
NNGT Documentation
Release 2.3.0

Tanguy Fardet

Feb 23, 2021

User Documentation

1 Overview 3
1.1 Main classes . 3
1.2 Generation of graphs . 3
1.3 Interacting with NEST . 4

2 The docs 5
2.1 Installation . 5
2.2 Intro & user manual . 10
2.3 Tutorial . 165
2.4 Gallery . 173
2.5 Contributing to NNGT . 189
2.6 Database module . 191

3 Indices and tables 197

Bibliography 199

Python Module Index 203

Index 205

i

ii

NNGT Documentation, Release 2.3.0

User Documentation 1

https://builds.sr.ht/~tfardet/nngt
https://doi.org/10.5281/zenodo.3402493

NNGT Documentation, Release 2.3.0

2 User Documentation

CHAPTER 1

Overview

The Neural Networks and Graphs’ Topology (NNGT) module provides a unified interface to access, generate, and
analyze networks via any of the well-known Python graph libraries: networkx, igraph, and graph-tool.

For people in neuroscience, the library also provides tools to grow and study detailed biological networks by interfacing
efficient graph libraries with highly distributed activity simulators.

The library has two main targets:

• people looking for a unifying interface for these three graph libraries, allowing to run and share a single code on
different platforms

• neuroscience people looking for an easy way to generate complex networks while keeping track of neuronal
populations and their biological properties

1.1 Main classes

NNGT provides four main classes, the two first being aimed at the graph-theoretical community, the third and fourth
are more for the neuroscience community:

Graph provides a simple implementation over graphs objects from graph libraries (namely the addition of a name,
management of detailed nodes and connection properties, and simple access to basic graph measurements).

SpatialGraph a Graph embedded in space (nodes have positions and connections are associated to a distance)

Network provides more detailed characteristics to emulate biological neural networks, such as classes of inhibitory
and excitatory neurons, synaptic properties. . .

SpatialNetwork combines spatial embedding and biological properties

1.2 Generation of graphs

Structured graphs and connectivity: connectivity between the nodes can be chosen from various well-known graph
models, specific groups and structures can be generated to simplify edge generation

3

https://networkx.github.io/
http://igraph.org/
http://graph-tool.skewed.de

NNGT Documentation, Release 2.3.0

Populations: populations of neurons can be used and be set to respect various constraints (for instance a given fraction
of inhibitory neurons), they simplify network generation and make it highly efficient to interact with the NEST
simulator

Synaptic properties: synaptic weights and delays can be set from various distributions or correlated to edge proper-
ties

1.3 Interacting with NEST

The generated graphs can be used to easily create complex networks using the NEST simulator, on which you can then
simulate their activity.

4 Chapter 1. Overview

CHAPTER 2

The docs

2.1 Installation

2.1.1 Dependencies

This package depends on several libraries (the number varies according to which modules you want to use).

Basic dependencies

Regardless of your needs, the following libraries are required:

• numpy (>= 1.11 required for full support)

• scipy

Though NNGT implements a default (limited) backend, installing one of the following libraries is highly recommended
to do some proper network analysis:

• graph_tool (> 2.22)

• or igraph

• or networkx (>= 2.4)

Additionnal dependencies

• matplotlib (optional but will limit the functionalities if not present)

• shapely for complex spatial embedding

• peewee (> 3) for database features

5

http://www.numpy.org/
http://www.scipy.org/scipylib/index.html
http://graph-tool.skewed.de
http://igraph.org/
https://networkx.github.io/
http://matplotlib.org/
http://shapely.readthedocs.io/en/latest/index.html

NNGT Documentation, Release 2.3.0

Note: If they are not present on your computer, pip will directly try to install scipy and numpy. However, if you
want advanced network analysis features, you will have to install the graph library yourself (only networkx can be
installed directly using pip)

2.1.2 Simple install

Linux

Install the requirements (through apt on debian/ubuntu/mint, pacman and trizen on arch-based distributions, or
yum on fedora/centos. Otherwise you can also install the latest versions via pip:

pip install --user numpy scipy matplotlib networkx

To install the last stable release, just use:

pip install --user nngt

Under most linux distributions, the simplest way to get the latest version of NNGT is to install to install both pip and
git, then simply type into a terminal:

pip install --user git+https://github.com/Silmathoron/NNGT.git

Mac

I recommend using Homebrew or Macports with which you can install all required features to use NEST and NNGT
with graph-tool. The following command lines are used with python 3.7 but you can use any python >= 3.5 (just
replace all 37/3.7 by the desired version).

Homebrew

brew tap homebrew/core
brew tap brewsci/science

brew install gcc-8 cmake gsl autoconf automake libtool
brew install python

if you want nest, add

brew install nest --with-python

(note that setting --with-python=3 might be necessary)

Macports

sudo port select gcc mp-gcc8 && sudo port install gsl +gcc8
sudo port install autoconf automake libtool
sudo port install python37 pip
sudo port select python python37
sudo port install py37-cython
sudo port select cython cython37
sudo port install py37-numpy py37-scipy py37-matplotlib py37-ipython
sudo port select ipython ipython-3.7
sudo port install py-graph-tool gtk3

6 Chapter 2. The docs

https://pip.pypa.io/en/stable/installing/
https://git-scm.com/
https://brew.sh/
https://guide.macports.org/#installing

NNGT Documentation, Release 2.3.0

Once the installation is done, you can just install:

export CC=gcc-8
export CXX=gcc-8
pip install --user nngt

Windows

It’s the same as Linux for windows users once you’ve installed Python and pip, but NEST won’t work.

Note: igraph can be installed on windows if you need something faster than networkx.

Using the multithreaded algorithms

Install a compiler (the default msvc should already be present, otherwise you can install VisualStudio) before you
make the installation.

In case of problems with msvc:

• install MinGW or MinGW-W64

• use it to install gcc with g++ support

• open a terminal, add the compiler to your PATH and set it as default: e.g.

set PATH=%PATH%;C:\MinGW\bin
set CC=C:\MinGW\bin\mingw32-gcc.exe
set CXX=C:\MinGW\bin\mingw32-g++.exe

• in that same terminal window, run pip install --user nngt

2.1.3 Local install

If you want to modify the library more easily, you can also install it locally, then simply add it to your PYTHONPATH
environment variable:

cd && mkdir .nngt-install
cd .nngt-install
git clone https://github.com/Silmathoron/NNGT.git .
git submodule init
git submodule update
nano .bash_profile

Then add:

export PYTHONPATH="/path/to/your/home/.nngt-install/src/:PYTHONPATH"

In order to update your local repository to keep it up to date, you will need to run the two following commands:

git pull origin master
git submodule update --remote --merge

2.1. Installation 7

http://docs.python-guide.org/en/latest/starting/install/win/
http://www.nest-simulator.org/
http://mingw.org/
https://mingw-w64.org/doku.php

NNGT Documentation, Release 2.3.0

2.1.4 Configuration

The configuration file is created in ~/.nngt/nngt.conf after you first run import nngt in python. Here is the
default file:

#-------------------------#
NNGT configuration file
#-------------------------#

version = {version}

#-------------------------
default backend ---
#-------------------------

library that will be used in the background to handle graph generation
(choose among "graph-tool", "igraph", "networkx", or "nngt"). Note that only
the 3 first options will allow full graph analysis features while only the
last one allows for fully distributed memory on clusters.

backend = graph-tool

#----------------------
Matplotlib backend --
#----------------------

Uncomment and choose among your available backends.
See http://matplotlib.org/faq/usage_faq.html#what-is-a-backend for details

#mpl_backend = Qt5Agg

use TeX rendering for axis labels
use_tex = False

color library either matplotlib or seaborn
color_lib = matplotlib

palette to use
palette_continuous = magma
palette_discrete = Set1

#-----------------------------
Settings for database ---
#-----------------------------

use_database = False

use a database (by default, will be stored in SQLite database)
db_to_file = False
db_folder = ~/.nngt/database
db_name = main

database url if you do not want to use a SQLite file
example of real database url: db_url = mysql://user:password@host:port/my_db
db_url = mysql:///nngt_db

(continues on next page)

8 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

(continued from previous page)

#-----------------------------
Settings for data logging ---
#-----------------------------

which messages are printed? (see logging module levels:
https://docs.python.org/2/library/logging.html#levels)
set to INFO or below to add the config messages on import
set to WARNING or above to remove the messages on import
log_level = WARNING

write log to file?
log_to_file = True
if True, write to default folder '~/.nngt/log'
#log_folder = ~/.nngt/log

#----------------------------
Multithreaded/MPI algorithms --
#----------------------------

C++ algorithms using OpenMP are compiled and imported using Cython if True,
otherwise regular numpy/scipy algorithms are used.
Multithreaded algorithms should be prefered if available.

multithreading = True

If using MPI, current MT or normal functions will be used except for the
distance_rule algorithm, which will be overloaded by its MPI version.
Note that the MPI version is not locally multithreaded.

mpi = False

It can be necessary to modify this file to use the desired graph library, but mostly to correct problems with GTK and
matplotlib (if the plot module complains, try Gtk3Agg and Qt4Agg/Qt5Agg).

2.1.5 Using NEST

If you want to simulate activities on your complex networks, NNGT can directly interact with the NEST simulator to
implement the network inside PyNEST. For this, you will need to install NEST with Python bindings, which requires:

• the python headers (python-dev package on debian-based distribs)

• autoconf

• automake

• libtool

• libltdl

• libncurses

• readlines

• gsl (the GNU Scientific Library) for many neuronal models

2.1. Installation 9

http://www.nest-simulator.org/

NNGT Documentation, Release 2.3.0

2.2 Intro & user manual

2.2.1 Yet another graph library?

It is not ;)

This library is based on existing graph libraries (such as graph-tool, igraph, networkx, and possibly soon SNAP) and
acts as a convenient interface to build various networks from efficient and verified algorithms. Most importantly, it
provides a series of analysis functions that are guaranteed to provide the same results with all backends, enabling fully
portable codes (see Consistent tools for graph analysis).

Moreover, it also acts as an interface between those graph libraries and the NEST and DeNSE simulators.

Documentation structure

For users that are in a hurry, you can go directly to the Tutorial section. For more specific and detailed examples,
several topics are then detailed separately in the following pages:

Graph generation

This page gives example on how to generate increasingly complex network structures. The ex-
ample files can be found at: docs/examples/simple_graphs.py, docs/examples/multi_groups_network.py,
docs/examples/basic_nest_network.py, and docs/examples/nest_receptor_ports.py.

Content:

• Principle

• Modularity

• Setting weights

• Examples

– Simple generation

– Networks composed of heterogeneous groups

– Use with NEST

• Advanced examples

– Receptor ports in NEST

Principle

In order to keep the code as generic and easy to maintain as possible, the generation of graphs or networks is divided
in several steps:

• Structured connectivity: a simple graph is generated as an assembly of nodes and edges, without any biological
properties. This allows us to implement known graph-theoretical algorithms in a straightforward fashion.

• Populations: detailed properties can be implemented, such as inhibitory synapses and separation of the neurons
into inhibitory and excitatory populations – these can be done while respecting user-defined constraints.

10 Chapter 2. The docs

http://graph-tool.skewed.de
http://igraph.org/
https://networkx.github.io/
http://snap.stanford.edu/snap/
http://www.nest-simulator.org/
https://dense.readthedocs.io
https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/simple_graphs.py
https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/multi_groups_network.py
https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/basic_nest_network.py
https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/nest_receptor_ports.py

NNGT Documentation, Release 2.3.0

• Synaptic properties: eventually, synaptic properties such as weight/strength and delays can be added to the
network.

Modularity

The library as been designed so that these various operations can be realized in any order!

Juste to get work on a topological graph/network:

1) Create graph class

2) Connect

3) Set connection weights (optional)

4) Spatialize (optional)

5) Set types (optional: to use with NEST)

To work on a really spatially embedded graph/network:

1) Create spatial graph/network

2) Connect (can depend on positions)

3) Set connection weights (optional, can depend on positions)

4) Set types (optional)

Or to model a complex neural network in NEST:

1) Create spatial network (with space and neuron types)

2) Connect (can depend on types and positions)

3) Set connection weights and types (optional, can depend on types and positions)

Setting weights

The weights can be either user-defined or generated by one of the available distributions (Attributes and distributions).
User-defined weights are generated via:

• a list of edges

• a list of weights

Pre-defined distributions require the following variables:

• a distribution name (“constant”, “gaussian”. . .)

• a dictionary containing the distribution properties

• an optional attribute for distributions that are correlated to another (e.g. the distances between neurons)

• a optional value defining the variance of the Gaussian noise that should be applied on the weights

There are several ways of settings the weights of a graph which depend on the time at which you assign them.

At graph creation You can define the weights by entering a weights argument to the constructor; this
should be a dictionary containing at least the name of the weight distribution: {"distrib":
"distribution_name"}. If entered, this will be stored as a graph property and used to assign the weights
whenever new edges are created unless you specifically assign rules for those new edges’ weights.

At any given time You can use the set_weights() function to set the weights of a graph explicitely by using:

2.2. Intro & user manual 11

NNGT Documentation, Release 2.3.0

graph.set_weights(elist=edges_to_weigh, distrib="distrib_of_choice", ...)

For more details on weights, other attributes, and available distributions, see Properties of graph components.

Examples

import nngt
import nngt.generation as ng

Simple generation

num_nodes = 1000
avg_deg_er = 25
avg_deg_sf = 100

random graphs
g1 = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg_er)

the same graph but undirected
g2 = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg_er, directed=False)

2-step generation of a scale-free with Gaussian weight distribution
w = {

"distribution": "gaussian",
"avg": 60.,
"std": 5.

}

g3 = nngt.Graph(num_nodes, weights=w)
ng.random_scale_free(2.2, 2.9, avg_deg=avg_deg_sf, from_graph=g3)

same in 1 step
g4 = ng.random_scale_free(

2.2, 2.9, avg_deg=avg_deg_sf, nodes=num_nodes, weights=w)

Networks composed of heterogeneous groups

'''
Make the population
'''

two groups
g1 = nngt.Group(500) # nodes 0 to 499
g2 = nngt.Group(500) # nodes 500 to 999

make structure
struct = nngt.Structure.from_groups((g1, g2), ("left", "right"))

create network from this population
net = nngt.Graph(structure=struct)

(continues on next page)

12 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

(continued from previous page)

'''
Connect the groups
'''

inter-groups (Erdos-Renyi)
prop_er1 = {"density": 0.005}
ng.connect_groups(net, "left", "right", "erdos_renyi", **prop_er1)

intra-groups (Newman-Watts)
prop_nw = {

"coord_nb": 20,
"proba_shortcut": 0.1,
"reciprocity_circular": 1.

}

ng.connect_groups(net, "left", "left", "newman_watts", **prop_nw)
ng.connect_groups(net, "right", "right", "newman_watts", **prop_nw)

Use with NEST

Generating a network with excitatory and inhibitory neurons:

'''
Build a network with two populations:

* excitatory (80%)

* inhibitory (20%)
'''
num_nodes = 1000

800 excitatory neurons, 200 inhibitory
net = nngt.Network.exc_and_inhib(num_nodes, ei_ratio=0.2)

'''
Connect the populations.
'''
exc -> inhib (Erdos-Renyi)
ng.connect_neural_types(net, 1, -1, "erdos_renyi", density=0.035)

exc -> exc (Newmann-Watts)
prop_nw = {

"coord_nb": 10,
"proba_shortcut": 0.1,
"reciprocity_circular": 1.

}
ng.connect_neural_types(net, 1, 1, "newman_watts", **prop_nw)

inhib -> exc (Random scale-free)
prop_rsf = {

"in_exp": 2.1,
"out_exp": 2.6,
"density": 0.2

}
ng.connect_neural_types(net, -1, 1, "random_scale_free", **prop_rsf)

(continues on next page)

2.2. Intro & user manual 13

NNGT Documentation, Release 2.3.0

(continued from previous page)

inhib -> inhib (Erdos-Renyi)

Send the network to NEST:

if nngt.get_config('with_nest'):
import nest
import nngt.simulation as ns

'''
Prepare the network and devices.
'''
send to NEST
gids = net.to_nest()
excite
ns.set_poisson_input(gids, rate=100000.)
record
groups = [key for key in net.population]
recorder, record = ns.monitor_groups(groups, net)

'''
Simulate and plot.
'''
simtime = 100.
nest.Simulate(simtime)

if nngt.get_config('with_plot'):
ns.plot_activity(

recorder, record, network=net, show=True, limits=(0,simtime))

You can check that connections from neurons that are marked as inhibitory are automatically assigned a negative sign
in NEST:

sign of NNGT versus NEST inhibitory connections
igroup = net.population["inhibitory"]
in NNGT
iedges = net.get_edges(source_node=igroup.ids)
w_nngt = set(net.get_weights(edges=iedges))
in NEST
iconn = nest.GetConnections(

source=list(net.population["inhibitory"].nest_gids),
target=list(net.population.nest_gids))

w_nest = set(nest.GetStatus(iconn, "weight"))
in NNGT, inhibitory weights are positive to work with graph analysis
methods; they are automatically converted to negative weights in NEST

Returns: NNGT weights: {1.0} versus NEST weights {-1.0}.

Advanced examples

Receptor ports in NEST

Some models, such as multisynaptic neurons, or advanced models incorporating various neurotransmitters use an
additional information, called "port" to identify the synapse that will be used by the nest.Connect method.

14 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

These models can also be used with NNGT by telling the NeuralGroup which type of port the neuron should try to
bind to.

NB: the port is specified in the source neuron and declares which synapse of the target neuron is concerned.

'''
Build a network with two populations:

* excitatory (80%)

* inhibitory (20%)
'''
num_neurons = 50 # number of neurons
avg_degree = 20 # average number of neighbours
std_degree = 3 # deviation for the Gaussian graph

parameters
neuron_model = "ht_neuron" # hill-tononi model
exc_syn = {'receptor_type': 1} # 1 is 'AMPA' in this model
inh_syn = {'receptor_type': 3} # 3 is 'GABA_A' in this model

synapses = {
(1, 1): exc_syn,
(1, -1): exc_syn,
(-1, 1): inh_syn,
(-1, -1): inh_syn,

}

pop = nngt.NeuralPop.exc_and_inhib(
num_neurons, en_model=neuron_model, in_model=neuron_model,
syn_spec=synapses)

create the network and send it to NEST
w_prop = {"distribution": "gaussian", "avg": 0.2, "std": .05}
net = nngt.generation.gaussian_degree(

avg_degree, std_degree, population=pop, weights=w_prop)

'''
Send to NEST and set excitation and recorders
'''
if nngt.get_config('with_nest'):

import nest
import nngt.simulation as ns

nest.ResetKernel()

gids = net.to_nest()

add noise to the excitatory neurons
excs = list(pop["excitatory"].nest_gids)
inhs = list(pop["inhibitory"].nest_gids)
ns.set_noise(excs, 10., 2.)
ns.set_noise(inhs, 5., 1.)

record
groups = [key for key in net.population]
recorder, record = ns.monitor_groups(groups, net)

'''
Simulate and plot.

(continues on next page)

2.2. Intro & user manual 15

NNGT Documentation, Release 2.3.0

(continued from previous page)

'''
simtime = 2000.
nest.Simulate(simtime)

if nngt.get_config('with_plot'):
ns.plot_activity(

recorder, record, network=net, show=True, histogram=False,
limits=(0, simtime))

Go to other tutorials:

• Intro & user manual

• Properties of graph components

• Parallelism

• Groups, structures, and neuronal populations

• Interacting with the NEST simulator

• Activity analysis

Properties of graph components

This section details the different attributes and properties which can be associated to nodes/neurons and connections
in graphs and networks.

Content:

• Components of a graph

• Node attributes

– Three types of node attributes

– Standard attributes

– Biological/group properties

• Edge attributes

– Weights and delays

– Custom edge attributes

• Attributes and distributions

– Example

Components of a graph

In the graph libraries used by NNGT, the main components of a graph are nodes (also called vertices in graph theory),
which correspond to neurons in neural networks, and edges, which link nodes and correspond to synaptic connections
between neurons in biology.

16 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

The library supposes for now that nodes/neurons and edges/synapses are always added and never removed. Because
of this, we can attribute indices to the nodes and the edges which will be directly related to the order in which they
have been created (the first node will have index 0, the second index 1, etc).

The source file for the examples given here can be found at doc/examples/attributes.py.

Node attributes

If you are just working with basic graphs (for instance looking at the influence of topology with purely excitatory
networks), then your nodes do not necessarily need to have attributes. This is the same if you consider only the
average effect of inhibitory neurons by including inhibitory connections between the neurons but not a clear distinction
between populations of purely excitatory and purely inhibitory neurons. However, if you want to include additional
information regarding the nodes, to account for specific differences in their properties, then node attributes are what
you need. They are stored in node_attributes. Furthermore, to model more realistic neuronal networks, you
might also want to define different groups and types of neurons, then connect them in specific ways. This specific
feature will be provides by NeuralGroup objects.

Three types of node attributes

In the library, there is a difference between:

• standard attributes, which are stored in any type of Graph and can be created, modified, and accessed via the
new_node_attribute(), set_node_attribute(), and get_node_attributes() functions.

• spatial properties (the positions of the neurons), which are stored in a specific positions numpy.ndarray
and can be accessed using the get_positions() function,

• biological/group properties, which define assemblies of nodes sharing common properties, and are stored inside
a NeuralPop object.

Standard attributes

Standard attributes can be any given label that might vary among the nodes in the network and will be attached to each
node.

Users can define any attribute, through the new_node_attribute() function.

''' -------------- #
Generate a graph
-------------- '''

num_nodes = 1000
avg_deg = 25

graph = ng.erdos_renyi(nodes=num_nodes, avg_deg=avg_deg)

''' ----------------- #
Add node attributes
----------------- '''

Let's make a network of animals where nodes represent either cats or dogs.
(no discrimination against cats or dogs was intended, no animals were harmed
while writing or running this code)

(continues on next page)

2.2. Intro & user manual 17

https://git.sr.ht/~tfardet/NNGT/tree/main/item/doc/examples/attributes.py
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

(continued from previous page)

animals = ["cat" for _ in range(600)] # 600 cats
animals += ["dog" for _ in range(400)] # and 400 dogs
np.random.shuffle(animals) # which we assign randomly to the nodes

graph.new_node_attribute("animal", value_type="string", values=animals)

Attributes can have different types:

• "double" for floating point numbers

• "int” for integers

• "string" for strings

• "object" for any other python object

Here we create a second node attribute of type "double":

Nodes can have attributes of multiple types, let's add a size to our animals
catsizes = np.random.normal(50, 5, 600) # cats around 50 cm
dogsizes = np.random.normal(80, 10, 400) # dogs around 80 cm

We first create the attribute without values (for "double", default to NaN)
graph.new_node_attribute("size", value_type="double")

We now have to attributes: one containing strings, the other numbers (double)
print(graph.node_attributes)

get the cats and set their sizes
cats = graph.get_nodes(attribute="animal", value="cat")
graph.set_node_attribute("size", values=catsizes, nodes=cats)

We set 600 values so there are 400 NaNs left
assert np.sum(np.isnan(graph.get_node_attributes(name="size"))) == 400, \

"There were not 400 NaNs as predicted."

None of the NaN values belongs to a cat
assert not np.any(np.isnan(graph.get_node_attributes(cats, name="size"))), \

"Got some cats with NaN size! :'("

get the dogs and set their sizes
dogs = graph.get_nodes(attribute="animal", value="dog")
graph.set_node_attribute("size", values=dogsizes, nodes=dogs)

Biological/group properties

Note: All biological/group properties are stored in a NeuralPop object inside a Network instance; this attribute
can be accessed through population. NeuralPop objects can also be created from a Graph or SpatialGraph
but they will not be stored inside the object.

The NeuralPop class allows you to define specific groups of neurons (described by a NeuralGroup). Once these
populations are defined, you can constrain the connections between those populations. If the connectivity already
exists, you can use the GroupProperty class to create a population with groups that respect specific constraints.

For more details on biological properties, see Groups, structures, and neuronal populations.

18 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Edge attributes

Like nodes, edges can also be attributed specific values to characterize them. However, where nodes are directly
numbered and can be indexed and accessed easily, accessing edges is more complicated, especially since, usually, not
all possible edges are present in a graph.

To easily access the desired edges, it is thus recommended to use the get_edges() function.

Edge attributes can then be created and recovered using similar functions as node attributes, namely
new_edge_attribute(), set_edge_attribute(), and get_edge_attributes().

Weights and delays

By default, graphs in NNGT are weighted: each edge is associated a “weight” value (this behavior can be changed by
setting weighted=False upon creation).

Similarly, Network objects always have a “delay” associated to their connections.

Both attributes can either be set upon graph creation, through the weights and delays keyword arguments, or any
any time using set_weights() and set_delays().

Note: When working with NEST and using excitatory and inhibitory neurons via groups (see Groups, structures,
and neuronal populations), the weight of all connections (including inhibitory connections) should be positive: the
excitatory or inhibitory type of the synapses will be set automatically when the NEST network is created based on the
type of the source neuron.

In general, it is also not a good idea to use negative weights directly since standard graph analysis methods cannot
handle them. If you are not working with biologically realistic neurons and want to set some inhibitory connections
that do not depend on a “neuronal type”, use the set_types() method.

Let us see how the get_edges() function can be used to facilitate the creation of various weight patterns:

Same as for node attributes, one can give attributes to the edges
Let's give weights to the edges depending on how often the animals interact!
cat's interact a lot among themselves, so we'll give them high weights
cat_edges = graph.get_edges(source_node=cats, target_node=cats)

check that these are indeed only between cats
cat_set = set(cats)
node_set = set(np.unique(cat_edges))

assert cat_set == node_set, "Damned, something wrong happened to the cats!"

uniform distribution of weights between 30 and 50
graph.set_weights(elist=cat_edges, distribution="uniform",

parameters={"lower": 30, "upper": 50})

dogs have less occasions to interact except some which spend a lot of time
together, so we use a lognormal distribution
dog_edges = graph.get_edges(source_node=dogs, target_node=dogs)
graph.set_weights(elist=dog_edges, distribution="lognormal",

parameters={"position": 2.2, "scale": 0.5})

Cats do not like dogs, so we set their weights to -5
Dogs like chasing cats but do not like them much either so we let the default

(continues on next page)

2.2. Intro & user manual 19

NNGT Documentation, Release 2.3.0

(continued from previous page)

value of 1
cd_edges = graph.get_edges(source_node=cats, target_node=dogs)
graph.set_weights(elist=cd_edges, distribution="constant",

parameters={"value": -5})

Let's check the distribution (you should clearly see 4 separate shapes)
if nngt.get_config("with_plot"):

nngt.plot.edge_attributes_distribution(graph, "weight")

Note that here, the weights were generated randomly from specific distributions; for more details on the available
distributions and their parameters, see Attributes and distributions.

