST)

The reason behind those four objects is to ensure coherence in the properties: either nodes/edges all have a given property or they all don’t.
Namely:

	adding a node will always require a position parameter when working with a spatial graph,

	adding a node or a connection will always require biological parameters when working with a network.

Moreover, these classes contain the GraphObject in their graph attribute and do not inherit from it. The reason for this is to make it easy to maintain different addition/deletion functions for the topological and spatial container by keeping independant of the graph library. (otherwise overwriting one of these function would require the use of library-dependant features).

Graph attributes

Warning

This section is not up to date anymore!

The Graph class and its subclasses contain several attributes
regarding the properties of the edges and nodes. Edges attributes are contained
in the graph dictionary; more complex properties about the biological details
of the nodes/neurons are contained in the NeuralPop member of the
Graph. These are briefly described in
Properties of graph components; a more detailed description is provided
here.

Attributes and graph libraries

Usual graph libraries can store node and edge properties; as an example, many
graphs are weighted and these weights can then be used to compute other
properties such as weighted centralities, which is why it is interesting to
have those properties stored in the basic graph library class.

The graph_object.py file contains the _GtEProperty and _GtNProperty
classes which allow a generic interactions with the various libraries ways of
storing properties.

However, several problems occurs:

	for graph_tool [https://graph-tool.skewed.de], the edge properties are
stored in a linear array that is not directly related to the adjacency matrix,
thus difficult to handle; this could however be avoided by multiplying the
adjacency matrix by the property of interest…

	but for igraph [http://igraph.org/], there is not straightforward way to
obtain a scipy adjacency matrix multiplied by an edge property…

To get rid of those problems, the (possibly temporary) solution adopted is to
have the weights (synaptic strength) and types (inhibitory or excitatory)
attributes stored both in the graph library object and in the
Graph container.

The libraries indices the edges in the order they are created; because of this,
weights must be added to the library using the edge list, which is stored
inside the Graph container (access it through the ''edges''
key). The addition is performed in the following way: let
lil_matrix_attribute contain the attribute of interest and network be
the graph container to which we want to add the property, then the following
code is used,

sources, targets = network["edges"][:,0], network["edges"][:,1]
list_ordered_weights = lil_matrix_attribute[sources,targets].data[0]
network.graph.new_edge_attribute(
 "weight", "double", values=list_ordered_weights)

Use of attributes in a graph object

This allows for fast graph filtering: we can keep only the edges or nodes we
are interested in.

This property is invaluable if you want to study the graph properties of only
the inhibitory network or look a the squeleton of the strongest synapses in the
graph…

Note

This mixed format is not too good… I should either store everything in
the container or in the library graph.

	Library graph:

	
	difficult to manage

	but users can use the library on the graph

	if I cannot provide a fast conversion, it will be bad to interact
with NEST

	Container:

	
	easier to manage

	but need to convert for the analysis functions

	users cannot use the library as the graph misses its attributes

	optimized for NEST interactions

Library shipping

Multiplatform usage:

	NNGT can be used in pure-python mode on any platform

	Compilation of the multithreading algorithms can also be done on all
available platforms

	To simplify things, precompiled binaries for Linux and Mac (@todo windows)
are provided directly on PyPi.

The manylinux wheels

To prepare the manylinux wheels, one must use the docker containers
provided by https://github.com/pypa/manylinux

Note

Reminder for docker: dockerd must be running, for issue on archlinux,
see https://unix.stackexchange.com/questions/478387/running-a-centos-docker-image-on-arch-linux-exits-with-code-139

docker pull quay.io/pypa/manylinux1_x86_64

Run the container and give it a name

docker run -it –name=manylinux quay.io/pypa/manylinux1_x86_64

It can also be started afterwards with

docker start -i manylinux

Once in the container, I wrote an automatic install file (build_wheels.sh)
to build NNGT

#!/bin/bash
set -e -x

Compile wheels
for PYBIN in /opt/python/cp3[5-9]*/bin; do

“${PYBIN}/pip” install -r requirements.txt
“${PYBIN}/pip” wheel NNGT/ -w wheelhouse/

done

Bundle external shared libraries into the wheels
for whl in wheelhouse/*.whl; do

auditwheel repair “$whl” -w wheelhouse/

done

associated to a requirements.txt file

numpy>=1.17
scipy
cython

Save these as on the same level as the root NNGT folder (the one containing
the setup.py), and create a wheelhouse folder also next to it, then
just run build_wheels.sh.