Custom edge attributes

Non-default edge attributes (besides “weights” or “delays”) can also be created through smilar functions as node
attributes:

class Human:
def __init__(self, name):

self.name = name
def __repr__(self):

return "Human<{}>".format(self.name)

let's create a class for humans and store it when two animals have interacted
with the same human (the default will be an empty list if they did not)

Alice interacted with all animals between 8 and 48
Alice = Human("Alice")
animals = [i for i in range(8, 49)]
edges = graph.get_edges(source_node=animals, target_node=animals)

graph.new_edge_attribute("common_interaction", value_type="object", val=[])
graph.set_edge_attribute("common_interaction", val=[Alice], edges=edges)

Now suppose another human, Bob, interacted with all animals between 0 and 40
Bob = Human("Bob")
animals = [i for i in range(0, 41)]
edges2 = graph.get_edges(source_node=animals, target_node=animals)

to update the values, we need to get them to add Bob to the list
ci = graph.get_edge_attributes(name="common_interaction", edges=edges2)

for interactions in ci:
interactions.append(Bob)

graph.set_edge_attribute("common_interaction", values=ci, edges=edges2)

now some of the initial `edges` should have had their attributes updated
new_ci = graph.get_edge_attributes(name="common_interaction", edges=edges)
print(np.sum([0 if len(interaction) < 2 else 1 for interaction in new_ci]),

"interactions have been updated among the", len(edges), "from Alice.")

20 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Attributes and distributions

Node and edge attributes can be generated based on the following distributions:

uniform

• a flat distribution with identical probability for all values,

• parameters: "lower" and "upper" values.

delta

• the Dirac delta “distribution”, where a single value can be drawn,

• parameters: "value".

Gaussian

• the normal distribution 𝑃 (𝑥) = 𝑃0𝑒
(𝑥−𝜇)2/(2𝜎2)

• parameters: "avg" (𝜇) and "std" (𝜎).

lognormal

• 𝑃 (𝑥) = 𝑃0𝑒
(log(𝑥)−𝜇)2/(2𝜎2)

• parameters: "position" (𝜇) and "scale" (𝜎).

linearly correlated

• distribution name: "lin_corr"

• a distribution which evolves linearly between two values depending on the value of a reference variable

• parameters: "correl_attribute" (the reference variable, usually another attribute), "lower" and
"upper", the minimum and maximum values.

Example

Generating a graph with delays that are linearly correlated to the distance between nodes.

dmin = 1.
dmax = 8.

d = {
"distribution": "lin_corr", "correl_attribute": "distance",
"lower": dmin, "upper": dmax

}

g = nngt.generation.distance_rule(200., nodes=100, avg_deg=10, delays=d)

Go to other tutorials:

• Intro & user manual

• Graph generation

• Parallelism

• Groups, structures, and neuronal populations

• Interacting with the NEST simulator

• Activity analysis

2.2. Intro & user manual 21

NNGT Documentation, Release 2.3.0

Consistent tools for graph analysis

NNGT provides several functions for topological analysis that return consistent results for all backends (the results
will always be the same regardless of which library is used under the hood). This section describes these functions
and gives an overview of the currently supported methods.

Note: It is of course possible to use any function from the library on the graph attribute; however, not using one of
the supported NNGT functions below will usually return results that are not consistent between libraries (and the code
will obviously no longer be portable).

Supported functions

The following table details which functions are supported for directed and undirected networks, and whether they also
work with weighted edges.

The test file where these functions are checked can be found here: testing/library_compatibility.py.

For each type of graph, the table tells which libraries are supported for the given function (graph-tool is gt, networkx
is nx and igraph is ig). Custom implementation of a function is denoted by nngt, meaning that the function can be
used even if no graph library is installed. A library marked between parentheses denotes partial support and additional
explanation is usually given in the footnotes. A cross means that no consistent implementation is currently provided
and the function will raise an error if one tries to use it on such graphs. Methods that are not defined for weighted or
directed graphs are marked by NA.

Method Unweighted undi-
rected

Unweighted
directed

Weighted undi-
rected

Weighted
directed

all_shortest_paths()gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
average_path_length()gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
assortativity()1 gt, nx, ig gt, nx, ig gt, ig gt, ig
betweenness() gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
betweenness_distrib()gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
closeness()2 gt, nx, (ig) gt, nx, (ig) gt, nx, (ig) gt, nx, (ig)
connected_components()gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
degree_distrib() gt, nx, ig, nngt gt, nx, ig, nngt gt, nx, ig, nngt gt, nx, ig, nngt
diameter()3 gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
global_clustering() gt, nx, ig, nngt nngt nngt nngt
local_clustering()4 gt, nx, ig, nngt nngt nngt nngt
reciprocity() gt, nx, ig, nngt gt, nx, ig, nngt NA NA
shortest_distance() gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
shortest_path() gt, nx, ig gt, nx, ig gt, nx, ig gt, nx, ig
spectral_radius() nngt nngt nngt nngt
subgraph_centrality()nngt nngt nngt nngt
transitivity()5 gt, nx, ig, nngt nngt nngt nngt

1 networkx could be used via a workaround but an issue has been raised to find out how to best deal with this.
2 since definitions of the maximum distances differ between libraries, igraph is currently not usable if the in- or out-degree of any of the nodes

is zero; it also does not provide an implementation for the harmonic closeness.
3 the implementation of the diameter for graph-tool is approximmate so results may occasionaly be inexact with this backend.
4 for directed and weighted networks, definitions and implementations differ between graph libraries, so generic implementations are provided

in NNGT. See “Clustering in weighted and directed networks” for details.
5 identical to global_clustering.

22 Chapter 2. The docs

https://git.sr.ht/~tfardet/NNGT/tree/main/item/testing/library_compatibility.py
https://github.com/networkx/networkx/issues/3917

NNGT Documentation, Release 2.3.0

Clustering in weighted and directed networks

For directed clustering, NNGT provides the total clustering porposed in [Fagiolo2007]

𝐶𝑑
𝑖 =

1
2 (𝐴 + 𝐴𝑇)3

𝑑𝑡𝑜𝑡𝑖 (𝑑𝑡𝑜𝑡𝑖 − 1) − 𝑑↔𝑖

with 𝑑↔𝑖 = 𝐴2
𝑖𝑖 is the reciprocal degree.

For undirected weighted clustering, NNGT provides the definition proposed in [Barrat2004], [Onnela2005] as well as
a new continuous definition.

𝐶𝑢
𝐵,𝑖 =

(𝑊𝐴2)𝑖𝑖
𝑠𝑖(𝑑𝑖 − 1)

𝐶𝑢
𝑂,𝑖 =

(𝑊 [1
3])3𝑖𝑖

𝑑𝑖(𝑑𝑖 − 1)

𝐶𝑢
𝑐,𝑖 =

(︁
𝑊 [2

3]
)︁3

𝑖𝑖(︂
𝑠
[1
2]

𝑖

)︂2

− 𝑠𝑖

with 𝑠[
1
2] the generalized strength associated to the matrix 𝑊 [1

2] = {√𝑤𝑖𝑗}.

For directed weighted clustering, the generalization of Barrat from [Clemente2018] is provided, as well as a general-
ization of Onnela and of the continuous clustering:

𝐶𝑑
𝐵,𝑖 =

1
2 ((𝑊 + 𝑊𝑇)(𝐴 + 𝐴𝑇)2)𝑖𝑖

𝑠𝑖(𝑑𝑡𝑜𝑡𝑖 − 1) − 𝑠↔𝑐,𝑖

with 𝑠 the total strength and 𝑠↔𝑐,𝑖 = 1
2 (𝑊𝐴 + 𝐴𝑊)𝑖𝑖 the arithmetic reciprocal strength,

𝐶𝑑
𝑂,𝑖 =

1
2 (𝑊 [1

3] + (𝑊 [1
3])𝑇)3𝑖𝑖

𝑑𝑡𝑜𝑡𝑖 (𝑑𝑡𝑜𝑡𝑖 − 1) − 𝑑↔𝑖

𝐶𝑑
𝑐,𝑖 =

1
2

(︁
𝑊 [2

3] + 𝑊 [2
3],𝑇

)︁3

𝑖𝑖(︂
𝑠
[1
2]

𝑖

)︂2

− 2𝑠↔𝑖 − 𝑠𝑖

with 𝑠[
1
2] the total generalized strength and 𝑠↔𝑖 =

(︁
𝑊 [1

2]
)︁2

the geometric reciprocal strength.

Global clusterings are defined as the sum of all numerators divided by the sum of all denominators for all definitions.

References

Go to other tutorials:

• Intro & user manual

• Graph generation

• Parallelism

• Groups, structures, and neuronal populations

• Interacting with the NEST simulator

• Activity analysis

2.2. Intro & user manual 23

NNGT Documentation, Release 2.3.0

Parallelism

• Principle

• Parallelism and random numbers

• Using OpenMP (shared-memory parallelism)

– Setting multithreading

– Graph-tool caveat

• Using MPI (distributed-memory parallelism)

– Fully distributed setup

• Parallelized generation algorithms

Principle

The NNGT package provides the possibility to use multithreaded algorithms to generate networks. This feature means
that the computation is distributed on several CPUs and can be useful for:

• machines with several cores but low frequency

• generation functions requiring large amounts of computation

• very large graphs

However, the multithreading part concerns only the generation of the edges; if a graph library such as graph-tool,
igraph, or networkx is used, the building process of the graph object will be taken care of by this library. Since
this process is not multithreaded, obtaining the graph object can be much longer than the actual generation process.

NNGT provides two types of parallelism:

• shared-memory parallelism, using OpenMP, which can be set using nngt.set_config()
("multithreading", True) or, setting the number of threads, with nngt.set_config("omp",
8) to use 8 threads.

• distributed-memory parallelism using MPI, which is set through nngt.set_config("mpi", True). In
that case, the python script must be run as mpirun -n 8 python name_of_the_script.py to be run
in parallel.

These two ways of running code in parallel differ widely, both regarding the situations in which they can be useful,
and in the way the user should interact with the resulting graph.

The easiest tool, because it does not significantly differ from the single-thread case on the user side, is OpenMP, which
is why we will describe it first. Using MPI is a lot different and will require the user to adapt the code to use it and
will depend on the backend used.

Parallelism and random numbers

When using parallel algorithms, additional care is necessary when dealing with random number generation. Here
again, the situation differs between the OpenMP and MPI cases.

24 Chapter 2. The docs

http://www.openmp.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface

NNGT Documentation, Release 2.3.0

Warning: Never use the standard random module, only use numpy.random!

When using OpenMP, the parallel algorithms will use the random seeds defined by the user through nngt.
set_config("seeds", list_of_seeds). One seed per thread is necessary. These seeds are not used on
the python level, so they are independent from whatever random generation could happen using numpy (e.g. to set
node positions in space, or to generate attributes). To make a simulation fully reproducible, the user must set both the
random seeds and the python level random number generators through the master seed. For instance, with 4 threads:

master_seed = 0
nngt.set_config({"msd": master_seed, "seeds": [1, 2, 3, 4]})

Note: If the seeds are not provided, then they are generated automatically, from the master seed for the first call to a
graph-generation method (using {𝑀𝑆𝐷 + 1 + 𝑖}𝑖∈0..𝑁 , with N the number of threads), then using a random number
generated through numpy. This means that all previous calls to numpy.random will affect the random seeds used
for the second or later calls to graph-generation methods unless new seeds are manually set by the user befor each new
call (this does not mean that the code will not be reproducible, only that changes in the random calls in the code that
occur before calls to graph-generation methods would affect the random structure of the generated graphs).

Warning: This is also how you should initialize random numbers when using MPI!

This may surprise experienced MPI users, but NNGT is implemented in such a way that shared properties are generated
on all threads through the initial python master seed, then generation algorithms save the current common state, then
re-initialize the RNGs for parallel generation, and finally restore the previous, common random state once the parallel
generation is done. Of course the parallel initialization differs every time, but it is changed in a reproducible way
through the master seed.

Using OpenMP (shared-memory parallelism)

Setting multithreading

Multithreading in NNGT can be set via

>>> nngt.set_config({"multithreading": True, "omp": num_omp_threads})

and you can then switch it off using

>>> nngt.set_config("multithreading", False)

This will automatically switch between the standard and multithreaded algorithms for graph generation.

Graph-tool caveat

The graph-tool library also provides some multithreading capabilities, using

>>> graph_tool.openmp_set_num_threads(num_omp_threads)

2.2. Intro & user manual 25

https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random

NNGT Documentation, Release 2.3.0

However, this sets the number of OpenMP threads session-wide, which means that it will interfere with the ‘‘NEST‘‘
setup! Hence, if you are working with both NEST and graph-tool, you have to use the same number of OpenMP
threads in both libraries.

To prevent bad surprises as much as possible, NNGT will raise an error if a value of "omp" is provided, which differs
from the current NEST configuration. Regardless of this precaution, keeping only one value for the number of threads
and using it consistently throughout the code is strongly advised.

Using MPI (distributed-memory parallelism)

Note: MPI algorithms are currently restricted to gaussian_degree() and distance_rule() only.

Handling MPI can be significantly more difficult than using OpenMP because it differs more strongly from the “stan-
dard” single-thread case.

NNGT provides two different ways of using MPI:

• When using one of the three graph libraries (graph-tool, igraph, or networkx), the connections are generated in
parallel, but the final object is stored only on the master process. This means that in this case, the memory load
will weigh only on this process, leading to a strong load imbalance. This feature is aimed at people who would
require parallelism to speed up their graph generation but, for some reason, cannot use the OpenMP parallelism.

• For “real” memory distribution, e.g. for people working on clusters, who require a balanced memory-load,
NNGT provides a custom backend, that can be set using nngt.set_config('backend', 'nngt'). In
this case, each process stores only a fraction of all the edges. However, nodes and graph properties are fully
available on all processes.

Warning: When using MPI with graph-tool, igraph, or networkx, all operations on the graph that has been gen-
erated must be limited to the root process. To that end, NNGT provides the on_master_process() function
that returns True only on the root MPI process. Using the ‘nngt’ backend, the edge_nb() method, as well as all
other edge-related methods will return information on the local edges only!

Fully distributed setup

The python file should include (before any graph generation):

import nngt

msd = 0 # choose a master seed
seeds = [1, 2, 3, 4] # choose initial seeds, one per MPI process

nngt.set_config({
"mpi": True,
"backend": "nngt",
"msd": msd,
"seeds": seeds,

})

The file should then be executed using:

>>> mpirun -n 4 python name_of_the_script.py

26 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Note: Graph saving is available in parallel in the fully distributed setup through the to_file() and
save_to_file() functions as in any other configuration.

Parallelized generation algorithms

Generation of some directed graphs are available with parallel implementations (see table below). No undirected graph
generation mechanisms are currently implemented.

Function OMP MPI
all_to_all() no no
circular() no no
distance_rule() yes yes
erdos_renyi() no no
fixed_degree() yes yes
from_degree_list() yes yes
gaussian_degree() yes yes
newman_watts() no no
random_scale_free() no no

Go to other tutorials:

• Intro & user manual

• Graph generation

• Groups, structures, and neuronal populations

• Interacting with the NEST simulator

• Activity analysis

• Properties of graph components

Groups, structures, and neuronal populations

One notable feature of NNGT is to enable users to group nodes (neurons) into groups sharing common properties in
order to facilitate the generation of a network, the analysis of its properties, or complex simulations with NEST.

The complete example file containing the code discussed here, as well as additional information on how to access
NeuralGroup and NeuralPop properties can be found there: docs/examples/introduction_to_groups.py.

Contents

• Neuronal groups

– Creating simple groups

– Creating a structured graph

– More realistic neuronal groups

• Populations

– Simple populations

2.2. Intro & user manual 27

https://www.nest-simulator.org/
https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/introduction_to_groups.py

NNGT Documentation, Release 2.3.0

– NEST-enabled populations

• Complex populations and metagroups

Neuronal groups

Neuronal groups are entities containing neurons which share common properties. Inside a population, a single neuron
belongs to a single NeuralGroup object. Conversely the union of all groups contains all neurons in the network
once and only once.

When creating a group, it is therefore important to make sure that it forms a coherent set of neurons, as this will make
network handling easier.

For more versatile grouping, where neurons can belong to multiple ensembles, see the section about meta-groups
below: Complex populations and metagroups.

Creating simple groups

Groups can be created easily through calls to Group or NeuralGroup.

>>> group = nngt.Group()
>>> ngroup = nngt.NeuralGroup()

create empty groups (nothing very interesting).

Minimally, any useful group requires at least neuron ids and, for a neuronal group, a type (excitatory or inhibitory) to
be useful.

To create a useful group, one can therefore either just tell how many nodes/neurons it should contain:

group1 = Group(500) # a group with 500 nodes

or directly pass it a list of ids (to avoid typing nngt. all the time, we do from nngt import Group,
NeuralGroup at the beginning)

group2 = NeuralGroup(range(10, 20)) # neurons with ids from 10 to 19

Note that if you set ids directly you will be responsible for their consistency.

Creating a structured graph

To create a structured graph, the groups are gathered into a Structure which can then be used to create a graph and
connect the nodes.

room1 = nngt.Group(25)
room2 = nngt.Group(50)
room3 = nngt.Group(40)
room4 = nngt.Group(35)

names = ["R1", "R2", "R3", "R4"]

struct = nngt.Structure.from_groups((room1, room2, room3, room4), names)

(continues on next page)

28 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

(continued from previous page)

g = nngt.Graph(structure=struct)

for room in struct:
nngt.generation.connect_groups(g, room, room, "all_to_all")

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
avg_deg=10, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=20)

nngt.generation.connect_groups(g, room4, room3, "erdos_renyi", avg_deg=10)

More realistic neuronal groups

When designing neuronal networks, one usually cares about their type (excitatory or inhibitory for instance), their
properties, etc.

By default, neural groups are created excitatory and the following lines are therefore equivalent:

exc = NeuralGroup(800, neuron_type=1) # excitatory group
exc2 = NeuralGroup(800, neuron_type=1) # also excitatory

To create an inhibitory group, the neural type must be set to -1:

inhib = NeuralGroup(200, neuron_type=-1) # inhibitory group

Moving towards really realistic groups to run simulation on NEST afterwards, the last step is to associate a neuronal
model and set the properties of these neurons (and optionally give them names):

pyr = NeuralGroup(800, neuron_type=1, neuron_model="iaf_psc_alpha",
neuron_param={"tau_m": 50.}, name="pyramidal_cells")

fsi = NeuralGroup(200, neuron_type=-1, neuron_model="iaf_psc_alpha",
neuron_param={"tau_m": 20.},
name="fast_spiking_interneurons")

Populations

Populations are ensembles of neuronal groups which describe all neurons in a corresponding network. They are
usually created before the network and then used to generate connections, but the can also be generated after the
network creation, then associated to it.

Simple populations

To create a population, you can start from scratch by creating an empty population, then adding groups to it:

pop = nngt.NeuralPop(with_models=False) # empty population
pop.create_group(200, "first_group") # create excitatory group
pop.create_group(5, "second_group", neuron_type=-1) # create inhibitory group

NNGT also provides a two default routine to create simple populations:

• uniform(), to generate a single population where all neurons belong to the same group,

2.2. Intro & user manual 29

NNGT Documentation, Release 2.3.0

• exc_and_inhib(), to generate a mixed excitatory and inhibitory population.

As before, we do from nngt import NeuralPop to avoid typing nngt. all the time.

To create such populations, just use:

Eventually, a population can be created from exiting groups using from_groups():

print(exc.neuron_type, exc2.neuron_type, inhib.neuron_type)
ei_pop2 = NeuralPop.from_groups([exc, exc2, inhib], ["e1", "e2", "i"],

Note that, here, we pass with_models=False to the population because these groups were created without the
information necessary to create a network in NEST (a valid neuron model).

NEST-enabled populations

To create a NEST-enabled population, one can use one of the standard classmethods (uniform() and
exc_and_inhib()) and pass it valid parameters for the neuronal models (optionally also a synaptic model and
neuronal/synaptic parameters).

Otherwise, one can build the population from groups that already contain these properties, e.g. the previous pyr and
fsi groups:

optional synaptic properties
syn_spec = {

'default': {"model": "tsodyks2_synapse"}, # default connections
("pyramidal_cells", "pyramidal_cells"): {"U": 0.6} # change a parameter

}

nest_pop = NeuralPop.from_groups([pyr, fsi], syn_spec=syn_spec)

Warning: syn_spec can contain any synaptic model and parameters associated to the NEST model; however,
neither the synaptic weight nor the synaptic delay can be set there. For details on how to set synaptic weight and
delays between groups, see connect_groups().

To see how to use a population to create a Network and send it to NEST, see Use with NEST .

Complex populations and metagroups

When building complex neuronal networks, it may be useful to have neurons belong to multiple groups at the same
time. Because standard groups can contain a neuron only once, meta-groups were introduced to provide this additional
functionality.

Contrary to normal groups, a neuron can belong to any number of metagroups, which allow to make various sub- or
super-groups. For instance, when modeling a part of cortex, neurons will belong to a layer, and to a given cell class
whithin that layer. In that case, you may want to create specific groups for cell classes, like L3Py, L5Py, L3I, L5I
for layer 4 and 5 pyramidal cells as well as interneurons, but you can then also group neurons in a same layer together,
and same with pyramidal neurons or interneurons.

First create the normal groups:

nmod = "iaf_psc_exp"

idsL2gc = range(100)

(continues on next page)

30 Chapter 2. The docs

https://www.nest-simulator.org/
https://www.nest-simulator.org/

NNGT Documentation, Release 2.3.0

(continued from previous page)

idsL3py, idsL3i = range(100, 200), range(200, 300)
idsL4gc = range(300, 400)
idsL5py, idsL5i = range(400, 500), range(500, 600)
idsL6 = range(600, 700)

L2GC = NeuralGroup(idsL2gc, neuron_model=nmod, name="L2GC", neuron_type=1)
L3Py = NeuralGroup(idsL3py, neuron_model=nmod, name="L3Py", neuron_type=1)
L3I = NeuralGroup(idsL3i, neuron_model=nmod, name="L3I", neuron_type=-1)
L4GC = NeuralGroup(idsL4gc, neuron_model=nmod, name="L4GC", neuron_type=1)
L5Py = NeuralGroup(idsL5py, neuron_model=nmod, name="L5Py", neuron_type=1)
L5I = NeuralGroup(idsL5i, neuron_model=nmod, name="L5I", neuron_type=-1)
L6c = NeuralGroup(idsL6, neuron_model=nmod, name="L6c", neuron_type=1)

Then make the metagroups for the layers:

L2 = MetaGroup(idsL2gc, name="L2")
L3 = MetaNeuralGroup(L3Py.ids + L3I.ids, name="L3")
L4 = MetaGroup(idsL4gc, name="L4")
L5 = MetaNeuralGroup(L5Py.ids + L5I.ids, name="L5")
L6 = MetaGroup(idsL6, name="L6")

Note that I used MetaNeuralGroup for layers 3 and 5 because it enables to differenciate inhibitory and excitatory
neurons using inhibitory and excitatory . Otherwise normal MetaGroup are equivalent and sufficient.

Create the population:

pop_column = NeuralPop.from_groups(
[L2GC, L3Py, L3I, L4GC, L5Py, L5I, L6c], meta_groups=[L2, L3, L4, L5, L6])

Then add additional metagroups for cell types:

pyr = MetaGroup(L3Py.ids + L5Py.ids, name="pyramidal")
pop_column.add_meta_group(pyr) # add from existing meta-group

pop_column.create_meta_group(L3I.ids + L5I.ids, "interneurons") # single line

pop_column.create_meta_group(L2GC.ids + L4GC.ids, "granule")

Go to other tutorials:

• Intro & user manual

• Graph generation

• Parallelism

• Interacting with the NEST simulator

• Activity analysis

• Properties of graph components

Interacting with the NEST simulator

This section details how to create detailed neuronal networks, then run simulations on them using the NEST simulator.

2.2. Intro & user manual 31

NNGT Documentation, Release 2.3.0

Readers are supposed to have a good grap of the way NEST handles neurons and models, and how to create and setup
NEST nodes. If this is not the case, please see the NEST user doc and the PyNEST tutorials first.

NNGT tools with regard to NEST can be separated into

• the structural tools (Network, NeuralPop . . .) that are used to prepare the neuronal network and setup its
properties and connectivity; these tools should be used before

• the make_nest_network() and the associated, to_nest() functions that are used to send the previously
prepared network to NEST;

• then, after using one of the previous functions, all the other functions contained in the nngt.simulation
module can be used to add stimulations to the neurons or monitor them.

Note: Calls to nest.ResetKernel will also reset all networks and populations, which means that after such a
call, populations, parameters, etc, can again be changed until the next invocation of make_nest_network() or
to_nest().

Example files associated to the interactions between NEST and NNGT can be found here:
docs/examples/nest_network.py / docs/examples/nest_receptor_ports.py.

Content:

• Creating detailed neuronal networks

– NeuralPop and NeuralGroup

– The Network class

• Changing the parameters of neurons

– Before sending the network to NEST

– After sending the network to NEST, randomizing

Creating detailed neuronal networks

NeuralPop and NeuralGroup

These two classes are the basic blocks to design neuronal networks: a NeuralGroup is a set of neurons sharing
common properties while the NeuralPop is the main container that represents the whole network as an ensemble of
groups.

Depending on your perspective, you can either create the groups first, then build the population from them, or create
the population first, then split it into various groups.

For more details on groups and populations, see Groups, structures, and neuronal populations.

Neuronal groups before the population

Neural groups can be created as follow:

100 inhibitory neurons
basic_group = nngt.NeuralGroup(100, neuron_type=-1)
10 excitatory (default) aeif neurons
aeif_group = nngt.NeuralGroup(10, neuron_model="aeif_psc_alpha")

(continues on next page)

32 Chapter 2. The docs

http://www.nest-simulator.org/documentation/
http://www.nest-simulator.org/introduction-to-pynest/
https://www.nest-simulator.org/
https://www.nest-simulator.org/
https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/nest_network.py
https://git.sr.ht/~tfardet/NNGT/tree/main/item/docs/examples/nest_receptor_ports.py

NNGT Documentation, Release 2.3.0

(continued from previous page)

an unspecified number of aeif neurons with specific parameters
p = {"E_L": -58., "V_th": -54.}
aeif_g2 = nngt.NeuralGroup(neuron_model="aeif_psc_alpha", neuron_param=p)

In the case where the number of neurons is specified upon creation, NNGT can check that the number of neurons
matches in the network and the associated population and raise a warning if they don’t. However, it is just a security
check and it does not prevent the network for being created if the numbers don’t match.

Once the groups are created, you can simply generate the population using

pop = nngt.NeuralPop.from_groups([basic_group, aeif_group], ["b", "a"])

This created a population separated into “a” and “b” from the previously created groups.

Population before the groups

A population with excitatory and inhibitory neurons

pop = nngt.NeuralPop(1000)
pop.create_group(800, "first")
pop.create_group(200, "second", neuron_type=-1)

or, more compact

pop = nngt.NeuralPop.exc_and_inhib(1000, iratio=0.2)

The Network class

Besides connectivity, the main interest of the NeuralGroup is that you can pass it the biological properties that the
neurons belonging to this group will share.

Since we are using NEST, these properties are:

• the model’s name

• its non-default properties

• the synapses that the neurons have and their properties

• the type of the neurons (1 for excitatory or -1 for inhibitory)

''' Create groups with different parameters '''
adaptive spiking neurons
base_params = {

'E_L': -60., 'V_th': -58., 'b': 20., 'tau_w': 100.,
'V_reset': -65., 't_ref': 2., 'g_L': 10., 'C_m': 250.

}
oscillators
params1, params2 = base_params.copy(), base_params.copy()
params1.update(

{'E_L': -65., 'b': 40., 'I_e': 200., 'tau_w': 400., "V_th": -57.})
bursters
params2.update({'b': 25., 'V_reset': -55., 'tau_w': 300.})

oscill = nngt.NeuralGroup(
nodes=400, neuron_model='aeif_psc_alpha', neuron_type=1,
neuron_param=params1)

(continues on next page)

2.2. Intro & user manual 33

NNGT Documentation, Release 2.3.0

(continued from previous page)

burst = nngt.NeuralGroup(
nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
neuron_param=params2)

adapt = nngt.NeuralGroup(
nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
neuron_param=base_params)

synapses = {
'default': {'model': 'tsodyks2_synapse'},
('oscillators', 'bursters'): {'model': 'tsodyks2_synapse', 'U': 0.6},
('oscillators', 'oscillators'): {'model': 'tsodyks2_synapse', 'U': 0.7},
('oscillators', 'adaptive'): {'model': 'tsodyks2_synapse', 'U': 0.5}

}

'''
Create the population that will represent the neuronal
network from these groups
'''
pop = nngt.NeuralPop.from_groups(

[oscill, burst, adapt],
names=['oscillators', 'bursters', 'adaptive'], syn_spec=synapses)

'''
Create the network from this population,
using a Gaussian in-degree
'''
net = ng.gaussian_degree(

Once this network is created, it can simply be sent to nest through the command: gids = net.to_nest(), and
the NEST gids are returned.

In order to access the gids from each group, you can do:

oscill_gids = net.nest_gids[oscill.ids]

or directly:

oscill_gids = oscill.nest_gids

As shown in “Use with NEST”, synaptic strength from inhibitory neurons in NNGT are positive (for compatibility with
graph analysis tools) but they are automatically converted to negative values when the network is created in NEST.

Changing the parameters of neurons

Before sending the network to NEST

Once the NeuralPop has been created, you can change the parameters of the neuron groups before you send the
network to NEST.

To do this, you can use the set_param() function, to which you pass the parameter dict and the name of the
NeuralGroup you want to modify.

If you are dealing directly with NeuralGroup objects, you can access and modify their neuron_param attribute
as long as the network has not been sent to nest. Once sent, these parameters become unsettable and any wourkaround

34 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

to circumvent this will not change the values inside NEST anyway.

After sending the network to NEST, randomizing

Once the network has been sent to NEST, neuronal parameters can still be changed, but only for randomization pur-
poses. It is possible to randomize the neuronal parameters through the randomize_neural_states() function.
This sets the parameters using a specified distribution and stores their values inside the network nodes’ attributes.

Go to other tutorials:

• Intro & user manual

• Graph generation

• Parallelism

• Groups, structures, and neuronal populations

• Activity analysis

• Properties of graph components

Activity analysis

• Principle

• Sorted rasters

• Activity properties

Principle

The interesting fact about having a link between the graph and the simulation is that you can easily analyze the activity
be taking into account what you know from the graph structure.

Sorted rasters

Rater plots can be sorted depending on some specific node property, e.g. the degree or the betweenness:

import nest

import nngt
from nngt.simulation import monitor_nodes, plot_activity

pop = nngt.NeuralPop.uniform(1000, neuron_model="aeif_psc_alpha")
net = nngt.generation.gaussian_degree(100, 20, population=pop)

nodes = net.to_nest()
recorders, recordables = monitor_nodes(nodes)
simtime = 1000.
nest.Simulate(simtime)

(continues on next page)

2.2. Intro & user manual 35

NNGT Documentation, Release 2.3.0

(continued from previous page)

fignums = plot_activity(
recorders, recordables, network=net, show=True, hist=False,
limits=(0.,simtime), sort="in-degree")

Activity properties

NNGT can also be used to analyze the general properties of a raster.

Either from a .gdf file containing the raster data

import nngt
from nngt.simulation import analyze_raster

a = analyze_raster("path/to/raster.gdf")
print(a.phases)
print(a.properties)

Or from a spike detector gid sd:

a = analyze_raster(sd)

Additional information:

Simulation module

Module to interact easily with the NEST simulator. It allows to:

• build a NEST network from Network or SpatialNetwork objects,

• monitor the activity of the network (taking neural groups into account)

• plot the activity while separating the behaviours of predefined neural groups

Content

nngt.simulation.
ActivityRecord(spike_data, . . .)

Class to record the properties of the simulated activity.

nngt.simulation.activity_types(. . . [, . . .]) Analyze the spiking pattern of a neural network.
nngt.simulation.analyze_raster([raster,
. . .])

Return the activity types for a given raster.

nngt.simulation.
get_nest_adjacency([. . .])

Get the adjacency matrix describing a NEST network.

nngt.simulation.get_recording(network,
record)

Return the evolution of some recorded values for each
neuron.

nngt.simulation.
make_nest_network(network[, . . .])

Create a new network which will be filled with neurons
and connector objects to reproduce the topology from
the initial network.

nngt.simulation.
monitor_groups(group_names, . . .)

Monitoring the activity of nodes in the network.

Continued on next page

36 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Table 1 – continued from previous page
nngt.simulation.monitor_nodes(gids[, . . .]) Monitoring the activity of nodes in the network.
nngt.simulation.plot_activity([. . .]) Plot the monitored activity.
nngt.simulation.
randomize_neural_states(. . .)

Randomize the neural states according to the instruc-
tions.

nngt.simulation.raster_plot(times,
senders)

Plotting routine that constructs a raster plot along with
an optional histogram.

nngt.simulation.
reproducible_weights(. . . [, . . .])

Find the values of the connection weights that will give
PSP responses of min_weight and max_weight in mV.

nngt.simulation.save_spikes(filename[,
. . .])

Plot the monitored activity.

nngt.simulation.set_minis(network, . . . [,
. . .])

Mimick spontaneous release of neurotransmitters,
called miniature PSCs or “minis” that can occur at exci-
tatory (mEPSCs) or inhibitory (mIPSCs) synapses.

nngt.simulation.set_noise(gids, mean, std) Submit neurons to a current white noise.
nngt.simulation.set_poisson_input(gids,
rate)

Submit neurons to a Poissonian rate of spikes.

nngt.simulation.set_step_currents(gids,
. . .)

Set step-current excitations

Details

class nngt.simulation.ActivityRecord(spike_data, phases, properties, parameters=None)
Class to record the properties of the simulated activity.

Initialize the instance using spike_data (store proxy to an optional network) and compute the properties of
provided data.

Parameters

• spike_data (2D array) – Array of shape (num_spikes, 2), containing the senders on the 1st
row and the times on the 2nd row.

• phases (dict) – Limits of the different phases in the simulated period.

• properties (dict) – Values of the different properties of the activity (e.g. “firing_rate”,
“IBI”. . .).

• parameters (dict, optional (default: None)) – Parameters used to compute the phases.

Note: The firing rate is computed as num_spikes / total simulation time, the period is the sum of an IBI and a
bursting period.

data
Returns the (N, 2) array of (senders, spike times).

phases

• “bursting” for periods of high activity where a large fraction of the network is recruited.

• “quiescent” for periods of low activity

• “mixed” for firing rate in between “quiescent” and “bursting”.

• “localized” for periods of high activity but where only a small fraction of the network is recruited.

2.2. Intro & user manual 37

NNGT Documentation, Release 2.3.0

Note: See parameters for details on the conditions used to differenciate these phases.

Type Return the phases detected

properties
Returns the properties of the activity. Contains the following entries:

• “firing_rate”: average value in Hz for 1 neuron in the network.

• “bursting”: True if there were bursts of activity detected.

• “burst_duration”, “IBI”, “ISI”, and “period” in ms, if “bursting” is True.

• “SpB” (Spikes per Burst): average number of spikes per neuron during a burst.

simplify()

nngt.simulation.activity_types(spike_detector, limits, network=None, phase_coeff=(0.5, 10.0),
mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0, simplify=False,
fignums=[], show=False)

Analyze the spiking pattern of a neural network.

@todo: think about inserting t=0. and t=simtime at the beginning and at the end of times.

Parameters

• spike_detector (NEST node(s) (tuple or list of tuples)) – The recording device that moni-
tored the network’s spikes.

• limits (tuple of floats) – Time limits of the simulation region which should be studied (in
ms).

• network (Network, optional (default: None)) – Neural network that was analyzed

• phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’
when the interspike between all spikes that compose it is smaller than phase_coeff[0]
/ avg_rate (where avg_rate is the average firing rate), ‘quiescent’ when it is greater
that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

• mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes
to be considered in the same burst (in ms).

• mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate
for a burst to be validated (i.e. if the interspike is smaller that the limit BUT the number of
participating neurons is too small, the phase will be considered as ‘localized’).

• mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should partici-
pate for a local burst to be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be considered as ‘mixed’).

• skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only
the permanent regime.

• simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to
a burst are incorporated to it.

• return_steps (bool, optional (default: False)) – If True, a second dictionary, phases_steps
will also be returned. @todo: not implemented yet

• fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

• show (bool, optional (default: False)) – Whether the figures should be displayed.

38 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Note: Effects of skip_bursts and limits[0] are cumulative: the limits[0] first milliseconds are ignored, then the
skip_bursts first bursts of the remaining activity are ignored.

Returns phases (dict) – Dictionary containing the time intervals (in ms) for all four phases (burst-
ing’, ‘quiescent’, ‘mixed’, and ‘localized) as lists. E.g: phases["bursting"] could give
[[123.5,334.2], [857.1,1000.6]].

nngt.simulation.analyze_raster(raster=None, limits=None, network=None, phase_coeff=(0.5,
10.0), mbis=0.5, mfb=0.2, mflb=0.05, skip_bursts=0,
skip_ms=0.0, simplify=False, fignums=[], show=False)

Return the activity types for a given raster.

Parameters

• raster (array-like (N, 2) or str) – Either an array containing the ids of the spiking neurons
on the first column, then the corresponding times on the second column, or the path to a
NEST .gdf recording.

• limits (tuple of floats) – Time limits of the simulation regrion which should be studied (in
ms).

• network (Network, optional (default: None)) – Network on which the recorded activity
was simulated.

• phase_coeff (tuple of floats, optional (default: (0.2, 5.))) – A phase is considered ‘bursting’
when the interspike between all spikes that compose it is smaller than phase_coeff[0]
/ avg_rate (where avg_rate is the average firing rate), ‘quiescent’ when it is greater
that phase_coeff[1] / avg_rate, ‘mixed’ otherwise.

• mbis (float, optional (default: 0.5)) – Maximum interspike interval allowed for two spikes
to be considered in the same burst (in ms).

• mfb (float, optional (default: 0.2)) – Minimal fraction of the neurons that should participate
for a burst to be validated (i.e. if the interspike is smaller that the limit BUT the number of
participating neurons is too small, the phase will be considered as ‘localized’).

• mflb (float, optional (default: 0.05)) – Minimal fraction of the neurons that should partici-
pate for a local burst to be validated (i.e. if the interspike is smaller that the limit BUT the
number of participating neurons is too small, the phase will be considered as ‘mixed’).

• skip_bursts (int, optional (default: 0)) – Skip the skip_bursts first bursts to consider only
the permanent regime.

• simplify (bool, optional (default: False)) – If True, ‘mixed’ phases that are contiguous to
a burst are incorporated to it.

• fignums (list, optional (default: [])) – Indices of figures on which the periods can be drawn.

• show (bool, optional (default: False)) – Whether the figures should be displayed.

Note: Effects of skip_bursts and limits[0] are cumulative: the limits[0] first milliseconds are ignored, then the
skip_bursts first bursts of the remaining activity are ignored.

Returns activity (ActivityRecord) – Object containing the phases and the properties of the activity
from these phases.

2.2. Intro & user manual 39

NNGT Documentation, Release 2.3.0

nngt.simulation.get_nest_adjacency(id_converter=None)
Get the adjacency matrix describing a NEST network.

Parameters id_converter (dict, optional (default: None)) – A dictionary which maps NEST gids to
the desired neurons ids.

Returns mat_adj (lil_matrix) – Adjacency matrix of the network.

nngt.simulation.get_recording(network, record, recorder=None, nodes=None)
Return the evolution of some recorded values for each neuron.

Parameters

• network (nngt.Network) – Network for which the activity was simulated.

• record (str or list) – Name of the record(s) to obtain.

• recorder (tuple of ints, optional (default: all multimeters)) – GID of the “spike_detector”
objects recording the network activity.

• nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the
recording should be returned.

Returns values (dict of dict of arrays) – Dictionary containing, for each record, an M array with the
recorded values for n-th neuron is stored under entry n (integer). A times entry is also added; it
should be the same size for all records, otherwise an error will be raised.

Examples

After the creation of a Network called net, use the following code:

import nest

rec, _ = monitor_nodes(
net.nest_gids, "multimeter", {"record_from": ["V_m"]}, net)

nest.Simulate(100.)
recording = nngt.simulation.get_recording(net, "V_m")

access the membrane potential of first neuron + the times
V_m = recording["V_m"][0]
times = recording["times"]

nngt.simulation.make_nest_network(network, send_only=None, weights=True)
Create a new network which will be filled with neurons and connector objects to reproduce the topology from
the initial network.

Changed in version 0.8: Added send_only parameter.

Parameters

• network (nngt.Network or nngt.SpatialNetwork) – the network we want to re-
produce in NEST.

• send_only (int, str, or list of str, optional (default: None)) – Restrict the nodes that are
created in NEST to either inhibitory or excitatory neurons send_only ∈ {1,−1} to a group
or a list of groups.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

Returns gids (tuple (nodes in NEST)) – GIDs of the neurons in the network.

40 Chapter 2. The docs

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix

NNGT Documentation, Release 2.3.0

nngt.simulation.monitor_groups(group_names, network, nest_recorder=None, params=None)
Monitoring the activity of nodes in the network.

Parameters

• group_name (list of strings) – Names of the groups that should be recorded.

• network (Network or subclass) – Network which population will be used to differentiate
groups.

• nest_recorder (strings or list, optional (default: “spike_detector”0)) – Device(s) to moni-
tor the network.

• params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for
each recorder (see NEST documentation for details).

Returns

• recorders (list or NodeCollection of the recorders’ gids)

• recordables (list of the recordables’ names.)

nngt.simulation.monitor_nodes(gids, nest_recorder=None, params=None, network=None)
Monitoring the activity of nodes in the network.

Parameters

• gids (tuple of ints or list of tuples) – GIDs of the neurons in the NEST subnetwork; either
one list per recorder if they should monitor different neurons or a unique list which will be
monitored by all devices.

• nest_recorder (strings or list, optional (default: “spike_detector”)) – Device(s) to monitor
the network.

• params (dict or list of, optional (default: {})) – Dictionarie(s) containing the parameters for
each recorder (see NEST documentation for details).

• network (Network or subclass, optional (default: None)) – Network which population
will be used to differentiate groups.

Returns

• recorders (list or NodeCollection containing the recorders’ gids)

• recordables (list of the recordables’ names.)

nngt.simulation.plot_activity(gid_recorder=None, record=None, network=None, gids=None,
axis=None, show=False, limits=None, histogram=False,
title=None, fignum=None, label=None, sort=None, aver-
age=False, normalize=1.0, decimate=None, transparent=True,
kernel_center=0.0, kernel_std=None, resolution=None,
cut_gaussian=5.0, **kwargs)

Plot the monitored activity.

Changed in version 1.2: Switched hist to histogram and default value to False.

Changed in version 1.0.1: Added axis parameter, restored missing fignum parameter.

Parameters

• gid_recorder (tuple or list of tuples, optional (default: None)) – The gids of the recording
devices. If None, then all existing “spike_detector”s are used.

• record (tuple or list, optional (default: None)) – List of the monitored variables for each
device. If gid_recorder is None, record can also be None and only spikes are considered.

2.2. Intro & user manual 41

http://www.nest-simulator.org/quickref/#nodes
http://www.nest-simulator.org/quickref/#nodes

NNGT Documentation, Release 2.3.0

• network (Network or subclass, optional (default: None)) – Network which activity will
be monitored.

• gids (tuple, optional (default: None)) – NEST gids of the neurons which should be moni-
tored.

• axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot
the activity. This takes precedence over fignum.

• show (bool, optional (default: False)) – Whether to show the plot right away or to wait for
the next plt.show().

• histogram (bool, optional (default: False)) – Whether to display the histogram when plot-
ting spikes rasters.

• limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of
first and last spike for raster plots).

• title (str, optional (default: None)) – Title of the plot.

• fignum (int, or dict, optional (default: None)) – Plot the activity on an existing figure (from
figure.number). This parameter is ignored if axis is provided.

• label (str or list, optional (default: None)) – Add labels to the plot (one per recorder).

• sort (str or list, optional (default: None)) – Sort neurons using a topological property (“in-
degree”, “out-degree”, “total-degree” or “betweenness”), an activity-related property (“fir-
ing_rate” or neuronal property) or a user-defined list of sorted neuron ids. Sorting is per-
formed by increasing value of the sort property from bottom to top inside each group.

• normalize (float or list, optional (default: None)) – Normalize the recorded results by a
given float. If a list is provided, there should be one entry per voltmeter or multimeter in the
recorders. If the recording was done through monitor_groups, the population can be passed
to normalize the data by the nuber of nodes in each group.

• decimate (int or list of ints, optional (default: None)) – Represent only a fraction of the
spiking neurons; only one neuron in decimate will be represented (e.g. setting decimate to
5 will lead to only 20% of the neurons being represented). If a list is provided, it must have
one entry per NeuralGroup in the population.

• kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms
(for the histogram).

• kernel_std (float, optional (default: 0.5% of simulation time)) – Characteristic width of the
Gaussian kernel (standard deviation) in ms (for the histogram).

• resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the
firing rate values will be computed. Choosing a value smaller than kernel_std is strongly
advised. If resolution is an array, it will be considered as the times were the firing rate should
be computed (for the histogram).

• cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be com-
puted (for the histogram). By default, we consider the 5-sigma range. Decreasing this value
will increase speed at the cost of lower fidelity; increasing it with increase the fidelity at the
cost of speed.

• **kwargs (dict) – “color” and “alpha” values can be overriden here.

Warning: Sorting with “firing_rate” only works if NEST gids form a continuous integer range.

42 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Returns lines (list of lists of matplotlib.lines.Line2D) – Lines containing the data that
was plotted, grouped by figure.

nngt.simulation.randomize_neural_states(network, instructions, groups=None, nodes=None,
make_nest=False)

Randomize the neural states according to the instructions.

Changed in version 0.8: Changed ids to nodes argument.

Parameters

• network (Network subclass instance) – Network that will be simulated.

• instructions (dict) – Variables to initialize. Allowed keys are “V_m” and “w”. Values are
3-tuples of type ("distrib_name", double, double).

• groups (list of NeuralGroup, optional (default: None)) – If provided, only the neurons
belonging to these groups will have their properties randomized.

• nodes (array-like, optional (default: all neurons)) – NNGT ids of the neurons that will have
their status randomized.

• make_nest (bool, optional (default: False)) – If True and network has not been converted
to NEST, automatically generate the network, else raises an exception.

Example

instructions = {
"V_m": ("uniform", -80., -60.),
"w": ("normal", 50., 5.)

}

nngt.simulation.raster_plot(times, senders, limits=None, title=’Spike raster’, his-
togram=False, num_bins=1000, color=’b’, decimate=None,
axis=None, fignum=None, label=None, show=True, sort=None,
sort_attribute=None, network=None, transparent=True,
kernel_center=0.0, kernel_std=30.0, resolution=None,
cut_gaussian=5.0, **kwargs)

Plotting routine that constructs a raster plot along with an optional histogram.

Changed in version 1.2: Switched hist to histogram.

Changed in version 1.0.1: Added axis parameter.

Parameters

• times (list or numpy.ndarray) – Spike times.

• senders (list or numpy.ndarray) – Index for the spiking neuron for each time in times.

• limits (tuple, optional (default: None)) – Time limits of the plot (if not specified, times of
first and last spike).

• title (string, optional (default: ‘Spike raster’)) – Title of the raster plot.

• histogram (bool, optional (default: True)) – Whether to plot the raster’s histogram.

• num_bins (int, optional (default: 1000)) – Number of bins for the histogram.

• color (string or float, optional (default: ‘b’)) – Color of the plot lines and markers.

2.2. Intro & user manual 43

https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• decimate (int, optional (default: None)) – Represent only a fraction of the spiking neurons;
only one neuron in decimate will be represented (e.g. setting decimate to 10 will lead to
only 10% of the neurons being represented).

• axis (matplotlib axis object, optional (default: new one)) – Axis that should be use to plot
the activity.

• fignum (int, optional (default: None)) – Id of another raster plot to which the new data
should be added.

• label (str, optional (default: None)) – Label the current data.

• show (bool, optional (default: True)) – Whether to show the plot right away or to wait for
the next plt.show().

• kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

• kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel
(standard deviation) in ms.

• resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the
firing rate values will be computed. Choosing a value smaller than kernel_std is strongly
advised. If resolution is an array, it will be considered as the times were the firing rate should
be computed.

• cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be com-
puted (for the histogram). By default, we consider the 5-sigma range. Decreasing this value
will increase speed at the cost of lower fidelity; increasing it with increase the fidelity at the
cost of speed.

Returns lines (list of matplotlib.lines.Line2D) – Lines containing the data that was plot-
ted.

nngt.simulation.reproducible_weights(weights, neuron_model, di_param={}, timestep=0.05,
simtime=50.0, num_bins=1000, log=False)

Find the values of the connection weights that will give PSP responses of min_weight and max_weight in mV.

Parameters

• weights (list of floats) – Exact desired synaptic weights.

• neuron_model (string) – Name of the model used.

• di_param (dict, optional (default: {})) – Parameters of the model, default parameters if not
supplied.

• timestep (float, optional (default: 0.01)) – Timestep of the simulation in ms.

• simtime (float, optional (default: 10.)) – Simulation time in ms (default: 10).

• num_bins (int, optional (default: 10000)) – Number of bins used to discretize the exact
synaptic weights.

• log (bool, optional (default: False)) – Whether bins should use a logarithmic scale.

Note: If the parameters used are not the default ones, they MUST be provided, otherwise the resulting weights
will likely be WRONG.

nngt.simulation.save_spikes(filename, recorder=None, network=None, save_positions=True,
**kwargs)

Plot the monitored activity.

New in version 0.7.

44 Chapter 2. The docs

https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D

NNGT Documentation, Release 2.3.0

Parameters

• filename (str) – Path to the file where the activity should be saved.

• recorder (tuple or list of tuples, optional (default: None)) – The NEST gids of the recording
devices. If None, then all existing “spike_detector”s are used.

• network (Network or subclass, optional (default: None)) – Network which activity will
be monitored.

• save_positions (bool, optional (default: True)) – Whether to include the position of the
neurons in the file; this requires network to be provided.

• **kwargs (see numpy.savetxt())

nngt.simulation.set_minis(network, base_rate, weight, syn_type=1, nodes=None, gids=None)
Mimick spontaneous release of neurotransmitters, called miniature PSCs or “minis” that can occur at excitatory
(mEPSCs) or inhibitory (mIPSCs) synapses. These minis consists in only a fraction of the usual strength of a
spike- triggered PSC and can be modeled by a Poisson process. This Poisson process occurs independently at
every synapse of a neuron, so a neuron receiving 𝑘 inputs will be subjected to these events with a rate 𝑘 * 𝜆,
where 𝜆 is the base rate.

Parameters

• network (Network object) – Network on which the minis should be simulated.

• base_rate (float) – Rate for the Poisson process on one synapse (𝜆), in Hz.

• weight (float or array of size N) – Amplitude of a minitature post-synaptic event.

• syn_type (int, optional (default: 1)) – Synaptic type of the noisy connections. By default,
mEPSCs are generated, by taking into account only the excitatory degrees and synaptic
weights. To setup mIPSCs, used syn_type=-1.

• nodes (array-like (size N), optional (default: all nodes)) – NNGT ids of the neurons that
should be subjected to minis.

• gids (array-like (size N), optional (default: all neurons)) – NEST gids of the neurons that
should be subjected to minis.

Note: nodes and gids are not compatible, only one one the two arguments can be used in any given call to
set_minis.

nngt.simulation.set_noise(gids, mean, std)
Submit neurons to a current white noise.

Parameters

• gids (tuple) – NEST gids of the target neurons.

• mean (float) – Mean current value.

• std (float) – Standard deviation of the current

Returns noise (tuple) – The NEST gid of the noise_generator.

nngt.simulation.set_poisson_input(gids, rate, syn_spec=None, **kwargs)
Submit neurons to a Poissonian rate of spikes.

Changed in version 2.0: Added kwargs.

Parameters

• gids (tuple) – NEST gids of the target neurons.

2.2. Intro & user manual 45

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt

NNGT Documentation, Release 2.3.0

• rate (float) – Rate of the spike train (in Hz).

• syn_spec (dict, optional (default: static synapse with weight 1)) – Properties of the connec-
tion between the poisson_generator object and the target neurons.

• **kwargs (dict) – Other optional parameters for the poisson_generator.

Returns poisson_input (tuple) – The NEST gid of the poisson_generator.

nngt.simulation.set_step_currents(gids, times, currents)
Set step-current excitations

Parameters

• gids (tuple) – NEST gids of the target neurons.

• times (list or numpy.ndarray) – List of the times where the current will change (by
default the current generator is initiated at I=0. for t=0.)

• currents (list or numpy.ndarray) – List of the new current value after the associated
time value in times.

Returns noise (tuple) – The NEST gid of the noise_generator.

Go to other tutorials:

• Intro & user manual

• Graph generation

• Parallelism

• Groups, structures, and neuronal populations

• Interacting with the NEST simulator

• Properties of graph components

Note: This library provides many tools which will (or not) be loaded on startup depending on the python packages
available on your computer. The default behaviour of those tools is set in the ~/.nngt/nngt.conf file (see Configuration).
Moreover, to see all potential messages related to the import of those tools, you can use the logging function of NNGT,
either by setting the log_level value to INFO, or by setting log_to_file to True, and having a look at the log file in
~/.nngt/log/.

2.2.2 Description

The graph objects

Neural networks are described by four graph classes which contain a graph object from the chosen graph library (e.g.
gt.Graph, igraph.Graph, or networkx.Graph):

• Graph: base for simple topological graphs with no spatial structure, nor biological properties

• SpatialGraph: subclass for spatial graphs without biological properties

• Network: subclass for topological graphs with biological properties (to interact with NEST)

• SpatialNetwork: subclass with spatial and biological properties (to interact with NEST)

Using these objects, the user can access to the topological structure of the network (for neuroscience, this includes the
connections’ type – inhibitory or excitatory – and its synaptic weight, which is always positive)

46 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

NNGT Documentation, Release 2.3.0

Additional properties

Nodes/neurons are defined by a unique index which can be used to access their properties and those of the connections
between them.