Once the “repaired” wheels have been saved, you can extract them from the
docker container using

docker cp manylinux:/home/wheelhouse/ /where/you/want/it

NB: unfortunately one must remove manually all unnecessary files from the
wheels before running the build to prevent them from being included…

Pushing to PyPi

https://twine.readthedocs.io/en/latest/

First test it:

twine upload –repository-url https://test.pypi.org/legacy/ *
pip install –user –index-url https://test.pypi.org/simple/ nngt

Then upload “for real”

twine upload dist/*

Speed optimisation

Building NEST networks

Currently, building networks via nngt is roughly 20 times slower than building
them with NEST because the generation of the network is done using NEST’s
DataConnect function, which is super slow…

	In the future, I’ll see whether:

	
	DataConnect can be sped up

	I can make use of the csa library to generate the network in NEST more
efficiently

Building and studying graphs

Use multigraph=True if you don’t mind having multiple edges (which become
negligible for large graphs anyway): it leads to up to 10-fold speed increase.

When looping over edges, use a generator rather than a list.

Precise spike timing and interpolation

Precise spike timing

The implementation with the recovery pseudo event should be kept (cleaner) and the offset needs to be step - spike_offset because regular (on-grid) spikes should arrive at the end of each step.

Interpolation

Pre-existing implementation (make them more general using the state vector.

Visualizing graph properties

Visualizing graph structures

The following examples show how to use NNGT to draw graphs in ways that
make their structural properties stand out.

Interoperability

Graph generation

Look into CSA and the libraries they provide from Djurfeldt 2014.

Simulators

Look into PyNN.

Synaptic weights

Make it so that synaptic weights always have the same effect: they lead to the
same peak value/integral in the membrane potential:

	for each neural population, compute a map with N bins (lin or logspace),

	make a function that computes the index in the map from the weight value,

	this means that before constructing the NEST network I have to build a fake
network to compute the map, then reset the kernel.

Computation times

01:55.748 total execution time for gallery_graph_properties files:

	Plot various graph properties (plot_attributes.py)

	01:12.720

	0.0 MB

	Plot the betweenness distributions of a graph (plot_betweenness.py)

	00:41.210

	0.0 MB

	Plot the degree distributions of a graph (plot_degrees.py)

	00:01.818

	0.0 MB

Computation times

00:28.656 total execution time for gallery_graph_structure files:

	Hive plot panel (plot_hive_panel.py)

	00:23.391

	0.0 MB

	Layouts for topological representations (plot_layouts.py)

	00:03.554

	0.0 MB

	Chord diagram (plot_chord_diagram.py)

	00:01.711

	0.0 MB

 _images/math/df0deb143e5ac127f00bd248ee8001ecae572adc.png

_images/math/e542f9542337cfa0043553755ae103d62f67e488.png

_images/math/d8be2be19e428875ed38fdc6e571cfc9078144a1.png

_images/math/d9c1f836d5e1cdc20eb3132147e33053437d32a3.png

_images/math/e9af93a48e33ed227f4307b201484e1c8c16475c.png

_images/math/eaa6ad49a7f78fe5a13b486690163bf2dc7e3e60.png

_static/comment-bright.png

_static/broken_example.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/ajax-loader.gif

_images/math/d77e88f681e6a9b40626e0a5b6f2a3064ec0ded8.png

_images/math/d79e8a2c7ce54906c2b25549da38bdbe02cf40d6.png

_images/math/d1dc6cea55311f8b842fa31364fc6bb4241b1450.png

_images/math/d5c9aee519aefc92c192648b6a0d0b7d63d0e74c.png

_static/up-pressed.png

_static/up.png

_static/minus.png

_static/nngt_logo.png

_static/nngt_ico.png

_static/no_image.png

_static/plus.png

_images/math/540bb60c592e60d7deb583a0dd326a7f3d19ca13.png
o Sy (W),
P ZW (W[;])Z
i