The graph objects can have other attributes, such as:

• shape, for SpatialGraph and SpatialNetwork, describes the spatial delimitations of the nodes’ envi-
ronment (e.g. many in vitro culture of neurons are contained in circular dishes),

• structure divides the graph into groups and can facilitate graph generation and analysis,

• population, for Network, contains informations on the various groups of neurons that exist in the net-
work (for instance inhibitory and excitatory neurons can be grouped together), and is the updated version of
structure for neuroscientific projects.

Graph-theoretical models

Several classical graphs are efficiently implemented and the generation procedures are detailed in the documentation.

Main module (API)

Overview

• NNGT

– Available modules

– Units

• Main classes and functions

• Details

For more details regarding the main classes, see:

Graph classes

nngt.Graph([nodes, name, weighted, . . .]) The basic graph class, which inherits from a library
class such as graph_tool.Graph, networkx.
DiGraph, or igraph.Graph.

nngt.SpatialGraph([nodes, name, weighted,
. . .])

The detailed class that inherits from Graph and imple-
ments additional properties to describe spatial graphs
(i.e.

nngt.Network([name, weighted, directed, . . .]) The detailed class that inherits from Graph and imple-
ments additional properties to describe various biologi-
cal functions and interact with the NEST simulator.

nngt.SpatialNetwork(population[, name, . . .]) Class that inherits from Network and
SpatialGraph to provide a detailed description
of a real neural network in space, i.e.

2.2. Intro & user manual 47

https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph

NNGT Documentation, Release 2.3.0

Details

class nngt.Graph(nodes=None, name=’Graph’, weighted=True, directed=True, copy_graph=None,
structure=None, **kwargs)

The basic graph class, which inherits from a library class such as graph_tool.Graph, networkx.
DiGraph, or igraph.Graph.

The objects provides several functions to easily access some basic properties.

Initialize Graph instance

Changed in version 2.0: Renamed from_graph to copy_graph.

Changed in version 2.2: Added structure argument.

Parameters

• nodes (int, optional (default: 0)) – Number of nodes in the graph.

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• copy_graph (Graph, optional) – An optional Graph that will be copied.

• structure (Structure, optional (default: None)) – A structure dividing the graph into
specific groups, which can be used to generate specific connectivities and visualise the con-
nections in a more coarse-grained manner.

• kwargs (optional keywords arguments) – Optional arguments that can be passed
to the graph, e.g. a dict containing information on the synaptic weights
(weights={"distribution": "constant", "value": 2.3} which
is equivalent to weights=2.3), the synaptic delays, or a type information.

Note: When using copy_graph, only the topological properties are copied (nodes, edges, and attributes), spatial
and biological properties are ignored. To copy a graph exactly, use copy().

Returns self (Graph)

adjacency_matrix(types=False, weights=False, mformat=’csr’)
Return the graph adjacency matrix.

Note: Source nodes are represented by the rows, targets by the corresponding columns.

Parameters

• types (bool, optional (default: False)) – Wether the edge types should be taken into ac-
count (negative values for inhibitory connections).

• weights (bool or string, optional (default: False)) – Whether the adjacecy matrix should
be weighted. If True, all connections are multiply bythe associated synaptic strength; if
weight is a string, the connections are scaled bythe corresponding edge attribute.

• mformat (str, optional (default: “csr”)) – Type of scipy.sparse matrix that will be
returned, by default scipy.sparse.csr_matrix.

Returns mat (scipy.sparse matrix) – The adjacency matrix of the graph.

48 Chapter 2. The docs

https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse

NNGT Documentation, Release 2.3.0

clear_all_edges()
Remove all edges from the graph

copy()
Returns a deepcopy of the current Graph instance

delete_edges(edges)
Remove a list of edges

delete_nodes(nodes)
Remove nodes (and associated edges) from the graph.

edge_attributes
Access edge attributes.

See also:

node_attributes, get_edge_attributes, new_edge_attribute,
set_edge_attribute.

edge_id(edge)
Return the ID a given edge or a list of edges in the graph. Raises an error if the edge is not in the graph or
if one of the vertices in the edge is nonexistent.

Parameters edge (2-tuple or array of edges) – Edge descriptor (source, target).

Returns index (int or array of ints) – Index of the given edge.

edge_nb()
Number of edges in the graph

edges_array
Edges of the graph, sorted by order of creation, as an array of 2-tuple.

static from_file(filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None,
attributes_types=None, notifier=’@’, ignore=’#’, from_string=False,
name=None, directed=True, cleanup=False)

Import a saved graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Parameters

• filename (str) – The path to the file.

• fmt (str, optional (default: deduced from filename)) – The format used to save the graph.
Supported formats are: “neighbour” (neighbour list), “ssp” (scipy.sparse), “edge_list” (list
of all the edges in the graph, one edge per line, represented by a source target-pair),
“gml” (gml format, default if filename ends with ‘.gml’), “graphml” (graphml format,
default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot format, default if filename
ends with ‘.dot’), “gt” (only when using graph_tool as library, detected if filename ends
with ‘.gt’).

• separator (str, optional (default ” “)) – separator used to separate inputs in the case of
custom formats (namely “neighbour” and “edge_list”)

• secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes
in the case of custom formats.

• attributes (list, optional (default: [])) – List of names for the attributes present in the file.
If a notifier is present in the file, names will be deduced from it; otherwise the attributes
will be numbered. For “edge_list”, attributes may also be present as additional columns
after the source and the target.

2.2. Intro & user manual 49

http://graph-tool.skewed.de/

NNGT Documentation, Release 2.3.0

• attributes_types (dict, optional (default: str)) – Backup information if the type of the
attributes is not specified in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper type.

• notifier (str, optional (default: “@”)) – Symbol specifying the following as meaning-
full information. Relevant information are formatted @info_name=info_value,
where info_name is in (“attributes”, “directed”, “name”, “size”) and associated
info_value are of type (list, bool, str, int). Additional notifiers are
@type=SpatialGraph/Network/SpatialNetwork, which must be followed by
the relevant notifiers among @shape, @population, and @graph.

• from_string (bool, optional (default: False)) – Load from a string instead of a file.

• ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

• name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the
graph.

• directed (bool, optional (default: from file information or True)) – Whether the graph is
directed or not.

• cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that
appears in the edges and after the last one and renumber the nodes from 0.

Returns graph (Graph or subclass) – Loaded graph.

classmethod from_library(library_graph, name=’ImportedGraph’, weighted=True, di-
rected=True, **kwargs)

Create a Graph by wrapping a graph object from one of the supported libraries.

Parameters

• library_graph (object) – Graph object from one of the supported libraries (graph-tool,
igraph, networkx).

• name (str, optional (default: “ImportedGraph”))

• **kwargs – Other standard arguments (see __init__())

classmethod from_matrix(matrix, weighted=True, directed=True, population=None,
shape=None, positions=None, name=None, **kwargs)

Creates a Graph from a scipy.sparse matrix or a dense matrix.

Parameters

• matrix (scipy.sparse matrix or numpy.ndarray) – Adjacency matrix.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight proper-
ties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• population (NeuralPop) – Population to associate to the new Network.

• shape (Shape, optional (default: None)) – Shape to associate to the new
SpatialGraph.

• positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

• name (str, optional) – Graph name.

Returns Graph

get_attribute_type(attribute_name, attribute_class=None)
Return the type of an attribute (e.g. string, double, int).

50 Chapter 2. The docs

https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

Parameters

• attribute_name (str) – Name of the attribute.

• attribute_class (str, optional (default: both)) – Whether attribute_name is a “node” or an
“edge” attribute.

Returns type (str) – Type of the attribute.

get_betweenness(btype=’both’, weights=None)
Returns the normalized betweenness centrality of the nodes and edges.

Parameters

• g (Graph) – Graph to analyze.

• btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’,
‘edge’, or ‘both’). By default, both betweenness centralities are computed.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

Returns

• nb (numpy.ndarray) – The nodes’ betweenness if btype is ‘node’ or ‘both’

• eb (numpy.ndarray) – The edges’ betweenness if btype is ‘edge’ or ‘both’

See also:

betweenness()

get_degrees(mode=’total’, nodes=None, weights=None, edge_type=’all’)
Degree sequence of all the nodes.

Changed in version 2.0: Changed deg_type to mode, node_list to nodes, use_weights to weights, and
edge_type to edge_type.

Parameters

• mode (string, optional (default: “total”)) – Degree type (among ‘in’, ‘out’ or ‘total’).

• nodes (list, optional (default: None)) – List of the nodes which degree should be returned

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• edge_type (int or str, optional (default: all)) – Restrict to a given synaptic type (“excita-
tory”, 1, or “inhibitory”, -1), using either the “type” edge attribute for non-Network or
the inhibitory nodes.

Returns

• degrees (numpy.array)

• .. warning :: – When using MPI with “nngt” (distributed) backend, returns only the
degrees associated to local edges. “Complete” degrees are obtained by taking the sum of
the results on all MPI processes.

get_delays(edges=None)
Returns the delays of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

2.2. Intro & user manual 51

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of delays

get_density()
Density of the graph: 𝐸

𝑁2 , where E is the number of edges and N the number of nodes.

get_edge_attributes(edges=None, name=None)
Attributes of the graph’s edges.

Changed in version 1.0: Returns the full dict of edges attributes if called without arguments.

New in version 0.8.

Parameters

• edge (tuple or list of tuples, optional (default: None)) – Edge whose attribute should be
displayed.

• name (str, optional (default: None)) – Name of the desired attribute.

Returns

• Dict containing all graph’s attributes (synaptic weights, delays. . .)

• by default. If edge is specified, returns only the values for these

• edges. If name is specified, returns value of the attribute for each

• edge.

Note: The attributes values are ordered as the edges in edges_array() if edges is None.

See also:

get_node_attributes(), new_edge_attribute(), set_edge_attribute(),
new_node_attribute(), set_node_attribute()

get_edge_types(edges=None)
Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of types (1 for excitatory, -1 for inhibitory)

get_edges(attribute=None, value=None, source_node=None, target_node=None)
Return the edges in the network fulfilling a given condition.

Parameters

• attribute (str, optional (default: all nodes)) – Whether the attribute of the returned edges
should have a specific value.

• value (object, optional (default : None)) – If an attribute name is passed, then only edges
with attribute being equal to value will be returned.

• source_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those
stemming from source_node.

• target_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those
arriving at target_node.

52 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

See also:

get_nodes(), edge_attributes

get_node_attributes(nodes=None, name=None)
Attributes of the graph’s edges.

Changed in version 1.0.1: Corrected default behavior and made it the same as
get_edge_attributes().

New in version 0.9.

Parameters

• nodes (list of ints, optional (default: None)) – Nodes whose attribute should be displayed.

• name (str, optional (default: None)) – Name of the desired attribute.

Returns

• Dict containing all nodes attributes by default. If nodes is

• specified, returns a dict containing only the attributes of these

• nodes. If name is specified, returns a list containing the values of

• the specific attribute for the required nodes (or all nodes if

• unspecified).

See also:

get_edge_attributes(), new_node_attribute(), set_node_attribute(),
new_edge_attributes(), set_edge_attribute()

get_nodes(attribute=None, value=None)
Return the nodes in the network fulfilling a given condition.

Parameters

• attribute (str, optional (default: all nodes)) – Whether the attribute of the returned nodes
should have a specific value.

• value (object, optional (default : None)) – If an attribute name is passed, then only nodes
with attribute being equal to value will be returned.

See also:

get_edges(), node_attributes

get_structure_graph()
Return a coarse-grained version of the graph containing one node per nngt.Group. Connections be-
tween groups are associated to the sum of all connection weights. If no structure is present, returns an
empty Graph.

get_weights(edges=None)
Returns the weights of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of weights

2.2. Intro & user manual 53

NNGT Documentation, Release 2.3.0

graph
Returns the underlying library object.

Warning: Do not add or remove edges directly through this object.

See also:

Underlying graph objects and libraries, Consistent tools for graph analysis

graph_id
Unique int identifying the instance.

is_connected(mode=’strong’)
Return whether the graph is connected.

Parameters mode (str, optional (default: “strong”)) – Whether to test connectedness with di-
rected (“strong”) or undirected (“weak”) connections.

References

is_directed()
Whether the graph is directed or not

is_network()
Whether the graph is a subclass of Network (i.e. if it has a NeuralPop attribute).

is_spatial()
Whether the graph is embedded in space (i.e. is a subclass of SpatialGraph).

is_weighted()
Whether the edges have weights

static make_network(graph, neural_pop, copy=False, **kwargs)
Turn a Graph object into a Network, or a SpatialGraph into a SpatialNetwork.

Parameters

• graph (Graph or SpatialGraph) – Graph to convert

• neural_pop (NeuralPop) – Population to associate to the new Network

• copy (bool, optional (default: False)) – Whether the operation should be made in-place
on the object or if a new object should be returned.

Notes

In-place operation that directly converts the original graph if copy is False, else returns the copied Graph
turned into a Network.

static make_spatial(graph, shape=None, positions=None, copy=False)
Turn a Graph object into a SpatialGraph, or a Network into a SpatialNetwork.

Parameters

• graph (Graph or SpatialGraph) – Graph to convert.

• shape (Shape, optional (default: None)) – Shape to associate to the new
SpatialGraph.

• positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

54 Chapter 2. The docs

https://docs.python.org/3/library/functions.html#int

NNGT Documentation, Release 2.3.0

• copy (bool, optional (default: False)) – Whether the operation should be made in-place
on the object or if a new object should be returned.

Notes

In-place operation that directly converts the original graph if copy is False, else returns the copied Graph
turned into a SpatialGraph. The shape argument can be skipped if positions are given; in that case,
the neurons will be embedded in a rectangle that contains them all.

name
Name of the graph.

neighbours(node, mode=’all’)
Return the neighbours of node.

Parameters

• node (int) – Index of the node of interest.

• mode (string, optional (default: “all”)) – Type of neighbours that will be returned: “all”
returns all the neighbours regardless of directionality, “in” returns the in-neighbours (also
called predecessors) and “out” retruns the out-neighbours (or successors).

Returns neighbours (set) – The neighbours of node.

new_edge(source, target, attributes=None, ignore=False, self_loop=False)
Adding a connection to the graph, with optional properties.

Changed in version 2.0: Added self_loop argument to enable adding self-loops.

Parameters

• source (int/node) – Source node.

• target (int/node) – Target node.

• attributes (dict, optional (default: {})) – Dictionary containing optional edge proper-
ties. If the graph is weighted, defaults to {"weight": 1.}, the unit weight for the
connection (synaptic strength in NEST).

• ignore (bool, optional (default: False)) – If set to True, ignore attempts to add an existing
edge and accept self-loops; otherwise an error is raised.

• self_loop (bool, optional (default: False)) – Whether to allow self-loops or not.

Returns The new connection or None if nothing was added.

new_edge_attribute(name, value_type, values=None, val=None)
Create a new attribute for the edges.

Parameters

• name (str) – The name of the new attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

• values (array, optional (default: None)) – Values with which the edge attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all edges.

new_edges(edge_list, attributes=None, check_duplicates=False, check_self_loops=True,
check_existing=True, ignore_invalid=False)

Add a list of edges to the graph.

2.2. Intro & user manual 55

https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

Changed in version 2.0: Can perform all possible checks before adding new edges via the
check_duplicates check_self_loops, and check_existing arguments.

Parameters

• edge_list (list of 2-tuples or np.array of shape (edge_nb, 2)) – List of the edges that should
be added as tuples (source, target)

• attributes (dict, optional (default: {})) – Dictionary containing optional edge prop-
erties. If the graph is weighted, defaults to {"weight": ones}, where ones is an
array the same length as the edge_list containing a unit weight for each connection (synap-
tic strength in NEST).

• check_duplicates (bool, optional (default: False)) – Check for duplicate edges within
edge_list.

• check_self_loops (bool, optional (default: True)) – Check for self-loops.

• check_existing (bool, optional (default: True)) – Check whether some of the edges in
edge_list already exist in the graph or exist multiple times in edge_list (also performs
check_duplicates).

• ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added
to the graph and are silently dropped. Unless this is set to true, an error is raised whenever
one of the three checks fails.

• .. warning:: – Setting check_existing to False will lead to undefined behavior if existing
edges are provided! Only use it (for speedup) if you are sure that you are indeed only
adding new edges.

Returns Returns new edges only.

new_node(n=1, neuron_type=1, attributes=None, value_types=None, positions=None, groups=None)
Adding a node to the graph, with optional properties.

Parameters

• n (int, optional (default: 1)) – Number of nodes to add.

• neuron_type (int, optional (default: 1)) – Type of neuron (1 for excitatory, -1 for in-
hibitory)

• attributes (dict, optional (default: None)) – Dictionary containing the attributes of the
nodes.

• value_types (dict, optional (default: None)) – Dict of the attributes types, necessary only
if the attributes do not exist yet.

• positions (array of shape (n, 2), optional (default: None)) – Positions of the neurons.
Valid only for SpatialGraph or SpatialNetwork.

• groups (str, int, or list, optional (default: None)) – NeuralGroup to which the neurons
belong. Valid only for Network or SpatialNetwork.

Returns The node or a list of the nodes created.

new_node_attribute(name, value_type, values=None, val=None)
Create a new attribute for the nodes.

Parameters

• name (str) – The name of the new attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

56 Chapter 2. The docs

https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

• values (array, optional (default: None)) – Values with which the node attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all nodes.

See also:

new_edge_attribute(), set_node_attribute(), get_node_attributes(),
set_edge_attribute(), get_edge_attributes()

node_attributes
Access node attributes.

See also:

edge_attributes, get_node_attributes, new_node_attribute,
set_node_attribute.

node_nb()
Number of nodes in the graph

classmethod num_graphs()
Returns the number of alive instances.

set_delays(delay=None, elist=None, distribution=None, parameters=None, noise_scale=None)
Set the delay for spike propagation between neurons.

Parameters

• delay (float or class:numpy.array, optional (default: None)) – Value or list of delays (for
user defined delays).

• elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined
delays).

• distribution (class:string, optional (default: None)) – Type of distribution (choose among
“constant”, “uniform”, “gaussian”, “lognormal”, “lin_corr”, “log_corr”).

• parameters (dict, optional (default: {})) – Dictionary containing the properties of the
delay distribution.

• noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian
noise that should be applied on the delays.

set_edge_attribute(attribute, values=None, val=None, value_type=None, edges=None)
Set attributes to the connections between neurons.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• attribute (str) – The name of the attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

• values (array, optional (default: None)) – Values with which the edge attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all edges.

2.2. Intro & user manual 57

NNGT Documentation, Release 2.3.0

• value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’,
‘string’. Only used if the attribute does not exist and must be created.

• edges (list of edges or array of shape (E, 2), optional (default: all)) – Edges whose at-
tributes should be set. Others will remain unchanged.

See also:

set_node_attribute(), get_edge_attributes(), new_edge_attribute(),
new_node_attribute(), get_node_attributes()

set_name(name=”)
set graph name

set_node_attribute(attribute, values=None, val=None, value_type=None, nodes=None)
Set attributes to the connections between neurons.

Parameters

• attribute (str) – The name of the attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

• values (array, optional (default: None)) – Values with which the edge attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all edges.

• value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’,
‘string’. Only used if the attribute does not exist and must be created.

• nodes (list of nodes, optional (default: all)) – Nodes whose attributes should be set. Others
will remain unchanged.

See also:

set_edge_attribute(), new_node_attribute(), get_node_attributes(),
new_edge_attribute(), get_edge_attributes(),

set_types(edge_type, nodes=None, fraction=None)
Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also
1) or ‘inhibitory’ (also -1).

• nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of
the required type that will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the graph; if it is a list, ids of the
edge_type nodes.

• fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as
edge_type (if nodes is not None, it is the fraction of the specified nodes’ edges, otherwise
it is the fraction of all edges in the graph).

58 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Returns t_list (numpy.ndarray) – List of the types in an order that matches the edges at-
tribute of the graph.

set_weights(weight=None, elist=None, distribution=None, parameters=None, noise_scale=None)
Set the synaptic weights.

Parameters

• weight (float or class:numpy.array, optional (default: None)) – Value or list of the weights
(for user defined weights).

• elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined
weights).

• distribution (class:string, optional (default: None)) – Type of distribution (choose among
“constant”, “uniform”, “gaussian”, “lognormal”, “lin_corr”, “log_corr”).

• parameters (dict, optional (default: {})) – Dictionary containing the properties of the
weight distribution. Properties are as follow for the distributions

– ‘constant’: ‘value’

– ‘uniform’: ‘lower’, ‘upper’

– ‘gaussian’: ‘avg’, ‘std’

– ‘lognormal’: ‘position’, ‘scale’

• noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian
noise that should be applied on the weights.

Note: If distribution and parameters are provided and the weights are set for the whole graph (elist is
None), then the distribution properties will be kept as the new default for subsequent edges. That is, if new
edges are created without specifying their weights, then these new weights will automatically be drawn
from this previous distribution.

structure
Object structuring the graph into specific groups.

Note: Points to population if the graph is a Network.

to_file(filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None, notifier=’@’)
Save graph to file; options detailed below.

See also:

nngt.lib.save_to_file() function for options.

type
Type of the graph.

class nngt.SpatialGraph(nodes=0, name=’SpatialGraph’, weighted=True, directed=True,
from_graph=None, shape=None, positions=None, **kwargs)

The detailed class that inherits from Graph and implements additional properties to describe spatial graphs (i.e.
graph where the structure is embedded in space.

Initialize SpatialClass instance.

Parameters

• nodes (int, optional (default: 0)) – Number of nodes in the graph.

2.2. Intro & user manual 59

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads
to a square of side 1 cm)

• positions (numpy.array (N, 2), optional (default: None)) – Positions of the neurons; if
not specified and nodes is not 0, then neurons will be reparted at random inside the Shape
object of the instance.

• **kwargs (keyword arguments for Graph or) – Shape if no shape was given.

Returns self (SpatialGraph)

get_positions(nodes=None)
Returns a copy of the nodes’ positions as a (N, 2) array.

Parameters nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which
the position should be returned.

set_positions(positions, nodes=None)
Set the nodes’ positions as a (N, 2) array.

Parameters

• positions (array-like) – List of positions, of shape (N, 2).

• nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the
position should be set.

shape
The environment’s spatial structure.

class nngt.Network(name=’Network’, weighted=True, directed=True, from_graph=None, popula-
tion=None, inh_weight_factor=1.0, **kwargs)

The detailed class that inherits from Graph and implements additional properties to describe various biological
functions and interact with the NEST simulator.

Initializes Network instance.

Parameters

• nodes (int, optional (default: 0)) – Number of nodes in the graph.

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• from_graph (GraphObject, optional (default: None)) – An optional GraphObject to
serve as base.

• population (nngt.NeuralPop, (default: None)) – An object containing the neural
groups and their properties: model(s) to use in NEST to simulate the neurons as well as
their parameters.

• inh_weight_factor (float, optional (default: 1.)) – Factor to apply to inhibitory synapses,
to compensate for example the strength difference due to timescales between excitatory and
inhibitory synapses.

Returns self (Network)

60 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

classmethod exc_and_inhib(size, iratio=0.2, en_model=’aeif_cond_alpha’, en_param=None,
in_model=’aeif_cond_alpha’, in_param=None, syn_spec=None,
**kwargs)

Generate a network containing a population of two neural groups: inhibitory and excitatory neurons.

Parameters

• size (int) – Number of neurons in the network.

• i_ratio (double, optional (default: 0.2)) – Ratio of inhibitory neurons: 𝑁𝑖

𝑁𝑒+𝑁𝑖
.

• en_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the excitatory
neuron.

• en_param (dict, optional (default: {})) – Dictionary of parameters for the the excitatory
neuron.

• in_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the inhibitory
neuron.

• in_param (dict, optional (default: {})) – Dictionary of parameters for the the inhibitory
neuron.

• syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge
between groups as key and the associated synaptic parameters for the post-synaptic neu-
rons (i.e. those of the second group) as value. If provided, all connections between groups
will be set according to the values contained in syn_spec. Valid keys are:

– (‘excitatory’, ‘excitatory’)

– (‘excitatory’, ‘inhibitory’)

– (‘inhibitory’, ‘excitatory’)

– (‘inhibitory’, ‘inhibitory’)

Returns net (Network or subclass) – Network of disconnected excitatory and inhibitory neu-
rons.

See also:

exc_and_inhib()

classmethod from_gids(gids, get_connections=True, get_params=False, neu-
ron_model=’aeif_cond_alpha’, neuron_param=None,
syn_model=’static_synapse’, syn_param=None, **kwargs)

Generate a network from gids.

Warning: Unless get_connections and get_params is True, or if your population is homogeneous
and you provide the required information, the information contained by the network and its population
attribute will be erroneous! To prevent conflicts the to_nest() function is not available. If you
know what you are doing, you should be able to find a workaround. . .

Parameters

• gids (array-like) – Ids of the neurons in NEST or simply user specified ids.

• get_params (bool, optional (default: True)) – Whether the parameters should be obtained
from NEST (can be very slow).

• neuron_model (string, optional (default: None)) – Name of the NEST neural model to
use when simulating the activity.

2.2. Intro & user manual 61

NNGT Documentation, Release 2.3.0

• neuron_param (dict, optional (default: {})) – Dictionary containing the neural parame-
ters; the default value will make NEST use the default parameters of the model.

• syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use
when simulating the activity.

• syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters;
the default value will make NEST use the default parameters of the model.

Returns net (Network or subclass) – Uniform network of disconnected neurons.

get_edge_types()
Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of types (1 for excitatory, -1 for inhibitory)

get_neuron_type(neuron_ids)
Return the type of the neurons (+1 for excitatory, -1 for inhibitory).

Parameters neuron_ids (int or tuple) – NEST gids.

Returns ids (int or tuple) – Ids in the network. Same type as the requested gids type.

id_from_nest_gid(gids)
Return the ids of the nodes in the nngt.Network instance from the corresponding NEST gids.

Parameters gids (int or tuple) – NEST gids.

Returns ids (int or tuple) – Ids in the network. Same type as the requested gids type.

nest_gids

neuron_properties(idx_neuron)
Properties of a neuron in the graph.

Parameters idx_neuron (int) – Index of a neuron in the graph.

Returns dict of the neuron’s properties.

classmethod num_networks()
Returns the number of alive instances.

population
NeuralPop that divides the neurons into groups with specific properties.

set_types(edge_type, nodes=None, fraction=None)
Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also
1) or ‘inhibitory’ (also -1).

62 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of
the required type that will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the graph; if it is a list, ids of the
edge_type nodes.

• fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as
edge_type (if nodes is not None, it is the fraction of the specified nodes’ edges, otherwise
it is the fraction of all edges in the graph).

Returns t_list (numpy.ndarray) – List of the types in an order that matches the edges at-
tribute of the graph.

to_nest(send_only=None, weights=True)
Send the network to NEST.

See also:

make_nest_network() for parameters

classmethod uniform(size, neuron_model=’aeif_cond_alpha’, neuron_param=None,
syn_model=’static_synapse’, syn_param=None, **kwargs)

Generate a network containing only one type of neurons.

Parameters

• size (int) – Number of neurons in the network.

• neuron_model (string, optional (default: ‘aief_cond_alpha’)) – Name of the NEST neural
model to use when simulating the activity.

• neuron_param (dict, optional (default: {})) – Dictionary containing the neural parame-
ters; the default value will make NEST use the default parameters of the model.

• syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use
when simulating the activity.

• syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters;
the default value will make NEST use the default parameters of the model.

Returns net (Network or subclass) – Uniform network of disconnected neurons.

class nngt.SpatialNetwork(population, name=’SpatialNetwork’, weighted=True, directed=True,
shape=None, from_graph=None, positions=None, **kwargs)

Class that inherits from Network and SpatialGraph to provide a detailed description of a real neural
network in space, i.e. with positions and biological properties to interact with NEST.

Initialize SpatialNetwork instance

Parameters

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads
to a square of side 1 cm)

• positions (numpy.array, optional (default: None)) – Positions of the neurons; if not
specified and nodes != 0, then neurons will be reparted at random inside the Shape object
of the instance.

• population (class:~nngt.NeuralPop, optional (default: None)) – Population from which the
network will be built.

2.2. Intro & user manual 63

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

Returns self (SpatialNetwork)

set_types(syn_type, nodes=None, fraction=None)
Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also
1) or ‘inhibitory’ (also -1).

• nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of
the required type that will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the graph; if it is a list, ids of the
edge_type nodes.

• fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as
edge_type (if nodes is not None, it is the fraction of the specified nodes’ edges, otherwise
it is the fraction of all edges in the graph).

Returns t_list (numpy.ndarray) – List of the types in an order that matches the edges at-
tribute of the graph.

Main functions

nngt.generate(di_instructions, **kwargs) Generate a Graph or one of its subclasses from a dict
containing all the relevant informations.

nngt.get_config([key, detailed]) Get the NNGT configuration as a dictionary.
nngt.load_from_file(filename[, fmt, . . .]) Load a Graph from a file.
nngt.num_mpi_processes() Returns the number of MPI processes (1 if MPI is not

used)
nngt.on_master_process() Check whether the current code is executing on the mas-

ter process (rank 0) if MPI is used.
nngt.save_to_file(graph, filename[, fmt, . . .]) Save a graph to file.
nngt.seed([msd, seeds]) Seed the random generator used by NNGT (i.e.
nngt.set_config(config[, value, silent]) Set NNGT’s configuration.
nngt.use_backend(backend[, reloading, silent]) Allows the user to switch to a specific graph library as

backend.

Details

nngt.generate(di_instructions, **kwargs)
Generate a Graph or one of its subclasses from a dict containing all the relevant informations.

Parameters di_instructions (dict) – Dictionary containing the instructions to generate
the graph. It must have at least "graph_type" in its keys, with a value among
"distance_rule", "erdos_renyi", "fixed_degree", "newman_watts",
"price_scale_free", "random_scale_free". Depending on the type,

64 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

di_instructions should also contain at least all non-optional arguments of the generator
function.

See also:

generation

nngt.get_config(key=None, detailed=False)
Get the NNGT configuration as a dictionary.

Note: This function has no MPI barrier on it.

nngt.load_from_file(filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None, at-
tributes_types=None, notifier=’@’, ignore=’#’, name=’LoadedGraph’, di-
rected=True, cleanup=False)

Load a Graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Warning: Support for GraphML and DOT formats are currently limited and require one of the non-default
backends (DOT requires graph-tool).

Parameters

• filename (str) – The path to the file.

• fmt (str, optional (default: “neighbour”)) – The format used to save the graph. Supported
formats are: “neighbour” (neighbour list, default if format cannot be deduced automati-
cally), “ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph, one edge per
line, represented by a source target-pair), “gml” (gml format, default if filename
ends with ‘.gml’), “graphml” (graphml format, default if filename ends with ‘.graphml’
or ‘.xml’), “dot” (dot format, default if filename ends with ‘.dot’), “gt” (only when us-
ing graph_tool‘<http://graph-tool.skewed.de/>_ as library, detected if ‘filename ends with
‘.gt’).

• separator (str, optional (default ” “)) – separator used to separate inputs in the case of
custom formats (namely “neighbour” and “edge_list”)

• secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in
the case of custom formats.

• attributes (list, optional (default: [])) – List of names for the attributes present in the file.
If a notifier is present in the file, names will be deduced from it; otherwise the attributes will
be numbered. For “edge_list”, attributes may also be present as additional columns after the
source and the target.

• attributes_types (dict, optional (default: str)) – Backup information if the type of the at-
tributes is not specified in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper type.

• notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull
information. Relevant information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and associated info_value
are of type (list, bool, str, int). Additional notifiers are @type=SpatialGraph/
Network/SpatialNetwork, which must be followed by the relevant notifiers among
@shape, @structure, and @graph.

• ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

2.2. Intro & user manual 65

NNGT Documentation, Release 2.3.0

• name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the
graph.

• directed (bool, optional (default: from file information or True)) – Whether the graph is
directed or not.

• cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that
appears in the edges and after the last one and renumber the nodes from 0.

Returns graph (Graph or subclass) – Loaded graph.

nngt.num_mpi_processes()
Returns the number of MPI processes (1 if MPI is not used)

nngt.on_master_process()
Check whether the current code is executing on the master process (rank 0) if MPI is used.

Returns

• True if rank is 0, if mpi4py is not present or if MPI is not used,

• otherwise False.

nngt.save_to_file(graph, filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None, noti-
fier=’@’)

Save a graph to file.

@todo: implement dot, xml/graphml, and gt formats

Parameters

• graph (Graph or subclass) – Graph to save.

• filename (str) – The path to the file.

• fmt (str, optional (default: “auto”)) – The format used to save the graph. Supported formats
are: “neighbour” (neighbour list, default if format cannot be deduced automatically), “ssp”
(scipy.sparse), “edge_list” (list of all the edges in the graph, one edge per line, represented
by a source target-pair), “gml” (gml format, default if filename ends with ‘.gml’),
“graphml” (graphml format, default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot
format, default if filename ends with ‘.dot’), “gt” (only when using graph_tool as library,
detected if filename ends with ‘.gt’).

• separator (str, optional (default ” “)) – separator used to separate inputs in the case of
custom formats (namely “neighbour” and “edge_list”)

• secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in
the case of custom formats.

• attributes (list, optional (default: None)) – List of names for the edge attributes present in
the graph that will be saved to disk; by default (None), all attributes will be saved.

• notifier (str, optional (default: “@”)) – Symbol specifying the following as meaning-
full information. Relevant information are formatted @info_name=info_value, with
info_name in (“attributes”, “attr_types”, “directed”, “name”, “size”). Additional noti-
fiers are @type=SpatialGraph/Network/SpatialNetwork, which are followed
by the relevant notifiers among @shape, @structure, and @graph to separate the sec-
tions.

Note: Positions are saved as bytes by numpy.nparray.tostring()

66 Chapter 2. The docs

http://graph-tool.skewed.de/

NNGT Documentation, Release 2.3.0

nngt.seed(msd=None, seeds=None)
Seed the random generator used by NNGT (i.e. the numpy RandomState: for details, see numpy.random.
RandomState).

Parameters

• msd (int, optional) – Master seed for numpy RandomState. Must be convertible to 32-bit
unsigned integers.

• seeds (list of ints, optional) – Seeds for RandomState (when using MPI). Must be convertible
to 32-bit unsigned integers, one entry per MPI process.

nngt.set_config(config, value=None, silent=False)
Set NNGT’s configuration.

Parameters

• config (dict or str) – Either a full configuration dictionary or one key to be set together with
its associated value.

• value (object, optional (default: None)) – Value associated to config if config is a key.

Examples

>>> nngt.set_config({'multithreading': True, 'omp': 4})
>>> nngt.set_config('multithreading', False)

Notes

See the config file nngt/nngt.conf.default or ~/.nngt/nngt.conf for details about your configuration.

This function has an MPI barrier on it, so it must always be called on all processes.

See also:

get_config()

nngt.use_backend(backend, reloading=True, silent=False)
Allows the user to switch to a specific graph library as backend.

Warning: If Graph objects have already been created, they will no longer be compatible with NNGT
methods.

Parameters

• backend (string) – Name of a graph library among ‘graph_tool’, ‘igraph’, ‘networkx’, or
‘nngt’.

• reloading (bool, optional (default: True)) – Whether the graph objects should be reloaded
through reload (this should always be set to True except when NNGT is first initiated!)

• silent (bool, optional (default: False)) – Whether the changes made to the configuration
should be logged at the DEBUG (True) or INFO (False) level.

Side classes

2.2. Intro & user manual 67

https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

NNGT Documentation, Release 2.3.0

nngt.Group([nodes, properties, name]) Class defining groups of nodes.
nngt.GroupProperty(size[, constraints, . . .]) Class defining the properties needed to create groups

of neurons from an existing Graph or one of its sub-
classes.

nngt.MetaGroup([nodes, name]) Class defining a meta-group of nodes.
nngt.MetaNeuralGroup([nodes, name, proper-
ties])

Class defining a meta-group of neurons.

nngt.NeuralGroup([nodes, neuron_type, . . .]) Class defining groups of neurons.
nngt.NeuralPop([size, parent, meta_groups, . . .]) The basic class that contains groups of neurons and their

properties.
nngt.Structure([size, parent, meta_groups]) The basic class that contains groups of nodes and their

properties.

Details

class nngt.Group(nodes=None, properties=None, name=None, **kwargs)
Class defining groups of nodes.

Its main variables are:

Variables

• ids – list of int the ids of the nodes in this group.

• properties – dict, optional (default: {}) properties associated to the nodes

• is_metagroup – bool whether the group is a meta-group or not.

Note: A Group contains a set of nodes that are unique; the size of the group is the number of unique nodes
contained in the group. Passing non-unique nodes will automatically convert them to a unique set.

Warning: Equality between Group`s only compares the size and ``properties` at-
tributes. This means that groups differing only by their ids will register as equal.

Calling the class creates a group of nodes. The default is an empty group but it is not a valid object for most use
cases.

Parameters

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the nodes in an existing graph.

• properties (dict, optional (default: {})) – Dictionary containing the properties associated to
the nodes.

Returns A new Group instance.

add_nodes(nodes)
Add nodes to the group.

Parameters nodes (list of ids)

copy()
Return a deep copy of the group.

ids

68 Chapter 2. The docs

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

NNGT Documentation, Release 2.3.0

is_metagroup

is_valid
i.e. if it has either a size or some ids associated to it.

Type Whether the group can be used in a structure

name

parent
Return the parent Structure of the group

properties

size

class nngt.GroupProperty(size, constraints={}, neuron_model=None, neuron_param={},
syn_model=None, syn_param={})

Class defining the properties needed to create groups of neurons from an existing Graph or one of its subclasses.

Variables

• size – int Size of the group.

• constraints – dict, optional (default: {}) Constraints to respect when building the
NeuralGroup .

• neuron_model – str, optional (default: None) name of the model to use when simulating
the activity of this group.

• neuron_param – dict, optional (default: {}) the parameters to use (if they differ from the
model’s defaults)

Create a new instance of GroupProperties.

Notes

The constraints can be chosen among:

• “avg_deg”, “min_deg”, “max_deg” (int) to constrain the total degree of the nodes

• “avg/min/max_in_deg”, “avg/min/max_out_deg”, to work with the in/out-degrees

• “avg/min/max_betw” (double) to constrain the betweenness centrality

• “in_shape” (nngt.geometry.Shape) to chose neurons inside a given spatial region

Examples

>>> di_constrain = { "avg_deg": 10, "min_betw": 0.001 }
>>> group_prop = GroupProperties(200, constraints=di_constrain)

class nngt.MetaGroup(nodes=None, name=None, **kwargs)
Class defining a meta-group of nodes.

Its main variables are:

Variables ids – list of int the ids of the nodes in this group.

Calling the class creates a group of nodes. The default is an empty group but it is not a valid object for most use
cases.

Parameters

2.2. Intro & user manual 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

NNGT Documentation, Release 2.3.0

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the nodes in an existing graph.

• name (str, optional (default: “Group N”)) – Name of the meta-group.

Returns A new MetaGroup object.

class nngt.MetaNeuralGroup(nodes=None, name=None, properties=None, **kwargs)
Class defining a meta-group of neurons.

Its main variables are:

Variables

• ids – list of int the ids of the neurons in this group.

• is_metagroup – bool whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Calling the class creates a group of neurons. The default is an empty group but it is not a valid object for most
use cases.

Parameters

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the neurons in an existing graph.

• name (str, optional (default: “Group N”)) – Name of the meta-group.

Returns A new MetaNeuralGroup object.

excitatory
Return the ids of all excitatory nodes inside the meta-group.

inhibitory
Return the ids of all inhibitory nodes inside the meta-group.

properties

class nngt.NeuralGroup(nodes=None, neuron_type=1, neuron_model=None, neuron_param=None,
name=None, **kwargs)

Class defining groups of neurons.

Its main variables are:

Variables

• ids – list of int the ids of the neurons in this group.

• neuron_type – int the default is 1 for excitatory neurons; -1 is for inhibitory neurons;
meta-groups must have neuron_type set to None

• neuron_model – str, optional (default: None) the name of the model to use when simu-
lating the activity of this group

• neuron_param – dict, optional (default: {}) the parameters to use (if they differ from the
model’s defaults)

• is_metagroup – bool whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Warning: Equality between NeuralGroup`s only compares the size and neuronal
type, ``model` and param attributes. This means that groups differing only by their ids will register
as equal.

70 Chapter 2. The docs

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

NNGT Documentation, Release 2.3.0

Calling the class creates a group of neurons. The default is an empty group but it is not a valid object for most
use cases.

Parameters

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the neurons in an existing graph.

• neuron_type (int, optional (default: 1)) – Type of the neurons (1 for excitatory, -1 for
inhibitory) or None if not relevant (only allowed for metag roups).

• neuron_model (str, optional (default: None)) – NEST model for the neuron.

• neuron_param (dict, optional (default: model defaults)) – Dictionary containing the pa-
rameters associated to the NEST model.

Returns A new NeuralGroup instance.

copy()
Return a deep copy of the group.

has_model

ids

nest_gids

neuron_model

neuron_param

neuron_type

properties

class nngt.NeuralPop(size=None, parent=None, meta_groups=None, with_models=True, **kwargs)
The basic class that contains groups of neurons and their properties.

Variables

• has_models – bool, True if every group has a model attribute.

• size – int, Returns the number of neurons in the population.

• syn_spec – dict, Dictionary containing informations about the synapses between the
different groups in the population.

• is_valid – bool, Whether this population can be used to create a network in NEST.

Initialize NeuralPop instance.

Parameters

• size (int, optional (default: 0)) – Number of neurons that the population will contain.

• parent (Network, optional (default: None)) – Network associated to this population.

• meta_groups (dict of str/NeuralGroup items) – Optional set of groups. Contrary to the
primary groups which define the population and must be disjoint, meta groups can overlap:
a neuron can belong to several different meta groups.

• with_models (bool) – whether the population’s groups contain models to use in NEST

• *args (items for OrderedDict parent)

• **kwargs (dict)

Returns pop (NeuralPop object.)

2.2. Intro & user manual 71

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

add_to_group(group_name, ids)
Add neurons to a specific group.

Parameters

• group_name (str or int) – Name or index of the group.

• ids (list or 1D-array) – Neuron ids.

copy()
Return a deep copy of the population.

create_group(neurons, name, neuron_type=1, neuron_model=None, neuron_param=None, re-
place=False)

Create a new group in the population.

Parameters

• neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

• name (str) – Name of the group.

• neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for
inhibitory.

• neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

• neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the
NEST simulator. If None, default parameters will be used.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

create_meta_group(neurons, name, neuron_param=None, replace=False)
Create a new meta group and add it to the population.

Parameters

• neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

• name (str) – Name of the group.

• neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for
inhibitory.

• neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

• neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the
NEST simulator. If None, default parameters will be used.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

classmethod exc_and_inhib(size, iratio=0.2, en_model=’aeif_cond_alpha’, en_param=None,
in_model=’aeif_cond_alpha’, in_param=None, syn_spec=None,
parent=None, meta_groups=None)

Make a NeuralPop with a given ratio of inhibitory and excitatory neurons.

Changed in version 0.8: Added syn_spec parameter.

Changed in version 1.2: Added meta_groups parameter

Parameters

• size (int) – Number of neurons contained by the population.

• iratio (float, optional (default: 0.2)) – Fraction of the neurons that will be inhibitory.

72 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• en_model (str, optional (default: default_neuron)) – Name of the NEST model that will
be used to describe excitatory neurons.

• en_param (dict, optional (default: default NEST parameters)) – Parameters of the excita-
tory neuron model.

• in_model (str, optional (default: default_neuron)) – Name of the NEST model that will
be used to describe inhibitory neurons.

• in_param (dict, optional (default: default NEST parameters)) – Parameters of the in-
hibitory neuron model.

• syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge
between groups as key and the associated synaptic parameters for the post-synaptic neu-
rons (i.e. those of the second group) as value. If provided, all connections between groups
will be set according to the values contained in syn_spec. Valid keys are:

– (‘excitatory’, ‘excitatory’)

– (‘excitatory’, ‘inhibitory’)

– (‘inhibitory’, ‘excitatory’)

– (‘inhibitory’, ‘inhibitory’)

• parent (Network, optional (default: None)) – Network associated to this population.

• meta_groups (list dict of str/NeuralGroup items) – Additional set of groups which can
overlap: a neuron can belong to several different meta groups. Contrary to the primary
‘excitatory’ and ‘inhibitory’ groups, meta groups are therefore no necessarily disjoint. If
all meta-groups have a name, they can be passed directly through a list; otherwise a dict is
necessary.

See also:

nest.Connect(), as()

excitatory
Return the ids of all excitatory nodes inside the population.

New in version 1.3.

classmethod from_groups(groups, names=None, syn_spec=None, parent=None,
meta_groups=None, with_models=True)

Make a NeuralPop object from a (list of) NeuralGroup object(s).

Parameters

• groups (list of NeuralGroup objects) – Groups that will be used to form the population.
Note that a given neuron can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

• names (list of str, optional (default: None)) – Names that can be used as keys to retreive a
specific group. If not provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string. In the latter case, the first group in a population
named pop will be retreived by either pop[0] or pop[‘0’].

• parent (Graph, optional (default: None)) – Parent if the population is created from an
exiting graph.

• syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge
between groups as key and the associated synaptic parameters for the post-synaptic neu-
rons (i.e. those of the second group) as value. If a ‘default’ entry is provided, all unspeci-
fied connections will be set to its value.

2.2. Intro & user manual 73

NNGT Documentation, Release 2.3.0

• meta_groups (list or dict of str/NeuralGroup items) – Additional set of groups which
can overlap: a neuron can belong to several different meta groups. Contrary to the primary
groups, meta groups do therefore no need to be disjoint. If all meta-groups have a name,
they can be passed directly through a list; otherwise a dict is necessary.

• with_model (bool, optional (default: True)) – Whether the groups require models (set to
False to use populations for graph theoretical purposes, without NEST interaction)

Example

For synaptic properties, if provided in syn_spec, all connections between groups will be set according to
the values. Keys can be either group names or types (1 for excitatory, -1 for inhibitory). Because of this,
several combination can be available for the connections between two groups. Because of this, priority is
given to source (presynaptic properties), i.e. NNGT will look for the entry matching the first group name
as source before looking for entries matching the second group name as target.

we created groups `g1`, `g2`, and `g3`
prop = {

('g1', 'g2'): {'model': 'tsodyks2_synapse', 'tau_fac': 50.},
('g1', g3'): {'weight': 100.},
...

}
pop = NeuronalPop.from_groups(

[g1, g2, g3], names=['g1', 'g2', 'g3'], syn_spec=prop)

Note: If the population is not generated from an existing Graph and the groups do not contain explicit
ids, then the ids will be generated upon population creation: the first group, of size N0, will be associated
the indices 0 to N0 - 1, the second group (size N1), will get N0 to N0 + N1 - 1, etc.

classmethod from_network(graph, *args)
Make a NeuralPop object from a network. The groups of neurons are determined using instructions from
an arbitrary number of GroupProperties.

get_param(groups=None, neurons=None, element=’neuron’)
Return the element (neuron or synapse) parameters for neurons or groups of neurons in the population.

Parameters

• groups (str, int or array-like, optional (default: None)) – Names or numbers of the
groups for which the neural properties should be returned.

• neurons (int or array-like, optional (default: None)) – IDs of the neurons for which pa-
rameters should be returned.

• element (list of str, optional (default: "neuron")) – Element for which the param-
eters should be returned (either "neuron" or "synapse").

Returns param (list) – List of all dictionaries with the elements’ parameters.

has_models

inhibitory
Return the ids of all inhibitory nodes inside the population.

New in version 1.3.

nest_gids
Return the NEST gids of the nodes inside the population.

74 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

New in version 1.3.

set_model(model, group=None)
Set the groups’ models.

Parameters

• model (dict) – Dictionary containing the model type as key (“neuron” or “synapse”) and
the model name as value (e.g. {“neuron”: “iaf_neuron”}).

• group (list of strings, optional (default: None)) – List of strings containing the names of
the groups which models should be updated.

Note: By default, synapses are registered as “static_synapse”s in NEST; because of this, only the
neuron_model attribute is checked by the has_models function: it will answer True if all groups
have a ‘non-None’ neuron_model attribute.

Warning: No check is performed on the validity of the models, which means that errors will only be
detected when building the graph in NEST.

set_neuron_param(params, neurons=None, group=None)
Set the parameters of specific neurons or of a whole group.

New in version 1.0.

Parameters

• params (dict) – Dictionary containing parameters for the neurons. Entries can be either a
single number (same for all neurons) or a list (one entry per neuron).

• neurons (list of ints, optional (default: None)) – Ids of the neurons whose parameters
should be modified.

• group (list of strings, optional (default: None)) – List of strings containing the names of
the groups whose parameters should be updated. When modifying neurons from a single
group, it is still usefull to specify the group name to speed up the pace.

Note: If both neurons and group are None, all neurons will be modified.

Warning: No check is performed on the validity of the parameters, which means that errors will only
be detected when building the graph in NEST.

syn_spec
The properties of the synaptic connections between groups. Returns a dict containing tuples as keys and
dicts of parameters as values.

The keys are tuples containing the names of the groups in the population, with the projecting group first
(presynaptic neurons) and the receiving group last (post-synaptic neurons).

Example

For a population of excitatory (“exc”) and inhibitory (“inh”) neurons.

2.2. Intro & user manual 75

https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

syn_spec = {
("exc", "exc"): {'model': 'stdp_synapse', 'weight': 2.5},
("exc", "inh"): {'model': 'static_synapse'},
("exc", "inh"): {'model': 'stdp_synapse', 'delay': 5.},
("inh", "inh"): {

'model': 'stdp_synapse', 'weight': 5.,
'delay': ('normal', 5., 2.)}

}
}

New in version 0.8.

classmethod uniform(size, neuron_type=1, neuron_model=’aeif_cond_alpha’, neu-
ron_param=None, syn_model=’static_synapse’, syn_param=None,
parent=None, meta_groups=None)

Make a NeuralPop of identical neurons belonging to a single “default” group.

Changed in version 1.2: Added neuron_type and meta_groups parameters

Parameters

• size (int) – Number of neurons in the population.

• neuron_type (int, optional (default: 1)) – Type of the neurons in the population: 1 for
excitatory or -1 for inhibitory.

• neuron_model (str, optional (default: default neuron model)) – Neuronal model for the
simulator.

• neuron_param (dict, optional (default: default neuron parameters)) – Parameters associ-
ated to neuron_model.

• syn_model (str, optional (default: default static synapse)) – Synapse model for the simu-
lator.

• syn_param (dict, optional (default: default synaptic parameters)) – Parameters associated
to syn_model.

• parent (Graph object, optional (default: None)) – Parent graph described by the popula-
tion.

• meta_groups (list or dict of str/NeuralGroup items) – Set of groups which can overlap:
a neuron can belong to several different meta groups, i.e. they do no need to be disjoint. If
all meta-groups have a name, they can be passed directly through a list; otherwise a dict is
necessary.

class nngt.Structure(size=None, parent=None, meta_groups=None, **kwargs)
The basic class that contains groups of nodes and their properties.

Variables

• ids – lst, Returns the ids of nodes in the structure.

• is_valid – bool, Whether the structure is consistent with its associated network.

• parent – Network, Parent network.

• size – int, Returns the number of nodes in the structure.

Initialize Structure instance.

Parameters

• size (int, optional (default: 0)) – Number of nodes that the structure will contain.

76 Chapter 2. The docs

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

NNGT Documentation, Release 2.3.0

• parent (Network, optional (default: None)) – Network associated to this structure.

• meta_groups (dict of str/Group items) – Optional set of groups. Contrary to the primary
groups which define the structure and must be disjoint, meta groups can overlap: a neuron
can belong to several different meta groups.

• **kwargs (dict)

Returns struct (Structure object.)

add_meta_group(group, name=None, replace=False)
Add an existing meta group to the structure.

Parameters

• group (Group) – Meta group.

• name (str, optional (default: group name)) – Name of the meta group.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

Note: The name of the group is automatically updated to match the name argument.

add_to_group(group_name, ids)
Add nodes to a specific group.

Parameters

• group_name (str or int) – Name or index of the group.

• ids (list or 1D-array) – Node ids.

copy()
Return a deep copy of the structure.

create_group(nodes, name, properties=None, replace=False)
Create a new group in the structure.

Parameters

• nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

• name (str) – Name of the group.

• properties (dict, optional (default: None)) – Properties associated to the nodes in this
group.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

create_meta_group(nodes, name, properties=None, replace=False)
Create a new meta group and add it to the structure.

Parameters

• nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

• name (str) – Name of the group.

• properties (dict, optional (default: None)) – Properties associated to the nodes in this
group.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

2.2. Intro & user manual 77

https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

classmethod from_groups(groups, names=None, parent=None, meta_groups=None)
Make a Structure object from a (list of) Group object(s).

Parameters

• groups (list of Group objects) – Groups that will be used to form the structure. Note
that a given node can only belong to a single group, so the groups should form pairwise
disjoints complementary sets.

• names (list of str, optional (default: None)) – Names that can be used as keys to retreive a
specific group. If not provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string. In the latter case, the first group in a structure
named struct will be retreived by either struct[0] or struct[‘0’].

• parent (Graph, optional (default: None)) – Parent if the structure is created from an
exiting graph.