_images/math/5af260aed48a2c1e03d51cb0c9a745daa35f0d9a.png

_images/math/5271024d326a878bb2d75f58bfd814db3701d4b6.png
3wl wliln)

B () 2

_images/math/53cd175791b0dd6c384e1f6816bf5cdfcac59ef0.png

_images/math/618cc48733a7b08fdffe08d96ae64e9199b8f885.png

_images/math/63751cb2e98ba393b0f22e45ca127c3cebb61487.png

_images/math/5de54045f6111350e6583f519707c05ec2d0578b.png

_images/math/5e54e8a2d200d09beff7a56f7a3f0ea75dbd342c.png
T Lints — Leand

_images/math/64d35e0d244d684fdf28d2b4fed2cabe9cb22dcb.png

_images/math/686dc25f03150afd20bfd4df865940d21c3f449c.png

_images/math/f6147aa7bae433783935cb17f9ba1bdc1fd863b8.png
px k' +c

_images/math/f4170ed8938b79490d8923857962695514a8e4cb.png

_images/math/fa36c4f0ef721571471343f86f17eaeaa8f9278c.png

_images/math/f6ce849649e417dd3f7264aa9d3115027b88d815.png

_images/sphx_glr_plot_attributes_thumb.png
Distance distrbution for DR

£

_images/sphx_glr_plot_betweenness_001.png
160

140

120

Node count

=
° B
& 8

a
g

8

20

0

Betweenness distribution for DR
Edge betweenness

107° 1075 104 1073 1072 107t
=== Node betweenness
= Edge betweenness 1000
800
600
400
200
0
107° 1075 1074 1073 1072 107t 100

Node betweenness

Edge count

_images/sphx_glr_plot_attributes_002.png
60

Distance

Distance vs betweenness

DR

0.000

0.002

0.004

0.006 0.008
Betweenness

0.010

0.012

_images/sphx_glr_plot_attributes_003.png
8

N

Out-degree
g

-
5

8

N

Out-degree
g

-
5

DR

Out-degree vs betweenness

Out-degree vs clustering

o 30
g
&
320
=
© 10
0.00 0.01 0.02 02 03 04 05 06
Betweenness Clustering
Out-degree vs in-degree Out-degree vs subgraph_central
% o TN
L4 D L4
30
H o B v,
5
$20
=
© 10
.
10 20 30 000 025 050 075 100

In-degree

Subgraph_centrality

_images/sphx_glr_plot_betweenness_002.png
Node count

600

500

Betweenness distribution for DR

0.00

0.02

Edge betweenness
0.04 0.06 0.08

== Node betweenness

e Edge betweenness

0.04 0.06
Node betweenness

3000

2500

Edge count

_images/math/743284c314d0aaaf8f75817dbd03206c1bfa3772.png
Deltay

_images/math/758f30647fa7f68ec26749d044dd6d836aa6d8b5.png
{MSD + 1+ i}ico.N

_images/math/6b3d64b5d5e65c57dcbdfd6e74e1e127ba6bc9cf.png

_images/math/6c6ffc1298f231969295017c184d7ad1b2d4d4fe.png
wlzl =

_images/math/7e4099ca4650015b81573b6ebef56701f5d8e6c2.png

_images/sphx_glr_plot_attributes_001.png
Distance distribution for DR

Node count

30
Distance

_images/math/7e808c222a10024d08803a2ebe2fd73a4cdb6b9b.png

_images/math/76f1d8ace30435987c01a00ca53a71cba1f40e6c.png

_images/math/7e1d67ee6e3991a627cf58d1c14d56fc770d182a.png

_images/math/80fb442a10d5820b28349fe57c9bf932475ff53c.png

_images/math/edba97b4c0d864d26e92ea7ea73767fa38eef3f7.png

_images/math/eb499b1d23b4787229deaa681e45668e5b76f77d.png
Pyelz—n)*/(207)

_images/math/f2fa2473ea38a406dbdec735d1f37a00580b6adf.png

_images/math/ee0e1b6e0fb1b9138b30f7c2fb23aaf85b077069.png

_images/math/6b21e0b0899a0d2879d3b8019087fa630bab4ea2.png

_images/math/88844ec1be37ba4fe7981f952f559ac48cc831c8.png

_images/math/8b4d62c049899f186e86c10ed562f0522388afb4.png
2rf(1+ 1)