• meta_groups (list or dict of str/Group items) – Additional set of groups which can over-
lap: a node can belong to several different meta groups. Contrary to the primary groups,
meta groups do therefore no need to be disjoint. If all meta-groups have a name, they can
be passed directly through a list; otherwise a dict is necessary.

Example

For synaptic properties, if provided in syn_spec, all connections between groups will be set according to
the values. Keys can be either group names or types (1 for excitatory, -1 for inhibitory). Because of this,
several combination can be available for the connections between two groups. Because of this, priority is
given to source (presynaptic properties), i.e. NNGT will look for the entry matching the first group name
as source before looking for entries matching the second group name as target.

we already created groups `g1`, `g2`, and `g3`
struct = Structure.from_groups([g1, g2, g3],

names=['g1', 'g2', 'g3'])

Note: If the structure is not generated from an existing Graph and the groups do not contain explicit ids,
then the ids will be generated upon structure creation: the first group, of size N0, will be associated the
indices 0 to N0 - 1, the second group (size N1), will get N0 to N0 + N1 - 1, etc.

get_group(nodes, numbers=False)
Return the group of the nodes.

Parameters

• nodes (int or array-like) – IDs of the nodes for which the group should be returned.

• numbers (bool, optional (default: False)) – Whether the group identifier should be re-
turned as a number; if False, the group names are returned.

get_properties(key=None, groups=None, nodes=None)
Return the properties of nodes or groups of nodes in the structure.

Parameters

• groups (str, int or array-like, optional (default: None)) – Names or numbers of the
groups for which the neural properties should be returned.

• nodes (int or array-like, optional (default: None)) – IDs of the nodes for which parameters
should be returned.

78 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Returns props (list) – List of all dictionaries with properties.

ids
Return all the ids of the nodes inside the structure.

New in version 1.2.

is_valid
Whether the structure is consistent with the associated network.

meta_groups

parent
Parent Network, if it exists, otherwise None.

set_properties(props, nodes=None, group=None)
Set the parameters of specific nodes or of a whole group.

New in version 2.2.

Parameters

• props (dict) – Dictionary containing parameters for the nodes. Entries can be either a
single number (same for all nodes) or a list (one entry per nodes).

• nodes (list of ints, optional (default: None)) – Ids of the nodes whose parameters should
be modified.

• group (list of strings, optional (default: None)) – List of strings containing the names of
the groups whose parameters should be updated. When modifying nodes from a single
group, it is still usefull to specify the group name to speed up the pace.

Note: If both nodes and group are None, all nodes will be modified.

size
Number of nodes in this structure.

NNGT

Package aimed at facilitating the analysis of Neural Networks and Graphs’ Topologies in Python by providing a unified
interface for network generation and analysis.

The library mainly provides algorithms for

1. generating networks

2. studying their topological properties

3. doing some basic spatial, topological, and statistical visualizations

4. interacting with neuronal simulators and analyzing neuronal activity

Available modules

analysis Tools to study graph topology and neuronal activity.

core Where the main classes are coded; however, most useful classes and methods for users are loaded at the main
level (nngt) when the library is imported, so nngt.core should generally not be used.

generation Functions to generate specific networks.

2.2. Intro & user manual 79

NNGT Documentation, Release 2.3.0

geometry Tools to work on metric graphs (see PyNCulture).

io Tools for input/output operations.

lib Basic functions used by several most other modules.

simulation Tools to provide complex network generation with NEST and help analyze the influence of the network
structure on neuronal activity.

plot Plot data or graphs using matplotlib.

Units

Functions related to spatial embedding of networks are using micrometers (um) as default unit; other units from the
metric system can also be provided:

• mm for milimeters

• cm centimeters

• dm for decimeters

• m for meters

Main classes and functions

nngt.Graph([nodes, name, weighted, . . .]) The basic graph class, which inherits from a library
class such as graph_tool.Graph, networkx.
DiGraph, or igraph.Graph.

nngt.Group([nodes, properties, name]) Class defining groups of nodes.
nngt.GroupProperty(size[, constraints, . . .]) Class defining the properties needed to create groups

of neurons from an existing Graph or one of its sub-
classes.

nngt.MetaGroup([nodes, name]) Class defining a meta-group of nodes.
nngt.MetaNeuralGroup([nodes, name, proper-
ties])

Class defining a meta-group of neurons.

nngt.Network([name, weighted, directed, . . .]) The detailed class that inherits from Graph and imple-
ments additional properties to describe various biologi-
cal functions and interact with the NEST simulator.

nngt.NeuralGroup([nodes, neuron_type, . . .]) Class defining groups of neurons.
nngt.NeuralPop([size, parent, meta_groups, . . .]) The basic class that contains groups of neurons and their

properties.
nngt.SpatialGraph([nodes, name, weighted,
. . .])

The detailed class that inherits from Graph and imple-
ments additional properties to describe spatial graphs
(i.e.

nngt.SpatialNetwork(population[, name, . . .]) Class that inherits from Network and
SpatialGraph to provide a detailed description
of a real neural network in space, i.e.

nngt.Structure([size, parent, meta_groups]) The basic class that contains groups of nodes and their
properties.

nngt.generate(di_instructions, **kwargs) Generate a Graph or one of its subclasses from a dict
containing all the relevant informations.

nngt.get_config([key, detailed]) Get the NNGT configuration as a dictionary.
nngt.load_from_file(filename[, fmt, . . .]) Load a Graph from a file.

Continued on next page

80 Chapter 2. The docs

https://github.com/SENeC-Initiative/PyNCulture
https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph

NNGT Documentation, Release 2.3.0

Table 5 – continued from previous page
nngt.num_mpi_processes() Returns the number of MPI processes (1 if MPI is not

used)
nngt.on_master_process() Check whether the current code is executing on the mas-

ter process (rank 0) if MPI is used.
nngt.save_to_file(graph, filename[, fmt, . . .]) Save a graph to file.
nngt.seed([msd, seeds]) Seed the random generator used by NNGT (i.e.
nngt.set_config(config[, value, silent]) Set NNGT’s configuration.
nngt.use_backend(backend[, reloading, silent]) Allows the user to switch to a specific graph library as

backend.

Details

class nngt.Graph(nodes=None, name=’Graph’, weighted=True, directed=True, copy_graph=None,
structure=None, **kwargs)

The basic graph class, which inherits from a library class such as graph_tool.Graph, networkx.
DiGraph, or igraph.Graph.

The objects provides several functions to easily access some basic properties.

Initialize Graph instance

Changed in version 2.0: Renamed from_graph to copy_graph.

Changed in version 2.2: Added structure argument.

Parameters

• nodes (int, optional (default: 0)) – Number of nodes in the graph.

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• copy_graph (Graph, optional) – An optional Graph that will be copied.

• structure (Structure, optional (default: None)) – A structure dividing the graph into
specific groups, which can be used to generate specific connectivities and visualise the con-
nections in a more coarse-grained manner.

• kwargs (optional keywords arguments) – Optional arguments that can be passed
to the graph, e.g. a dict containing information on the synaptic weights
(weights={"distribution": "constant", "value": 2.3} which
is equivalent to weights=2.3), the synaptic delays, or a type information.

Note: When using copy_graph, only the topological properties are copied (nodes, edges, and attributes), spatial
and biological properties are ignored. To copy a graph exactly, use copy().

Returns self (Graph)

adjacency_matrix(types=False, weights=False, mformat=’csr’)
Return the graph adjacency matrix.

Note: Source nodes are represented by the rows, targets by the corresponding columns.

2.2. Intro & user manual 81

https://graph-tool.skewed.de/static/doc/graph_tool.html#graph_tool.Graph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph
https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph

NNGT Documentation, Release 2.3.0

Parameters

• types (bool, optional (default: False)) – Wether the edge types should be taken into ac-
count (negative values for inhibitory connections).

• weights (bool or string, optional (default: False)) – Whether the adjacecy matrix should
be weighted. If True, all connections are multiply bythe associated synaptic strength; if
weight is a string, the connections are scaled bythe corresponding edge attribute.

• mformat (str, optional (default: “csr”)) – Type of scipy.sparse matrix that will be
returned, by default scipy.sparse.csr_matrix.

Returns mat (scipy.sparse matrix) – The adjacency matrix of the graph.

copy()
Returns a deepcopy of the current Graph instance

edge_attributes
Access edge attributes.

See also:

node_attributes, get_edge_attributes, new_edge_attribute,
set_edge_attribute.

static from_file(filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None,
attributes_types=None, notifier=’@’, ignore=’#’, from_string=False,
name=None, directed=True, cleanup=False)

Import a saved graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Parameters

• filename (str) – The path to the file.

• fmt (str, optional (default: deduced from filename)) – The format used to save the graph.
Supported formats are: “neighbour” (neighbour list), “ssp” (scipy.sparse), “edge_list” (list
of all the edges in the graph, one edge per line, represented by a source target-pair),
“gml” (gml format, default if filename ends with ‘.gml’), “graphml” (graphml format,
default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot format, default if filename
ends with ‘.dot’), “gt” (only when using graph_tool as library, detected if filename ends
with ‘.gt’).

• separator (str, optional (default ” “)) – separator used to separate inputs in the case of
custom formats (namely “neighbour” and “edge_list”)

• secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes
in the case of custom formats.

• attributes (list, optional (default: [])) – List of names for the attributes present in the file.
If a notifier is present in the file, names will be deduced from it; otherwise the attributes
will be numbered. For “edge_list”, attributes may also be present as additional columns
after the source and the target.

• attributes_types (dict, optional (default: str)) – Backup information if the type of the
attributes is not specified in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper type.

• notifier (str, optional (default: “@”)) – Symbol specifying the following as meaning-
full information. Relevant information are formatted @info_name=info_value,
where info_name is in (“attributes”, “directed”, “name”, “size”) and associated
info_value are of type (list, bool, str, int). Additional notifiers are

82 Chapter 2. The docs

https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
http://graph-tool.skewed.de/

NNGT Documentation, Release 2.3.0

@type=SpatialGraph/Network/SpatialNetwork, which must be followed by
the relevant notifiers among @shape, @population, and @graph.

• from_string (bool, optional (default: False)) – Load from a string instead of a file.

• ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

• name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the
graph.

• directed (bool, optional (default: from file information or True)) – Whether the graph is
directed or not.

• cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that
appears in the edges and after the last one and renumber the nodes from 0.

Returns graph (Graph or subclass) – Loaded graph.

classmethod from_library(library_graph, name=’ImportedGraph’, weighted=True, di-
rected=True, **kwargs)

Create a Graph by wrapping a graph object from one of the supported libraries.

Parameters

• library_graph (object) – Graph object from one of the supported libraries (graph-tool,
igraph, networkx).

• name (str, optional (default: “ImportedGraph”))

• **kwargs – Other standard arguments (see __init__())

classmethod from_matrix(matrix, weighted=True, directed=True, population=None,
shape=None, positions=None, name=None, **kwargs)

Creates a Graph from a scipy.sparse matrix or a dense matrix.

Parameters

• matrix (scipy.sparse matrix or numpy.ndarray) – Adjacency matrix.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight proper-
ties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• population (NeuralPop) – Population to associate to the new Network.

• shape (Shape, optional (default: None)) – Shape to associate to the new
SpatialGraph.

• positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

• name (str, optional) – Graph name.

Returns Graph

get_attribute_type(attribute_name, attribute_class=None)
Return the type of an attribute (e.g. string, double, int).

Parameters

• attribute_name (str) – Name of the attribute.

• attribute_class (str, optional (default: both)) – Whether attribute_name is a “node” or an
“edge” attribute.

Returns type (str) – Type of the attribute.

2.2. Intro & user manual 83

https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

get_betweenness(btype=’both’, weights=None)
Returns the normalized betweenness centrality of the nodes and edges.

Parameters

• g (Graph) – Graph to analyze.

• btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’,
‘edge’, or ‘both’). By default, both betweenness centralities are computed.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

Returns

• nb (numpy.ndarray) – The nodes’ betweenness if btype is ‘node’ or ‘both’

• eb (numpy.ndarray) – The edges’ betweenness if btype is ‘edge’ or ‘both’

See also:

betweenness()

get_degrees(mode=’total’, nodes=None, weights=None, edge_type=’all’)
Degree sequence of all the nodes.

Changed in version 2.0: Changed deg_type to mode, node_list to nodes, use_weights to weights, and
edge_type to edge_type.

Parameters

• mode (string, optional (default: “total”)) – Degree type (among ‘in’, ‘out’ or ‘total’).

• nodes (list, optional (default: None)) – List of the nodes which degree should be returned

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• edge_type (int or str, optional (default: all)) – Restrict to a given synaptic type (“excita-
tory”, 1, or “inhibitory”, -1), using either the “type” edge attribute for non-Network or
the inhibitory nodes.

Returns

• degrees (numpy.array)

• .. warning :: – When using MPI with “nngt” (distributed) backend, returns only the
degrees associated to local edges. “Complete” degrees are obtained by taking the sum of
the results on all MPI processes.

get_delays(edges=None)
Returns the delays of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of delays

get_density()
Density of the graph: 𝐸

𝑁2 , where E is the number of edges and N the number of nodes.

84 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

get_edge_attributes(edges=None, name=None)
Attributes of the graph’s edges.

Changed in version 1.0: Returns the full dict of edges attributes if called without arguments.

New in version 0.8.

Parameters

• edge (tuple or list of tuples, optional (default: None)) – Edge whose attribute should be
displayed.

• name (str, optional (default: None)) – Name of the desired attribute.

Returns

• Dict containing all graph’s attributes (synaptic weights, delays. . .)

• by default. If edge is specified, returns only the values for these

• edges. If name is specified, returns value of the attribute for each

• edge.

Note: The attributes values are ordered as the edges in edges_array() if edges is None.

See also:

get_node_attributes(), new_edge_attribute(), set_edge_attribute(),
new_node_attribute(), set_node_attribute()

get_edge_types(edges=None)
Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of types (1 for excitatory, -1 for inhibitory)

get_edges(attribute=None, value=None, source_node=None, target_node=None)
Return the edges in the network fulfilling a given condition.

Parameters

• attribute (str, optional (default: all nodes)) – Whether the attribute of the returned edges
should have a specific value.

• value (object, optional (default : None)) – If an attribute name is passed, then only edges
with attribute being equal to value will be returned.

• source_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those
stemming from source_node.

• target_node (int or list of ints, optional (default: all nodes)) – Retrict the edges to those
arriving at target_node.

See also:

get_nodes(), edge_attributes

get_node_attributes(nodes=None, name=None)
Attributes of the graph’s edges.

2.2. Intro & user manual 85

NNGT Documentation, Release 2.3.0

Changed in version 1.0.1: Corrected default behavior and made it the same as
get_edge_attributes().

New in version 0.9.

Parameters

• nodes (list of ints, optional (default: None)) – Nodes whose attribute should be displayed.

• name (str, optional (default: None)) – Name of the desired attribute.

Returns

• Dict containing all nodes attributes by default. If nodes is

• specified, returns a dict containing only the attributes of these

• nodes. If name is specified, returns a list containing the values of

• the specific attribute for the required nodes (or all nodes if

• unspecified).

See also:

get_edge_attributes(), new_node_attribute(), set_node_attribute(),
new_edge_attributes(), set_edge_attribute()

get_nodes(attribute=None, value=None)
Return the nodes in the network fulfilling a given condition.

Parameters

• attribute (str, optional (default: all nodes)) – Whether the attribute of the returned nodes
should have a specific value.

• value (object, optional (default : None)) – If an attribute name is passed, then only nodes
with attribute being equal to value will be returned.

See also:

get_edges(), node_attributes

get_structure_graph()
Return a coarse-grained version of the graph containing one node per nngt.Group. Connections be-
tween groups are associated to the sum of all connection weights. If no structure is present, returns an
empty Graph.

get_weights(edges=None)
Returns the weights of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of weights

graph
Returns the underlying library object.

Warning: Do not add or remove edges directly through this object.

See also:

86 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Underlying graph objects and libraries, Consistent tools for graph analysis

graph_id
Unique int identifying the instance.

is_connected(mode=’strong’)
Return whether the graph is connected.

Parameters mode (str, optional (default: “strong”)) – Whether to test connectedness with di-
rected (“strong”) or undirected (“weak”) connections.

References

is_directed()
Whether the graph is directed or not

is_network()
Whether the graph is a subclass of Network (i.e. if it has a NeuralPop attribute).

is_spatial()
Whether the graph is embedded in space (i.e. is a subclass of SpatialGraph).

is_weighted()
Whether the edges have weights

static make_network(graph, neural_pop, copy=False, **kwargs)
Turn a Graph object into a Network, or a SpatialGraph into a SpatialNetwork.

Parameters

• graph (Graph or SpatialGraph) – Graph to convert

• neural_pop (NeuralPop) – Population to associate to the new Network

• copy (bool, optional (default: False)) – Whether the operation should be made in-place
on the object or if a new object should be returned.

Notes

In-place operation that directly converts the original graph if copy is False, else returns the copied Graph
turned into a Network.

static make_spatial(graph, shape=None, positions=None, copy=False)
Turn a Graph object into a SpatialGraph, or a Network into a SpatialNetwork.

Parameters

• graph (Graph or SpatialGraph) – Graph to convert.

• shape (Shape, optional (default: None)) – Shape to associate to the new
SpatialGraph.

• positions ((N, 2) array) – Positions, in a 2D space, of the N neurons.

• copy (bool, optional (default: False)) – Whether the operation should be made in-place
on the object or if a new object should be returned.

2.2. Intro & user manual 87

https://docs.python.org/3/library/functions.html#int

NNGT Documentation, Release 2.3.0

Notes

In-place operation that directly converts the original graph if copy is False, else returns the copied Graph
turned into a SpatialGraph. The shape argument can be skipped if positions are given; in that case,
the neurons will be embedded in a rectangle that contains them all.

name
Name of the graph.

neighbours(node, mode=’all’)
Return the neighbours of node.

Parameters

• node (int) – Index of the node of interest.

• mode (string, optional (default: “all”)) – Type of neighbours that will be returned: “all”
returns all the neighbours regardless of directionality, “in” returns the in-neighbours (also
called predecessors) and “out” retruns the out-neighbours (or successors).

Returns neighbours (set) – The neighbours of node.

new_edge_attribute(name, value_type, values=None, val=None)
Create a new attribute for the edges.

Parameters

• name (str) – The name of the new attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

• values (array, optional (default: None)) – Values with which the edge attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all edges.

new_node_attribute(name, value_type, values=None, val=None)
Create a new attribute for the nodes.

Parameters

• name (str) – The name of the new attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’, or ‘object’

• values (array, optional (default: None)) – Values with which the node attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all nodes.

See also:

new_edge_attribute(), set_node_attribute(), get_node_attributes(),
set_edge_attribute(), get_edge_attributes()

node_attributes
Access node attributes.

See also:

edge_attributes, get_node_attributes, new_node_attribute,
set_node_attribute.

classmethod num_graphs()
Returns the number of alive instances.

88 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

set_delays(delay=None, elist=None, distribution=None, parameters=None, noise_scale=None)
Set the delay for spike propagation between neurons.

Parameters

• delay (float or class:numpy.array, optional (default: None)) – Value or list of delays (for
user defined delays).

• elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined
delays).

• distribution (class:string, optional (default: None)) – Type of distribution (choose among
“constant”, “uniform”, “gaussian”, “lognormal”, “lin_corr”, “log_corr”).

• parameters (dict, optional (default: {})) – Dictionary containing the properties of the
delay distribution.

• noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian
noise that should be applied on the delays.

set_edge_attribute(attribute, values=None, val=None, value_type=None, edges=None)
Set attributes to the connections between neurons.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• attribute (str) – The name of the attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

• values (array, optional (default: None)) – Values with which the edge attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all edges.

• value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’,
‘string’. Only used if the attribute does not exist and must be created.

• edges (list of edges or array of shape (E, 2), optional (default: all)) – Edges whose at-
tributes should be set. Others will remain unchanged.

See also:

set_node_attribute(), get_edge_attributes(), new_edge_attribute(),
new_node_attribute(), get_node_attributes()

set_name(name=”)
set graph name

set_node_attribute(attribute, values=None, val=None, value_type=None, nodes=None)
Set attributes to the connections between neurons.

Parameters

• attribute (str) – The name of the attribute.

• value_type (str) – Type of the attribute, among ‘int’, ‘double’, ‘string’

2.2. Intro & user manual 89

NNGT Documentation, Release 2.3.0

• values (array, optional (default: None)) – Values with which the edge attribute should be
initialized. (must have one entry per node in the graph)

• val (int, float or str , optional (default: None)) – Identical value for all edges.

• value_type (str, optional (default: None)) – Type of the attribute, among ‘int’, ‘double’,
‘string’. Only used if the attribute does not exist and must be created.

• nodes (list of nodes, optional (default: all)) – Nodes whose attributes should be set. Others
will remain unchanged.

See also:

set_edge_attribute(), new_node_attribute(), get_node_attributes(),
new_edge_attribute(), get_edge_attributes(),

set_types(edge_type, nodes=None, fraction=None)
Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also
1) or ‘inhibitory’ (also -1).

• nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of
the required type that will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the graph; if it is a list, ids of the
edge_type nodes.

• fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as
edge_type (if nodes is not None, it is the fraction of the specified nodes’ edges, otherwise
it is the fraction of all edges in the graph).

Returns t_list (numpy.ndarray) – List of the types in an order that matches the edges at-
tribute of the graph.

set_weights(weight=None, elist=None, distribution=None, parameters=None, noise_scale=None)
Set the synaptic weights.

Parameters

• weight (float or class:numpy.array, optional (default: None)) – Value or list of the weights
(for user defined weights).

• elist (class:numpy.array, optional (default: None)) – List of the edges (for user defined
weights).

• distribution (class:string, optional (default: None)) – Type of distribution (choose among
“constant”, “uniform”, “gaussian”, “lognormal”, “lin_corr”, “log_corr”).

• parameters (dict, optional (default: {})) – Dictionary containing the properties of the
weight distribution. Properties are as follow for the distributions

– ‘constant’: ‘value’

90 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

– ‘uniform’: ‘lower’, ‘upper’

– ‘gaussian’: ‘avg’, ‘std’

– ‘lognormal’: ‘position’, ‘scale’

• noise_scale (class:int, optional (default: None)) – Scale of the multiplicative Gaussian
noise that should be applied on the weights.

Note: If distribution and parameters are provided and the weights are set for the whole graph (elist is
None), then the distribution properties will be kept as the new default for subsequent edges. That is, if new
edges are created without specifying their weights, then these new weights will automatically be drawn
from this previous distribution.

structure
Object structuring the graph into specific groups.

Note: Points to population if the graph is a Network.

to_file(filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None, notifier=’@’)
Save graph to file; options detailed below.

See also:

nngt.lib.save_to_file() function for options.

to_undirected(combine_numeric_eattr=’sum’)
Convert the graph to its undirected variant.

Note: All non-numeric edge attributes will be discarded from the returned undirected graph.

Parameters combine_numeric_eattr (str, optional (default: “sum”)) – How to combine nu-
meric attributes from reciprocal edges. Can be either:

• “sum” (attributes are summed)

• “min” (smallest value is kept)

• “max” (largest value is kept)

• “mean” (the average of both attributes is taken)

In addition, combine_numeric_eattr can be a dictionary with one entry for each edge at-
tribute.

type
Type of the graph.

class nngt.Group(nodes=None, properties=None, name=None, **kwargs)
Class defining groups of nodes.

Its main variables are:

Variables

• ids – list of int the ids of the nodes in this group.

• properties – dict, optional (default: {}) properties associated to the nodes

2.2. Intro & user manual 91

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

NNGT Documentation, Release 2.3.0

• is_metagroup – bool whether the group is a meta-group or not.

Note: A Group contains a set of nodes that are unique; the size of the group is the number of unique nodes
contained in the group. Passing non-unique nodes will automatically convert them to a unique set.

Warning: Equality between Group`s only compares the size and ``properties` at-
tributes. This means that groups differing only by their ids will register as equal.

Calling the class creates a group of nodes. The default is an empty group but it is not a valid object for most use
cases.

Parameters

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the nodes in an existing graph.

• properties (dict, optional (default: {})) – Dictionary containing the properties associated to
the nodes.

Returns A new Group instance.

add_nodes(nodes)
Add nodes to the group.

Parameters nodes (list of ids)

copy()
Return a deep copy of the group.

ids

is_metagroup

is_valid
i.e. if it has either a size or some ids associated to it.

Type Whether the group can be used in a structure

name

parent
Return the parent Structure of the group

properties

size

class nngt.GroupProperty(size, constraints={}, neuron_model=None, neuron_param={},
syn_model=None, syn_param={})

Class defining the properties needed to create groups of neurons from an existing Graph or one of its subclasses.

Variables

• size – int Size of the group.

• constraints – dict, optional (default: {}) Constraints to respect when building the
NeuralGroup .

• neuron_model – str, optional (default: None) name of the model to use when simulating
the activity of this group.

92 Chapter 2. The docs

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

• neuron_param – dict, optional (default: {}) the parameters to use (if they differ from the
model’s defaults)

Create a new instance of GroupProperties.

Notes

The constraints can be chosen among:

• “avg_deg”, “min_deg”, “max_deg” (int) to constrain the total degree of the nodes

• “avg/min/max_in_deg”, “avg/min/max_out_deg”, to work with the in/out-degrees

• “avg/min/max_betw” (double) to constrain the betweenness centrality

• “in_shape” (nngt.geometry.Shape) to chose neurons inside a given spatial region

Examples

>>> di_constrain = { "avg_deg": 10, "min_betw": 0.001 }
>>> group_prop = GroupProperties(200, constraints=di_constrain)

class nngt.MetaGroup(nodes=None, name=None, **kwargs)
Class defining a meta-group of nodes.

Its main variables are:

Variables ids – list of int the ids of the nodes in this group.

Calling the class creates a group of nodes. The default is an empty group but it is not a valid object for most use
cases.

Parameters

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the nodes in an existing graph.

• name (str, optional (default: “Group N”)) – Name of the meta-group.

Returns A new MetaGroup object.

class nngt.MetaNeuralGroup(nodes=None, name=None, properties=None, **kwargs)
Class defining a meta-group of neurons.

Its main variables are:

Variables

• ids – list of int the ids of the neurons in this group.

• is_metagroup – bool whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Calling the class creates a group of neurons. The default is an empty group but it is not a valid object for most
use cases.

Parameters

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the neurons in an existing graph.

• name (str, optional (default: “Group N”)) – Name of the meta-group.

2.2. Intro & user manual 93

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

NNGT Documentation, Release 2.3.0

Returns A new MetaNeuralGroup object.

excitatory
Return the ids of all excitatory nodes inside the meta-group.

inhibitory
Return the ids of all inhibitory nodes inside the meta-group.

properties

class nngt.Network(name=’Network’, weighted=True, directed=True, from_graph=None, popula-
tion=None, inh_weight_factor=1.0, **kwargs)

The detailed class that inherits from Graph and implements additional properties to describe various biological
functions and interact with the NEST simulator.

Initializes Network instance.

Parameters

• nodes (int, optional (default: 0)) – Number of nodes in the graph.

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• from_graph (GraphObject, optional (default: None)) – An optional GraphObject to
serve as base.

• population (nngt.NeuralPop, (default: None)) – An object containing the neural
groups and their properties: model(s) to use in NEST to simulate the neurons as well as
their parameters.

• inh_weight_factor (float, optional (default: 1.)) – Factor to apply to inhibitory synapses,
to compensate for example the strength difference due to timescales between excitatory and
inhibitory synapses.

Returns self (Network)

classmethod exc_and_inhib(size, iratio=0.2, en_model=’aeif_cond_alpha’, en_param=None,
in_model=’aeif_cond_alpha’, in_param=None, syn_spec=None,
**kwargs)

Generate a network containing a population of two neural groups: inhibitory and excitatory neurons.

Parameters

• size (int) – Number of neurons in the network.

• i_ratio (double, optional (default: 0.2)) – Ratio of inhibitory neurons: 𝑁𝑖

𝑁𝑒+𝑁𝑖
.

• en_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the excitatory
neuron.

• en_param (dict, optional (default: {})) – Dictionary of parameters for the the excitatory
neuron.

• in_model (string, optional (default: ‘aeif_cond_alpha’)) – Nest model for the inhibitory
neuron.

• in_param (dict, optional (default: {})) – Dictionary of parameters for the the inhibitory
neuron.

94 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge
between groups as key and the associated synaptic parameters for the post-synaptic neu-
rons (i.e. those of the second group) as value. If provided, all connections between groups
will be set according to the values contained in syn_spec. Valid keys are:

– (‘excitatory’, ‘excitatory’)

– (‘excitatory’, ‘inhibitory’)

– (‘inhibitory’, ‘excitatory’)

– (‘inhibitory’, ‘inhibitory’)

Returns net (Network or subclass) – Network of disconnected excitatory and inhibitory neu-
rons.

See also:

exc_and_inhib()

classmethod from_gids(gids, get_connections=True, get_params=False, neu-
ron_model=’aeif_cond_alpha’, neuron_param=None,
syn_model=’static_synapse’, syn_param=None, **kwargs)

Generate a network from gids.

Warning: Unless get_connections and get_params is True, or if your population is homogeneous
and you provide the required information, the information contained by the network and its population
attribute will be erroneous! To prevent conflicts the to_nest() function is not available. If you
know what you are doing, you should be able to find a workaround. . .

Parameters

• gids (array-like) – Ids of the neurons in NEST or simply user specified ids.

• get_params (bool, optional (default: True)) – Whether the parameters should be obtained
from NEST (can be very slow).

• neuron_model (string, optional (default: None)) – Name of the NEST neural model to
use when simulating the activity.

• neuron_param (dict, optional (default: {})) – Dictionary containing the neural parame-
ters; the default value will make NEST use the default parameters of the model.

• syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use
when simulating the activity.

• syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters;
the default value will make NEST use the default parameters of the model.

Returns net (Network or subclass) – Uniform network of disconnected neurons.

get_edge_types()
Return the type of all or a subset of the edges.

Changed in version 1.0.1: Added the possibility to ask for a subset of edges.

Parameters edges ((E, 2) array, optional (default: all edges)) – Edges for which the type should
be returned.

Returns the list of types (1 for excitatory, -1 for inhibitory)

2.2. Intro & user manual 95

NNGT Documentation, Release 2.3.0

get_neuron_type(neuron_ids)
Return the type of the neurons (+1 for excitatory, -1 for inhibitory).

Parameters neuron_ids (int or tuple) – NEST gids.

Returns ids (int or tuple) – Ids in the network. Same type as the requested gids type.

id_from_nest_gid(gids)
Return the ids of the nodes in the nngt.Network instance from the corresponding NEST gids.

Parameters gids (int or tuple) – NEST gids.

Returns ids (int or tuple) – Ids in the network. Same type as the requested gids type.

nest_gids

neuron_properties(idx_neuron)
Properties of a neuron in the graph.

Parameters idx_neuron (int) – Index of a neuron in the graph.

Returns dict of the neuron’s properties.

classmethod num_networks()
Returns the number of alive instances.

population
NeuralPop that divides the neurons into groups with specific properties.

set_types(edge_type, nodes=None, fraction=None)
Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also
1) or ‘inhibitory’ (also -1).

• nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of
the required type that will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the graph; if it is a list, ids of the
edge_type nodes.

• fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as
edge_type (if nodes is not None, it is the fraction of the specified nodes’ edges, otherwise
it is the fraction of all edges in the graph).

Returns t_list (numpy.ndarray) – List of the types in an order that matches the edges at-
tribute of the graph.

to_nest(send_only=None, weights=True)
Send the network to NEST.

See also:

make_nest_network() for parameters

96 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

classmethod uniform(size, neuron_model=’aeif_cond_alpha’, neuron_param=None,
syn_model=’static_synapse’, syn_param=None, **kwargs)

Generate a network containing only one type of neurons.

Parameters

• size (int) – Number of neurons in the network.

• neuron_model (string, optional (default: ‘aief_cond_alpha’)) – Name of the NEST neural
model to use when simulating the activity.

• neuron_param (dict, optional (default: {})) – Dictionary containing the neural parame-
ters; the default value will make NEST use the default parameters of the model.

• syn_model (string, optional (default: ‘static_synapse’)) – NEST synaptic model to use
when simulating the activity.

• syn_param (dict, optional (default: {})) – Dictionary containing the synaptic parameters;
the default value will make NEST use the default parameters of the model.

Returns net (Network or subclass) – Uniform network of disconnected neurons.

class nngt.NeuralGroup(nodes=None, neuron_type=1, neuron_model=None, neuron_param=None,
name=None, **kwargs)

Class defining groups of neurons.

Its main variables are:

Variables

• ids – list of int the ids of the neurons in this group.

• neuron_type – int the default is 1 for excitatory neurons; -1 is for inhibitory neurons;
meta-groups must have neuron_type set to None

• neuron_model – str, optional (default: None) the name of the model to use when simu-
lating the activity of this group

• neuron_param – dict, optional (default: {}) the parameters to use (if they differ from the
model’s defaults)

• is_metagroup – bool whether the group is a meta-group or not (neuron_type is None
for meta-groups)

Warning: Equality between NeuralGroup`s only compares the size and neuronal
type, ``model` and param attributes. This means that groups differing only by their ids will register
as equal.

Calling the class creates a group of neurons. The default is an empty group but it is not a valid object for most
use cases.

Parameters

• nodes (int or array-like, optional (default: None)) – Desired size of the group or, a posteri-
ori, NNGT indices of the neurons in an existing graph.

• neuron_type (int, optional (default: 1)) – Type of the neurons (1 for excitatory, -1 for
inhibitory) or None if not relevant (only allowed for metag roups).

• neuron_model (str, optional (default: None)) – NEST model for the neuron.

• neuron_param (dict, optional (default: model defaults)) – Dictionary containing the pa-
rameters associated to the NEST model.

2.2. Intro & user manual 97

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

NNGT Documentation, Release 2.3.0

Returns A new NeuralGroup instance.

copy()
Return a deep copy of the group.

has_model

ids

nest_gids

neuron_model

neuron_param

neuron_type

properties

class nngt.NeuralPop(size=None, parent=None, meta_groups=None, with_models=True, **kwargs)
The basic class that contains groups of neurons and their properties.

Variables

• has_models – bool, True if every group has a model attribute.

• size – int, Returns the number of neurons in the population.

• syn_spec – dict, Dictionary containing informations about the synapses between the
different groups in the population.

• is_valid – bool, Whether this population can be used to create a network in NEST.

Initialize NeuralPop instance.

Parameters

• size (int, optional (default: 0)) – Number of neurons that the population will contain.

• parent (Network, optional (default: None)) – Network associated to this population.

• meta_groups (dict of str/NeuralGroup items) – Optional set of groups. Contrary to the
primary groups which define the population and must be disjoint, meta groups can overlap:
a neuron can belong to several different meta groups.

• with_models (bool) – whether the population’s groups contain models to use in NEST

• *args (items for OrderedDict parent)

• **kwargs (dict)

Returns pop (NeuralPop object.)

add_to_group(group_name, ids)
Add neurons to a specific group.

Parameters

• group_name (str or int) – Name or index of the group.

• ids (list or 1D-array) – Neuron ids.

copy()
Return a deep copy of the population.

create_group(neurons, name, neuron_type=1, neuron_model=None, neuron_param=None, re-
place=False)

Create a new group in the population.

98 Chapter 2. The docs

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

Parameters

• neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

• name (str) – Name of the group.

• neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for
inhibitory.

• neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

• neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the
NEST simulator. If None, default parameters will be used.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

create_meta_group(neurons, name, neuron_param=None, replace=False)
Create a new meta group and add it to the population.

Parameters

• neurons (int or array-like) – Desired number of neurons or list of the neurons indices.

• name (str) – Name of the group.

• neuron_type (int, optional (default: 1)) – Type of the neurons : 1 for excitatory, -1 for
inhibitory.

• neuron_model (str, optional (default: None)) – Name of a neuron model in NEST.

• neuron_param (dict, optional (default: None)) – Parameters for neuron_model in the
NEST simulator. If None, default parameters will be used.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

classmethod exc_and_inhib(size, iratio=0.2, en_model=’aeif_cond_alpha’, en_param=None,
in_model=’aeif_cond_alpha’, in_param=None, syn_spec=None,
parent=None, meta_groups=None)

Make a NeuralPop with a given ratio of inhibitory and excitatory neurons.

Changed in version 0.8: Added syn_spec parameter.

Changed in version 1.2: Added meta_groups parameter

Parameters

• size (int) – Number of neurons contained by the population.

• iratio (float, optional (default: 0.2)) – Fraction of the neurons that will be inhibitory.

• en_model (str, optional (default: default_neuron)) – Name of the NEST model that will
be used to describe excitatory neurons.

• en_param (dict, optional (default: default NEST parameters)) – Parameters of the excita-
tory neuron model.

• in_model (str, optional (default: default_neuron)) – Name of the NEST model that will
be used to describe inhibitory neurons.

• in_param (dict, optional (default: default NEST parameters)) – Parameters of the in-
hibitory neuron model.

2.2. Intro & user manual 99

NNGT Documentation, Release 2.3.0

• syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge
between groups as key and the associated synaptic parameters for the post-synaptic neu-
rons (i.e. those of the second group) as value. If provided, all connections between groups
will be set according to the values contained in syn_spec. Valid keys are:

– (‘excitatory’, ‘excitatory’)

– (‘excitatory’, ‘inhibitory’)

– (‘inhibitory’, ‘excitatory’)

– (‘inhibitory’, ‘inhibitory’)

• parent (Network, optional (default: None)) – Network associated to this population.

• meta_groups (list dict of str/NeuralGroup items) – Additional set of groups which can
overlap: a neuron can belong to several different meta groups. Contrary to the primary
‘excitatory’ and ‘inhibitory’ groups, meta groups are therefore no necessarily disjoint. If
all meta-groups have a name, they can be passed directly through a list; otherwise a dict is
necessary.

See also:

nest.Connect(), as()

excitatory
Return the ids of all excitatory nodes inside the population.

New in version 1.3.

classmethod from_groups(groups, names=None, syn_spec=None, parent=None,
meta_groups=None, with_models=True)

Make a NeuralPop object from a (list of) NeuralGroup object(s).

Parameters

• groups (list of NeuralGroup objects) – Groups that will be used to form the population.
Note that a given neuron can only belong to a single group, so the groups should form
pairwise disjoints complementary sets.

• names (list of str, optional (default: None)) – Names that can be used as keys to retreive a
specific group. If not provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string. In the latter case, the first group in a population
named pop will be retreived by either pop[0] or pop[‘0’].

• parent (Graph, optional (default: None)) – Parent if the population is created from an
exiting graph.

• syn_spec (dict, optional (default: static synapse)) – Dictionary containg a directed edge
between groups as key and the associated synaptic parameters for the post-synaptic neu-
rons (i.e. those of the second group) as value. If a ‘default’ entry is provided, all unspeci-
fied connections will be set to its value.

• meta_groups (list or dict of str/NeuralGroup items) – Additional set of groups which
can overlap: a neuron can belong to several different meta groups. Contrary to the primary
groups, meta groups do therefore no need to be disjoint. If all meta-groups have a name,
they can be passed directly through a list; otherwise a dict is necessary.

• with_model (bool, optional (default: True)) – Whether the groups require models (set to
False to use populations for graph theoretical purposes, without NEST interaction)

100 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Example

For synaptic properties, if provided in syn_spec, all connections between groups will be set according to
the values. Keys can be either group names or types (1 for excitatory, -1 for inhibitory). Because of this,
several combination can be available for the connections between two groups. Because of this, priority is
given to source (presynaptic properties), i.e. NNGT will look for the entry matching the first group name
as source before looking for entries matching the second group name as target.

we created groups `g1`, `g2`, and `g3`
prop = {

('g1', 'g2'): {'model': 'tsodyks2_synapse', 'tau_fac': 50.},
('g1', g3'): {'weight': 100.},
...

}
pop = NeuronalPop.from_groups(

[g1, g2, g3], names=['g1', 'g2', 'g3'], syn_spec=prop)

Note: If the population is not generated from an existing Graph and the groups do not contain explicit
ids, then the ids will be generated upon population creation: the first group, of size N0, will be associated
the indices 0 to N0 - 1, the second group (size N1), will get N0 to N0 + N1 - 1, etc.

classmethod from_network(graph, *args)
Make a NeuralPop object from a network. The groups of neurons are determined using instructions from
an arbitrary number of GroupProperties.

get_param(groups=None, neurons=None, element=’neuron’)
Return the element (neuron or synapse) parameters for neurons or groups of neurons in the population.

Parameters

• groups (str, int or array-like, optional (default: None)) – Names or numbers of the
groups for which the neural properties should be returned.

• neurons (int or array-like, optional (default: None)) – IDs of the neurons for which pa-
rameters should be returned.

• element (list of str, optional (default: "neuron")) – Element for which the param-
eters should be returned (either "neuron" or "synapse").

Returns param (list) – List of all dictionaries with the elements’ parameters.

has_models

inhibitory
Return the ids of all inhibitory nodes inside the population.

New in version 1.3.

nest_gids
Return the NEST gids of the nodes inside the population.

New in version 1.3.

set_model(model, group=None)
Set the groups’ models.

Parameters

• model (dict) – Dictionary containing the model type as key (“neuron” or “synapse”) and
the model name as value (e.g. {“neuron”: “iaf_neuron”}).

2.2. Intro & user manual 101

NNGT Documentation, Release 2.3.0

• group (list of strings, optional (default: None)) – List of strings containing the names of
the groups which models should be updated.

Note: By default, synapses are registered as “static_synapse”s in NEST; because of this, only the
neuron_model attribute is checked by the has_models function: it will answer True if all groups
have a ‘non-None’ neuron_model attribute.

Warning: No check is performed on the validity of the models, which means that errors will only be
detected when building the graph in NEST.

set_neuron_param(params, neurons=None, group=None)
Set the parameters of specific neurons or of a whole group.

New in version 1.0.

Parameters

• params (dict) – Dictionary containing parameters for the neurons. Entries can be either a
single number (same for all neurons) or a list (one entry per neuron).

• neurons (list of ints, optional (default: None)) – Ids of the neurons whose parameters
should be modified.

• group (list of strings, optional (default: None)) – List of strings containing the names of
the groups whose parameters should be updated. When modifying neurons from a single
group, it is still usefull to specify the group name to speed up the pace.

Note: If both neurons and group are None, all neurons will be modified.

Warning: No check is performed on the validity of the parameters, which means that errors will only
be detected when building the graph in NEST.

syn_spec
The properties of the synaptic connections between groups. Returns a dict containing tuples as keys and
dicts of parameters as values.

The keys are tuples containing the names of the groups in the population, with the projecting group first
(presynaptic neurons) and the receiving group last (post-synaptic neurons).

Example

For a population of excitatory (“exc”) and inhibitory (“inh”) neurons.

syn_spec = {
("exc", "exc"): {'model': 'stdp_synapse', 'weight': 2.5},
("exc", "inh"): {'model': 'static_synapse'},
("exc", "inh"): {'model': 'stdp_synapse', 'delay': 5.},
("inh", "inh"): {

'model': 'stdp_synapse', 'weight': 5.,
'delay': ('normal', 5., 2.)}

(continues on next page)

102 Chapter 2. The docs

https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

(continued from previous page)

}
}

New in version 0.8.

classmethod uniform(size, neuron_type=1, neuron_model=’aeif_cond_alpha’, neu-
ron_param=None, syn_model=’static_synapse’, syn_param=None,
parent=None, meta_groups=None)

Make a NeuralPop of identical neurons belonging to a single “default” group.

Changed in version 1.2: Added neuron_type and meta_groups parameters

Parameters

• size (int) – Number of neurons in the population.

• neuron_type (int, optional (default: 1)) – Type of the neurons in the population: 1 for
excitatory or -1 for inhibitory.

• neuron_model (str, optional (default: default neuron model)) – Neuronal model for the
simulator.

• neuron_param (dict, optional (default: default neuron parameters)) – Parameters associ-
ated to neuron_model.

• syn_model (str, optional (default: default static synapse)) – Synapse model for the simu-
lator.

• syn_param (dict, optional (default: default synaptic parameters)) – Parameters associated
to syn_model.

• parent (Graph object, optional (default: None)) – Parent graph described by the popula-
tion.

• meta_groups (list or dict of str/NeuralGroup items) – Set of groups which can overlap:
a neuron can belong to several different meta groups, i.e. they do no need to be disjoint. If
all meta-groups have a name, they can be passed directly through a list; otherwise a dict is
necessary.

class nngt.SpatialGraph(nodes=0, name=’SpatialGraph’, weighted=True, directed=True,
from_graph=None, shape=None, positions=None, **kwargs)

The detailed class that inherits from Graph and implements additional properties to describe spatial graphs (i.e.
graph where the structure is embedded in space.

Initialize SpatialClass instance.

Parameters

• nodes (int, optional (default: 0)) – Number of nodes in the graph.

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads
to a square of side 1 cm)

• positions (numpy.array (N, 2), optional (default: None)) – Positions of the neurons; if
not specified and nodes is not 0, then neurons will be reparted at random inside the Shape
object of the instance.

• **kwargs (keyword arguments for Graph or) – Shape if no shape was given.

2.2. Intro & user manual 103

NNGT Documentation, Release 2.3.0

Returns self (SpatialGraph)

get_positions(nodes=None)
Returns a copy of the nodes’ positions as a (N, 2) array.

Parameters nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which
the position should be returned.

set_positions(positions, nodes=None)
Set the nodes’ positions as a (N, 2) array.

Parameters

• positions (array-like) – List of positions, of shape (N, 2).

• nodes (int or array-like, optional (default: all nodes)) – List of the nodes for which the
position should be set.

shape
The environment’s spatial structure.

class nngt.SpatialNetwork(population, name=’SpatialNetwork’, weighted=True, directed=True,
shape=None, from_graph=None, positions=None, **kwargs)

Class that inherits from Network and SpatialGraph to provide a detailed description of a real neural
network in space, i.e. with positions and biological properties to interact with NEST.

Initialize SpatialNetwork instance

Parameters

• name (string, optional (default: “Graph”)) – The name of this Graph instance.

• weighted (bool, optional (default: True)) – Whether the graph edges have weight properties.

• directed (bool, optional (default: True)) – Whether the graph is directed or undirected.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment (None leads
to a square of side 1 cm)

• positions (numpy.array, optional (default: None)) – Positions of the neurons; if not
specified and nodes != 0, then neurons will be reparted at random inside the Shape object
of the instance.

• population (class:~nngt.NeuralPop, optional (default: None)) – Population from which the
network will be built.

Returns self (SpatialNetwork)

set_types(syn_type, nodes=None, fraction=None)
Set the synaptic/connection types.

Changed in version 2.0: Changed syn_type to edge_type.

Warning: The special “type” attribute cannot be modified when using graphs that inherit from the
Network class. This is because for biological networks, neurons make only one kind of synapse,
which is determined by the nngt.NeuralGroup they belong to.

Parameters

• edge_type (int, string, or array of ints) – Type of the connection among ‘excitatory’ (also
1) or ‘inhibitory’ (also -1).

104 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• nodes (int, float or list, optional (default: None)) – If nodes is an int, number of nodes of
the required type that will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of edge_type nodes in the graph; if it is a list, ids of the
edge_type nodes.

• fraction (float, optional (default: None)) – Fraction of the selected edges that will be set as
edge_type (if nodes is not None, it is the fraction of the specified nodes’ edges, otherwise
it is the fraction of all edges in the graph).

Returns t_list (numpy.ndarray) – List of the types in an order that matches the edges at-
tribute of the graph.

class nngt.Structure(size=None, parent=None, meta_groups=None, **kwargs)
The basic class that contains groups of nodes and their properties.

Variables

• ids – lst, Returns the ids of nodes in the structure.

• is_valid – bool, Whether the structure is consistent with its associated network.

• parent – Network, Parent network.

• size – int, Returns the number of nodes in the structure.

Initialize Structure instance.

Parameters

• size (int, optional (default: 0)) – Number of nodes that the structure will contain.

• parent (Network, optional (default: None)) – Network associated to this structure.

• meta_groups (dict of str/Group items) – Optional set of groups. Contrary to the primary
groups which define the structure and must be disjoint, meta groups can overlap: a neuron
can belong to several different meta groups.

• **kwargs (dict)

Returns struct (Structure object.)

add_meta_group(group, name=None, replace=False)
Add an existing meta group to the structure.

Parameters

• group (Group) – Meta group.

• name (str, optional (default: group name)) – Name of the meta group.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

Note: The name of the group is automatically updated to match the name argument.

add_to_group(group_name, ids)
Add nodes to a specific group.

Parameters

• group_name (str or int) – Name or index of the group.

• ids (list or 1D-array) – Node ids.

2.2. Intro & user manual 105

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

copy()
Return a deep copy of the structure.

create_group(nodes, name, properties=None, replace=False)
Create a new group in the structure.

Parameters

• nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

• name (str) – Name of the group.

• properties (dict, optional (default: None)) – Properties associated to the nodes in this
group.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

create_meta_group(nodes, name, properties=None, replace=False)
Create a new meta group and add it to the structure.

Parameters

• nodes (int or array-like) – Desired number of nodes or list of the nodes indices.

• name (str) – Name of the group.

• properties (dict, optional (default: None)) – Properties associated to the nodes in this
group.

• replace (bool, optional (default: False)) – Whether to override previous exiting meta
group with same name.

classmethod from_groups(groups, names=None, parent=None, meta_groups=None)
Make a Structure object from a (list of) Group object(s).

Parameters

• groups (list of Group objects) – Groups that will be used to form the structure. Note
that a given node can only belong to a single group, so the groups should form pairwise
disjoints complementary sets.

• names (list of str, optional (default: None)) – Names that can be used as keys to retreive a
specific group. If not provided, keys will be the group name (if not empty) or the position
of the group in groups, stored as a string. In the latter case, the first group in a structure
named struct will be retreived by either struct[0] or struct[‘0’].

• parent (Graph, optional (default: None)) – Parent if the structure is created from an
exiting graph.

• meta_groups (list or dict of str/Group items) – Additional set of groups which can over-
lap: a node can belong to several different meta groups. Contrary to the primary groups,
meta groups do therefore no need to be disjoint. If all meta-groups have a name, they can
be passed directly through a list; otherwise a dict is necessary.

Example

For synaptic properties, if provided in syn_spec, all connections between groups will be set according to
the values. Keys can be either group names or types (1 for excitatory, -1 for inhibitory). Because of this,
several combination can be available for the connections between two groups. Because of this, priority is
given to source (presynaptic properties), i.e. NNGT will look for the entry matching the first group name
as source before looking for entries matching the second group name as target.

106 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

we already created groups `g1`, `g2`, and `g3`
struct = Structure.from_groups([g1, g2, g3],

names=['g1', 'g2', 'g3'])

Note: If the structure is not generated from an existing Graph and the groups do not contain explicit ids,
then the ids will be generated upon structure creation: the first group, of size N0, will be associated the
indices 0 to N0 - 1, the second group (size N1), will get N0 to N0 + N1 - 1, etc.

get_group(nodes, numbers=False)
Return the group of the nodes.

Parameters

• nodes (int or array-like) – IDs of the nodes for which the group should be returned.

• numbers (bool, optional (default: False)) – Whether the group identifier should be re-
turned as a number; if False, the group names are returned.

get_properties(key=None, groups=None, nodes=None)
Return the properties of nodes or groups of nodes in the structure.

Parameters

• groups (str, int or array-like, optional (default: None)) – Names or numbers of the
groups for which the neural properties should be returned.

• nodes (int or array-like, optional (default: None)) – IDs of the nodes for which parameters
should be returned.

Returns props (list) – List of all dictionaries with properties.

ids
Return all the ids of the nodes inside the structure.

New in version 1.2.

is_valid
Whether the structure is consistent with the associated network.

meta_groups

parent
Parent Network, if it exists, otherwise None.

set_properties(props, nodes=None, group=None)
Set the parameters of specific nodes or of a whole group.

New in version 2.2.

Parameters

• props (dict) – Dictionary containing parameters for the nodes. Entries can be either a
single number (same for all nodes) or a list (one entry per nodes).

• nodes (list of ints, optional (default: None)) – Ids of the nodes whose parameters should
be modified.

• group (list of strings, optional (default: None)) – List of strings containing the names of
the groups whose parameters should be updated. When modifying nodes from a single
group, it is still usefull to specify the group name to speed up the pace.

2.2. Intro & user manual 107

NNGT Documentation, Release 2.3.0

Note: If both nodes and group are None, all nodes will be modified.

size
Number of nodes in this structure.

nngt.generate(di_instructions, **kwargs)
Generate a Graph or one of its subclasses from a dict containing all the relevant informations.

Parameters di_instructions (dict) – Dictionary containing the instructions to generate
the graph. It must have at least "graph_type" in its keys, with a value among
"distance_rule", "erdos_renyi", "fixed_degree", "newman_watts",
"price_scale_free", "random_scale_free". Depending on the type,
di_instructions should also contain at least all non-optional arguments of the generator
function.

See also:

generation

nngt.get_config(key=None, detailed=False)
Get the NNGT configuration as a dictionary.

Note: This function has no MPI barrier on it.

nngt.load_from_file(filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None, at-
tributes_types=None, notifier=’@’, ignore=’#’, name=’LoadedGraph’, di-
rected=True, cleanup=False)

Load a Graph from a file.

Changed in version 2.0: Added optional attributes_types and cleanup arguments.

Warning: Support for GraphML and DOT formats are currently limited and require one of the non-default
backends (DOT requires graph-tool).

Parameters

• filename (str) – The path to the file.

• fmt (str, optional (default: “neighbour”)) – The format used to save the graph. Supported
formats are: “neighbour” (neighbour list, default if format cannot be deduced automati-
cally), “ssp” (scipy.sparse), “edge_list” (list of all the edges in the graph, one edge per
line, represented by a source target-pair), “gml” (gml format, default if filename
ends with ‘.gml’), “graphml” (graphml format, default if filename ends with ‘.graphml’
or ‘.xml’), “dot” (dot format, default if filename ends with ‘.dot’), “gt” (only when us-
ing graph_tool‘<http://graph-tool.skewed.de/>_ as library, detected if ‘filename ends with
‘.gt’).

• separator (str, optional (default ” “)) – separator used to separate inputs in the case of
custom formats (namely “neighbour” and “edge_list”)

• secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in
the case of custom formats.

• attributes (list, optional (default: [])) – List of names for the attributes present in the file.
If a notifier is present in the file, names will be deduced from it; otherwise the attributes will

108 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

be numbered. For “edge_list”, attributes may also be present as additional columns after the
source and the target.

• attributes_types (dict, optional (default: str)) – Backup information if the type of the at-
tributes is not specified in the file. Values must be callables (types or functions) that will
take the argument value as a string input and convert it to the proper type.

• notifier (str, optional (default: “@”)) – Symbol specifying the following as meaningfull
information. Relevant information are formatted @info_name=info_value, where
info_name is in (“attributes”, “directed”, “name”, “size”) and associated info_value
are of type (list, bool, str, int). Additional notifiers are @type=SpatialGraph/
Network/SpatialNetwork, which must be followed by the relevant notifiers among
@shape, @structure, and @graph.

• ignore (str, optional (default: “#”)) – Ignore lines starting with the ignore string.

• name (str, optional (default: from file information or ‘LoadedGraph’)) – The name of the
graph.

• directed (bool, optional (default: from file information or True)) – Whether the graph is
directed or not.

• cleanup (bool, optional (default: False)) – If true, removes nodes before the first one that
appears in the edges and after the last one and renumber the nodes from 0.

Returns graph (Graph or subclass) – Loaded graph.

nngt.num_mpi_processes()
Returns the number of MPI processes (1 if MPI is not used)

nngt.on_master_process()
Check whether the current code is executing on the master process (rank 0) if MPI is used.

Returns

• True if rank is 0, if mpi4py is not present or if MPI is not used,

• otherwise False.

nngt.save_to_file(graph, filename, fmt=’auto’, separator=’ ’, secondary=’;’, attributes=None, noti-
fier=’@’)

Save a graph to file.

@todo: implement dot, xml/graphml, and gt formats

Parameters

• graph (Graph or subclass) – Graph to save.

• filename (str) – The path to the file.

• fmt (str, optional (default: “auto”)) – The format used to save the graph. Supported formats
are: “neighbour” (neighbour list, default if format cannot be deduced automatically), “ssp”
(scipy.sparse), “edge_list” (list of all the edges in the graph, one edge per line, represented
by a source target-pair), “gml” (gml format, default if filename ends with ‘.gml’),
“graphml” (graphml format, default if filename ends with ‘.graphml’ or ‘.xml’), “dot” (dot
format, default if filename ends with ‘.dot’), “gt” (only when using graph_tool as library,
detected if filename ends with ‘.gt’).

• separator (str, optional (default ” “)) – separator used to separate inputs in the case of
custom formats (namely “neighbour” and “edge_list”)

• secondary (str, optional (default: “;”)) – Secondary separator used to separate attributes in
the case of custom formats.

2.2. Intro & user manual 109

http://graph-tool.skewed.de/

NNGT Documentation, Release 2.3.0

• attributes (list, optional (default: None)) – List of names for the edge attributes present in
the graph that will be saved to disk; by default (None), all attributes will be saved.

• notifier (str, optional (default: “@”)) – Symbol specifying the following as meaning-
full information. Relevant information are formatted @info_name=info_value, with
info_name in (“attributes”, “attr_types”, “directed”, “name”, “size”). Additional noti-
fiers are @type=SpatialGraph/Network/SpatialNetwork, which are followed
by the relevant notifiers among @shape, @structure, and @graph to separate the sec-
tions.

Note: Positions are saved as bytes by numpy.nparray.tostring()

nngt.seed(msd=None, seeds=None)
Seed the random generator used by NNGT (i.e. the numpy RandomState: for details, see numpy.random.
RandomState).

Parameters

• msd (int, optional) – Master seed for numpy RandomState. Must be convertible to 32-bit
unsigned integers.

• seeds (list of ints, optional) – Seeds for RandomState (when using MPI). Must be convertible
to 32-bit unsigned integers, one entry per MPI process.

nngt.set_config(config, value=None, silent=False)
Set NNGT’s configuration.

Parameters

• config (dict or str) – Either a full configuration dictionary or one key to be set together with
its associated value.

• value (object, optional (default: None)) – Value associated to config if config is a key.

Examples

>>> nngt.set_config({'multithreading': True, 'omp': 4})
>>> nngt.set_config('multithreading', False)

Notes

See the config file nngt/nngt.conf.default or ~/.nngt/nngt.conf for details about your configuration.

This function has an MPI barrier on it, so it must always be called on all processes.

See also:

get_config()

nngt.use_backend(backend, reloading=True, silent=False)
Allows the user to switch to a specific graph library as backend.

Warning: If Graph objects have already been created, they will no longer be compatible with NNGT
methods.

Parameters

110 Chapter 2. The docs

https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

NNGT Documentation, Release 2.3.0

• backend (string) – Name of a graph library among ‘graph_tool’, ‘igraph’, ‘networkx’, or
‘nngt’.

• reloading (bool, optional (default: True)) – Whether the graph objects should be reloaded
through reload (this should always be set to True except when NNGT is first initiated!)

• silent (bool, optional (default: False)) – Whether the changes made to the configuration
should be logged at the DEBUG (True) or INFO (False) level.

Analysis module

Tools to analyze neuronal networks, using either their topological properties, their activity, or more importantly, taking
both into account.

Content

nngt.analysis.adjacency_matrix(graph[,
. . .])

Adjacency matrix of the graph.

nngt.analysis.all_shortest_paths(g,
source, . . .)

Yields all shortest paths from source to target.

nngt.analysis.assortativity(g, degree[,
weights])

Returns the assortativity of the graph.

nngt.analysis.average_path_length(g[,
. . .])

Returns the average shortest path length between
sources and targets.

nngt.analysis.bayesian_blocks(t[, x,
sigma, . . .])

Bayesian Blocks Implementation

nngt.analysis.betweenness(g[, btype,
weights])

Returns the normalized betweenness centrality of the
nodes and edges.

nngt.analysis.betweenness_distrib(graph[,
. . .])

Betweenness distribution of a graph.

nngt.analysis.binning(x[, bins, log]) Binning function providing automatic binning using
Bayesian blocks in addition to standard linear and loga-
rithmic uniform bins.

nngt.analysis.closeness(g[, weights, nodes,
. . .])

Returns the closeness centrality of some nodes.

nngt.analysis.connected_components(g[,
ctype])

Returns the connected component to which each node
belongs.

nngt.analysis.degree_distrib(graph[, . . .]) Degree distribution of a graph.
nngt.analysis.diameter(g[, directed, . . .]) Returns the diameter of the graph.
nngt.analysis.get_b2([network, . . .]) Return the B2 coefficient for the neurons.
nngt.analysis.get_firing_rate([network,
. . .])

Return the average firing rate for the neurons.

nngt.analysis.get_spikes([recorder, . . .]) Return a 2D sparse matrix, where:
nngt.analysis.global_clustering(g[, . . .]) Returns the global clustering coefficient.
nngt.analysis.global_clustering_binary_undirected(g)Returns the undirected global clustering coefficient.
nngt.analysis.local_closure(g[, directed,
. . .])

Compute the local closure for each node, as defined in
[Yin2019] as the fraction of 2-walks that are closed.

nngt.analysis.local_clustering(g[,
nodes, . . .])

Local (weighted directed) clustering coefficient of the
nodes, ignoring self-loops.

nngt.analysis.local_clustering_binary_undirected(g)Returns the undirected local clustering coefficient of
some nodes.

Continued on next page

2.2. Intro & user manual 111

NNGT Documentation, Release 2.3.0

Table 6 – continued from previous page
nngt.analysis.node_attributes(network,
. . .)

Return node attributes for a set of nodes.

nngt.analysis.num_iedges(graph) Returns the number of inhibitory connections.
nngt.analysis.reciprocity(g) Calculate the edge reciprocity of the graph.
nngt.analysis.shortest_distance(g[, . . .]) Returns the length of the shortest paths between

sources‘and ‘targets.
nngt.analysis.shortest_path(g, source, tar-
get)

Returns a shortest path between source‘and ‘target.

nngt.analysis.small_world_propensity(g[,
. . .])

Returns the small-world propensity of the graph as first
defined in [Muldoon2016].

nngt.analysis.spectral_radius(graph[,
. . .])

Spectral radius of the graph, defined as the eigenvalue
of greatest module.

nngt.analysis.subgraph_centrality(graph[,
. . .])

Returns the subgraph centrality for each node in the
graph.

nngt.analysis.total_firing_rate([network,
. . .])

Computes the total firing rate of the network from the
spike times.

nngt.analysis.transitivity(g[, directed,
. . .])

Same as global_clustering().

nngt.analysis.triangle_count(g[, nodes,
. . .])

Returns the number or the strength (also called inten-
sity) of triangles for each node.

nngt.analysis.triplet_count(g[, nodes,
. . .])

Returns the number or the strength (also called inten-
sity) of triplets for each node.

Details

nngt.analysis.adjacency_matrix(graph, types=False, weights=False)
Adjacency matrix of the graph.

Parameters

• graph (Graph or subclass) – Network to analyze.

• types (bool, optional (default: False)) – Whether the excitatory/inhibitory type of the
connnections should be considered (only if the weighing factor is the synaptic strength).

• weights (bool or string, optional (default: False)) – Whether weights should be taken into
account; if True, then connections are weighed by their synaptic strength, if False, then a
binary matrix is returned, if weights is a string, then the ponderation is the correponding
value of the edge attribute (e.g. “distance” will return an adjacency matrix where each
connection is multiplied by its length).

Returns a csr_matrix.

References

nngt.analysis.all_shortest_paths(g, source, target, directed=None, weights=None, com-
bine_weights=’mean’)

Yields all shortest paths from source to target. The algorithms returns an empty generator if there is no path
between the nodes.

Parameters

• g (Graph) – Graph to analyze.

• source (int) – Node from which the paths starts.

112 Chapter 2. The docs

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

NNGT Documentation, Release 2.3.0

• target (int, optional (default: all nodes)) – Node where the paths ends.

• directed (bool, optional (default: g.is_directed())) – Whether the edges should be
considered as directed or not (automatically set to False if g is undirected).

• weights (str or array, optional (default: binary)) – Whether to use weighted edges to com-
pute the distances. By default, all edges are considered to have distance 1.

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

Returns all_paths (generator) – Generator yielding paths as lists of ints.

References

nngt.analysis.assortativity(g, degree, weights=None)
Returns the assortativity of the graph. This tells whether nodes are preferentially connected together depending
on their degree.

Parameters

• g (Graph) – Graph to analyze.

• degree (str) – The type of degree that should be considered.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

References

nngt.analysis.average_path_length(g, sources=None, targets=None, directed=None,
weights=None, combine_weights=’mean’, uncon-
nected=False)

Returns the average shortest path length between sources and targets. The algorithms raises an error if all nodes
are not connected unless unconnected is set to True.

The average path length is defined as

𝐿 =
1

𝑁𝑝

∑︁
𝑢,𝑣

𝑑(𝑢, 𝑣),

where 𝑁𝑝 is the number of paths between sources and targets, and 𝑑(𝑢, 𝑣) is the shortest path distance from u
to v.

If sources and targets are both None, then the total number of paths is 𝑁𝑝 = 𝑁(𝑁 − 1), with 𝑁 the number of
nodes in the graph.

Parameters

• g (Graph) – Graph to analyze.

• sources (list of nodes, optional (default: all)) – Nodes from which the paths must be com-
puted.

2.2. Intro & user manual 113

NNGT Documentation, Release 2.3.0

• targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

• directed (bool, optional (default: g.is_directed())) – Whether the edges should be
considered as directed or not (automatically set to False if g is undirected).

• weights (str or array, optional (default: binary)) – Whether to use weighted edges to com-
pute the distances. By default, all edges are considered to have distance 1.

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

• unconnected (bool, optional (default: False)) – If set to true, ignores unconnected nodes
and returns the average path length of the existing paths.

References

nngt.analysis.bayesian_blocks(t, x=None, sigma=None, fitness=’events’, **kwargs)
Bayesian Blocks Implementation

This is a flexible implementation of the Bayesian Blocks algorithm described in Scargle 20121

New in version 0.7.

Parameters

• t (array_like) – data times (one dimensional, length N)

• x (array_like (optional)) – data values

• sigma (array_like or float (optional)) – data errors

• fitness (str or object) – the fitness function to use. If a string, the following options are
supported:

– ‘events’ [binned or unbinned event data] extra arguments are p0, which gives the false
alarm probability to compute the prior, or gamma which gives the slope of the prior on
the number of bins.

– ‘regular_events’ [non-overlapping events measured at multiples] of a fundamental tick
rate, dt, which must be specified as an additional argument. The prior can be specified
through gamma, which gives the slope of the prior on the number of bins.

– ‘measures’ [fitness for a measured sequence with Gaussian errors] The prior can be spec-
ified using gamma, which gives the slope of the prior on the number of bins. If gamma
is not specified, then a simulation-derived prior will be used.

Alternatively, the fitness can be a user-specified object of type derived from the FitnessFunc
class.

Returns edges (ndarray) – array containing the (N+1) bin edges

1 Scargle, J et al. (2012) http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

114 Chapter 2. The docs

http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

NNGT Documentation, Release 2.3.0

Examples

Event data:

>>> t = np.random.normal(size=100)
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Event data with repeats:

>>> t = np.random.normal(size=100)
>>> t[80:] = t[:20]
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

Regular event data:

>>> dt = 0.01
>>> t = dt * np.arange(1000)
>>> x = np.zeros(len(t))
>>> x[np.random.randint(0, len(t), len(t) / 10)] = 1
>>> bins = bayesian_blocks(t, fitness='regular_events', dt=dt, gamma=0.9)

Measured point data with errors:

>>> t = 100 * np.random.random(100)
>>> x = np.exp(-0.5 * (t - 50) ** 2)
>>> sigma = 0.1
>>> x_obs = np.random.normal(x, sigma)
>>> bins = bayesian_blocks(t, fitness='measures')

References

See also:

astroML.plotting.hist() histogram plotting function which can make use of bayesian blocks.

nngt.analysis.betweenness(g, btype=’both’, weights=None)
Returns the normalized betweenness centrality of the nodes and edges.

Parameters

• g (Graph) – Graph to analyze.

• btype (str, optional (default ‘both’)) – The centrality that should be returned (either ‘node’,
‘edge’, or ‘both’). By default, both betweenness centralities are computed.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

Returns

• nb (numpy.ndarray) – The nodes’ betweenness if btype is ‘node’ or ‘both’

• eb (numpy.ndarray) – The edges’ betweenness if btype is ‘edge’ or ‘both’

2.2. Intro & user manual 115

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

References

nngt.analysis.betweenness_distrib(graph, weights=None, nodes=None, num_nbins=’bayes’,
num_ebins=’bayes’, log=False)

Betweenness distribution of a graph.

Parameters

• graph (Graph or subclass) – the graph to analyze.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution
to a set of nodes (only impacts the node attribute).

• log (bool, optional (default: False)) – use log-spaced bins.

• num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from
numpy.histogram(), or ‘bayes’ will provide automatic bin optimization. Otherwise,
an int for the number of bins can be provided, or the direct bins list.

Returns

• ncounts (numpy.array) – number of nodes in each bin

• nbetw (numpy.array) – bins for node betweenness

• ecounts (numpy.array) – number of edges in each bin

• ebetw (numpy.array) – bins for edge betweenness

nngt.analysis.binning(x, bins=’bayes’, log=False)
Binning function providing automatic binning using Bayesian blocks in addition to standard linear and logarith-
mic uniform bins.

New in version 0.7.

Parameters

• x (array-like) – Array of data to be histogrammed

• bins (int, list or ‘auto’, optional (default: ‘bayes’)) – If bins is ‘bayes’, in use bayesian
blocks for dynamic bin widths; if it is an int, the interval will be separated into

• log (bool, optional (default: False)) – Whether the bins should be evenly spaced on a loga-
rithmic scale.

nngt.analysis.closeness(g, weights=None, nodes=None, mode=’out’, harmonic=False, de-
fault=nan)

Returns the closeness centrality of some nodes.

Closeness centrality of a node u is defined, for the harmonic version, as the sum of the reciprocal of the shortest
path distance 𝑑𝑢𝑣 from u to the N - 1 other nodes in the graph (if mode is “out”, reciprocally 𝑑𝑣𝑢, the distance
to u from another node v, if mode is “in”):

𝐶(𝑢) =
1

𝑁 − 1

∑︁
𝑣 ̸=𝑢

1

𝑑𝑢𝑣
,

or, using the arithmetic definition, as the reciprocal of the average shortest path distance to/from u over to all
other nodes:

𝐶(𝑢) =
𝑛− 1∑︀
𝑣 ̸=𝑢 𝑑𝑢𝑣

,

116 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram

NNGT Documentation, Release 2.3.0

where d_{uv} is the shortest-path distance from u to v, and n is the number of nodes in the component.

By definition, the distance is infinite when nodes are not connected by a path in the harmonic case (such that
1

𝑑(𝑣,𝑢) = 0), while the distance itself is taken as zero for unconnected nodes in the first equation.

Parameters

• g (Graph) – Graph to analyze.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• nodes (list, optional (default: all nodes)) – The list of nodes for which the clutering will be
returned

• mode (str, optional (default: “out”)) – For directed graphs, whether the distances are com-
puted from (“out”) or to (“in”) each of the nodes.

• harmonic (bool, optional (default: False)) – Whether the arithmetic (default) or the har-
monic (recommended) version of the closeness should be used.

Returns

• c (numpy.ndarray) – The list of closeness centralities, on per node.

• .. warning :: – For compatibility reasons (harmonic closeness is not implemented for
igraph), the arithmetic version is used by default; however, it is recommended to use the
harmonic version instead whenever possible.

References

nngt.analysis.connected_components(g, ctype=None)
Returns the connected component to which each node belongs.

Parameters

• g (Graph) – Graph to analyze.

• ctype (str, optional (default ‘scc’)) – Type of component that will be searched: either
strongly connected (‘scc’, by default) or weakly connected (‘wcc’).

Returns cc, hist (numpy.ndarray) – The component associated to each node (cc) and the number
of nodes in each of the component (hist).

References

nngt.analysis.degree_distrib(graph, deg_type=’total’, nodes=None, weights=None, log=False,
num_bins=’bayes’)

Degree distribution of a graph.

Parameters

• graph (Graph or subclass) – the graph to analyze.

• deg_type (string, optional (default: “total”)) – type of degree to consider (“in”, “out”, or
“total”).

• nodes (list of ints, optional (default: None)) – Restrict the distribution to a set of nodes
(default: all nodes).

2.2. Intro & user manual 117

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• log (bool, optional (default: False)) – use log-spaced bins.

• num_bins (int, list or str, optional (default: ‘bayes’)) – Any of the automatic methodes from
numpy.histogram(), or ‘bayes’ will provide automatic bin optimization. Otherwise,
an int for the number of bins can be provided, or the direct bins list.

See also:

numpy.histogram(), binning()

Returns

• counts (numpy.array) – number of nodes in each bin

• deg (numpy.array) – bins

nngt.analysis.diameter(g, directed=None, weights=None, combine_weights=’mean’,
is_connected=False)

Returns the diameter of the graph.

Changed in version 2.3: Added combine_weights argument.

Changed in version 2.0: Added directed and is_connected arguments.

It returns infinity if the graph is not connected (strongly connected for directed graphs) unless is_connected is
True, in which case it returns the longest existing shortest distance.

Parameters

• g (Graph) – Graph to analyze.

• directed (bool, optional (default: g.is_directed())) – Whether to compute the di-
rected diameter if the graph is directed. If False, then the graph is treated as undirected. The
option switches to False automatically if g is undirected.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

• is_connected (bool, optional (default: False)) – If False, check whether the graph is con-
nected or not and return infinite diameter if graph is unconnected. If True, the graph is
assumed to be connected.

See also:

nngt.analysis.shortest_distance()

118 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram

NNGT Documentation, Release 2.3.0

References

nngt.analysis.get_b2(network=None, spike_detector=None, data=None, nodes=None)
Return the B2 coefficient for the neurons.

Parameters

• network (nngt.Network, optional (default: None)) – Network for which the activity
was simulated.

• spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the
“spike_detector” objects recording the network activity.

• data (array-like of shape (N, 2), optionale (default: None)) – Array containing the spikes
data (first line must contain the NEST GID of the neuron that fired, second line must contain
the associated spike time).

• nodes (array-like, optional (default: all neurons)) – NNGT ids of the nodes for which the
B2 should be computed.

Returns b2 (array-like) – B2 coefficient for each neuron in nodes.

nngt.analysis.get_firing_rate(network=None, spike_detector=None, data=None, nodes=None)
Return the average firing rate for the neurons.

Parameters

• network (nngt.Network, optional (default: None)) – Network for which the activity
was simulated.

• spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the
“spike_detector” objects recording the network activity.

• data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the
spikes data (first line must contain the NEST GID of the neuron that fired, second line must
contain the associated spike time).

• nodes (array-like, optional (default: all nodes)) – NNGT ids of the nodes for which the B2
should be computed.

Returns fr (array-like) – Firing rate for each neuron in nodes.

nngt.analysis.get_spikes(recorder=None, spike_times=None, senders=None, astype=’ssp’)
Return a 2D sparse matrix, where:

• each row i contains the spikes of neuron i (in NEST),

• each column j contains the times of the jth spike for all neurons.

Changed in version 1.0: Neurons are now located in the row corresponding to their NEST GID.

Parameters

• recorder (tuple, optional (default: None)) – Tuple of NEST gids, where the first one should
point to the spike_detector which recorded the spikes.

• spike_times (array-like, optional (default: None)) – If recorder is not provided, the spikes’
data can be passed directly through their spike_times and the associated senders.

• senders (array-like, optional (default: None)) – senders[i] corresponds to the neuron which
fired at spike_times[i].

• astype (str, optional (default: “ssp”)) – Format of the returned data. Default is sparse
lil_matrix (“ssp”) with one row per neuron, otherwise “np” returns a (T, 2) array, with T the
number of spikes (the first row being the NEST gid, the second the spike time).

2.2. Intro & user manual 119

NNGT Documentation, Release 2.3.0

Example

>>> get_spikes()

>>> get_spikes(recorder)

>>> times = [1.5, 2.68, 125.6]
>>> neuron_ids = [12, 0, 65]
>>> get_spikes(spike_times=times, senders=neuron_ids)

Note: If no arguments are passed to the function, the first spike_recorder available in NEST will be used.
Neuron positions correspond to their GIDs in NEST.

Returns

• CSR matrix containing the spikes sorted by neuron GIDs (rows) and time

• (columns).

nngt.analysis.global_clustering(g, directed=True, weights=None, method=’continuous’,
mode=’total’, combine_weights=’mean’)

Returns the global clustering coefficient.

This corresponds to the ratio of triangles to the number of triplets. For directed and weighted cases, see defini-
tions of generalized triangles and triplets in the associated functions below.

Parameters

• g (Graph) – Graph to analyze.

• directed (bool, optional (default: True)) – Whether to compute the directed clustering if the
graph is directed.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• method (str, optional (default: ‘continuous’)) – Method used to compute the weighted
clustering, either ‘barrat’ [Barrat2004], ‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’
[Zhang2005].

• mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among
“total”, “fan-in”, “fan-out”, “middleman”, and “cycle” [Fagiolo2007].

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

120 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

References

See also:

triplet_count() triangle_count()

nngt.analysis.global_clustering_binary_undirected(g)
Returns the undirected global clustering coefficient.

This corresponds to the ratio of undirected triangles to the number of undirected triads.

Parameters g (Graph) – Graph to analyze.

References

nngt.analysis.local_closure(g, directed=True, weights=None, method=None, mode=’cycle-out’,
combine_weights=’mean’)

Compute the local closure for each node, as defined in [Yin2019] as the fraction of 2-walks that are closed.

For undirected binary or weighted adjacency matrices 𝑊 = {𝑤𝑖𝑗}, the normal (or Zhang-like) definition is
given by:

𝐻0
𝑖 =

∑︀
𝑗 ̸=𝑘 𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖∑︀
𝑗 ̸=𝑘 ̸=𝑖 𝑤𝑖𝑗𝑤𝑗𝑘

=
𝑊 3

𝑖𝑖∑︀
𝑗 ̸=𝑖 𝑊

2
𝑖𝑗

While a continuous version of the local closure is also proposed as:

𝐻𝑖 =

∑︀
𝑗 ̸=𝑘

3
√
𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖

2∑︀
𝑗 ̸=𝑘 ̸=𝑖

√
𝑤𝑖𝑗𝑤𝑗𝑘

=

(︁
𝑊 [2

3]
)︁3

𝑖𝑖∑︀
𝑗 ̸=𝑖

(︁
𝑊 [1

2]
)︁2

𝑖𝑗

with 𝑊 [𝛼] = {𝑤𝛼
𝑖𝑗}.

Directed versions of the local closure where defined as follow for a node 𝑖 connected to nodes 𝑗 and 𝑘:

• “cycle-out” is given by the pattern [(i, j), (j, k), (k, i)],

• “cycle-in” is given by the pattern [(k, j), (j, i), (i, k)],

• “fan-in” is given by the pattern [(k, j), (j, i), (k, i)],

• “fan-out” is given by the pattern [(i, j), (j, k), (i, k)].

Parameters

• g (Graph) – Graph to analyze.

• directed (bool, optional (default: True)) – Whether to compute the directed clustering if the
graph is directed.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clus-
tering, either ‘normal’/’zhang’ or ‘continuous’.

• mode (str, optional (default: “circle-out”)) – Type of clustering to use for directed graphs,
among “circle-out”, “circle-in”, “fan-in”, or “fan-out”.

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

2.2. Intro & user manual 121

NNGT Documentation, Release 2.3.0

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

References

nngt.analysis.local_clustering(g, nodes=None, directed=True, weights=None,
method=’continuous’, mode=’total’, com-
bine_weights=’mean’)

Local (weighted directed) clustering coefficient of the nodes, ignoring self-loops.

If no weights are requested and the graph is undirected, returns the undirected binary clustering.

For all weighted cases, the weights are assumed to be positive and they are normalized to dimensionless values
between 0 and 1 through a division by the highest weight.

The default method for weighted networks is based on a modification of the proposal in [Zhang2005] with:

𝐶𝑖 =

∑︀
𝑗𝑘

3
√
𝑤𝑖𝑗𝑤𝑖𝑘𝑤𝑗𝑘∑︀

𝑗 ̸=𝑘

√
𝑤