_images/math/86fc341e7bf84b2a5fa1b8274a4e721dd574b084.png

_images/math/8752a1a90cd2d734261759e78a0b7ce5f4ed35e7.png
plky) ox ke

_images/math/953bde2ab2fca30897f66185e5b37b73747b8b46.png

_images/math/98251d57a84fb03377c2aefbf3fda8aae1f5f2fc.png

_images/math/8d01b8a6ef9c9b389d7b5e1913c13f9365664814.png
{wg

_images/math/92c8462c1252a732e1fcab0adfde9acde3b8dabe.png

_images/math/81d4e21093a294aaab4f441ff172923d688c9b7e.png

_images/math/8437f4f3cfb4a654e779950d319dac1c13ac94e0.png
e{l,

_images/math/b67b5236b96cbe11b113e62535518a80d54a8109.png

_images/math/bf376b6e8b6fb86a9a64d28c87d06bc4987a5acc.png

_images/math/a67f1fde4a209990978d3c584a91faf24a376f18.png
W+ WA+ A7)

Chi= @ =

_images/math/b325547b16fe0d6f30d81961b2b1e4e95ccd6464.png

_images/math/cf1d2b18a2ae5bb15647683e6b4cb4ec9bf76f4c.png
3ok Vi

_images/math/c356d9bcc7480ee5eb2f9818eda08d51bda5dd63.png

_images/math/ccb082d84eead406b13ed19d44cf15f70cc0c6b3.png
jms

_images/math/9e5f2ec2545958904136473d00f3743ab766004f.png

_images/math/a42f6408a8f5c160e2cc85c307326c2cf6c74055.png

_images/math/99d870cc0392f9bac234c8c556d3ebcdf6b4d2a7.png
M

_images/sphx_glr_plot_betweenness_thumb.png
Node count

Betweenness distribution for DR

Edge betweenness.

= ode betweenness

= edge betweenness.

06 10 w4 100
Node betweenness

10

v

Edge count

_images/sphx_glr_plot_chord_diagram_001.png

_images/sphx_glr_plot_betweenness_003.png
Node count

Betweenness distribution for DR

300

250

200

150

100

== Node betweenness

0.04 0.06
Node betweenness

0.08 0.10

_images/sphx_glr_plot_betweenness_004.png

_images/sphx_glr_plot_degrees_002.png
Node count

Degree distribution for RandomSF

10t

Degree

= In degree
= out degree

_images/sphx_glr_plot_degrees_003.png
Node count

Degree distribution for RandomSF

350

Degree

= In degree
= out degree

_images/sphx_glr_plot_chord_diagram_thumb.png

_images/sphx_glr_plot_degrees_001.png
Node count

700

600

500

400

300

200

Degree distribution for RandomSF

= In degree
= out degree

Degree

600

800

_images/sphx_glr_plot_degrees_thumb.png
Node count

70

o0

w0

20

100

Degree distribution for RandomSF

5 200

E)

- degree
= Out degree

%0

_images/sphx_glr_plot_hive_panel_001.png

_images/sphx_glr_plot_hive_panel_thumb.png
K 2
¥
Sl s

nav.xhtml

 Table of Contents

 		
 Welcome to NNGT’s documentation!

 		
 Installation

 		
 Dependencies

 		
 Basic dependencies

 		
 Additionnal dependencies

 		
 Simple install

 		
 Linux

 		
 Mac

 		
 Windows

 		
 Local install

 		
 Configuration

 		
 Using NEST

 		
 Intro & user manual

 		
 Yet another graph library?

 		
 Documentation structure

 		
 Description

 		
 The graph objects

 		
 Additional properties

 		
 Graph-theoretical models

 		
 Known bugs

 		
 Tutorial

 		
 NNGT properties and configuration

 		
 The Graph object

 		
 Basic functions

 		
 Node and edge attributes

 		
 Generating and analyzing more complex networks

 		
 Using random numbers

 		
 Structuring nodes: Group and Structure

 		
 The same with neurons: NeuralGroup, NeuralPop

 		
 Real neuronal networks and NEST interaction: the Network

 		
 Underlying graph objects and libraries

 		
 Example using graph-tool

 		
 Example using igraph

 		
 Example using networkx

 		
 Gallery

 		
 Visualizing graph structures

 		
 Visualizing graph properties

 		
 Visualizing graph structures

 		
 Visualizing graph properties

 		
 Contributing to NNGT

 		
 Signaling issues and bugs

 		
 Preparing a contribution

 		
 Sending a patch to SourceHut

 		
 First contribution

 		
 Post-review changes: later contributions

 		
 Making a PR on GitHub

 		
 Main module (API)

 		
 Graph classes

 		
 Details

 		
 Main functions

 		
 Details

 		
 Side classes

 		
 Details

 		
 NNGT

 		
 Available modules

 		
 Units

 		
 Main classes and functions

 		
 Details

 		
 Analysis module

 		
 Content

 		
 Details

 		
 Database module

 		
 Functions

 		
 Recording a simulation

 		
 Checking results in the database

 		
 Generation module

 		
 Content

 		
 Generation functions

 		
 Connectors

 		
 Rewiring functions

 		
 Details

 		
 Geometry module

 		
 Overview

 		
 Principle

 		
 Content

 		
 Lib module

 		
 Content

 		
 Details

 		
 Plot module

 		
 Content

 		
 Details

 		
 Simulation module

 		
 Content

 		
 Details

_images/math/011e5790a6c33043ceadca81d9657dde6c61d769.png

_images/sphx_glr_plot_layouts_001.png
Spring-block layout Random layout

Circular layout

_images/sphx_glr_plot_layouts_thumb.png

_images/math/0de9183d6aadc2336d39422fd131c11d52e6342f.png
Clatt — Cg
Ac =m0

_images/math/14ed5f66ad1e956c9fc65b2312acb35f68e13a79.png
NeUrons - mny 2

_images/math/0b7c1e16a3a8a849bb8ffdcdbf86f65fd1f30438.png

_images/math/0d2d2bc60deceb95ff8e836dc2765128d0af1868.png

_images/math/15a9d202d199c0cb3b1070480f5da79c21a986c8.png

_images/math/16128f19d414a20b3b673790934286b6c8b02abd.png
P(i, §) ox e~dii/scale

_images/math/18ce1b327438a99ab69f514b2d46ebd7a90f5664.png
A+ AT
Py —

_images/math/20c9d7160a5550f43064c27e77f3e7f60dd3d25f.png

_images/math/2747dec3053aad7198d25333400f57518bfac43e.png
d =

_images/math/1a346bdd38c5effbb8b171169bddc5e935a11faa.png
g = ik VY
_ 2k Wik W

DY)
itk2i Wij Wik
ik DoV

_images/math/1feb9e522fbde30c9b3507d123934efb8910bfa3.png

_images/math/3707286326c05ad688e6ebcc3ce93269b7f2e099.png

_images/math/37e663c0f1dc4be42aa2eee1eb9065a4db690579.png
HUGEEDN

(sﬁl)z,m

o

_images/math/2c4701e1ccc7ead229b161c7b6957372000c68eb.png

_images/math/32677974381e44b9c2aaec73bedb6c0bfcc963ca.png

_images/math/3a25c9c1c752178c0226eac5349d77ec68bf083e.png

_images/math/3a4949c7380f817d82958f6eefc5a59b64e2c653.png

_images/math/3814e4fc889328378f574bfdea17b6ccc6c3043c.png
P(1,j) o< (1 —d;; /scale))

_images/math/3d42a5d5f823880d474c11788815401c226299b7.png

_images/math/3d9a3007f82f0e949561b5eb7553dc2d28d9c93f.png
d(u, v)

_images/math/3c62d943f17a27a3b56ce22325e0b4907ea73b26.png
plk;) o< k"

_images/math/3c65e36e159fcbae29b93915b15b2b3357fd8254.png
Dk VWi Wk

_images/math/51178a0ec83fc25641dfdfc48d706e365cba33e9.png
Pyellos(z)—p)* /(207)

_images/math/49b491bee5ed769280861f88e8719886d81579e9.png

_images/math/509a82a211a293940b41846bfff9380af43d09ca.png

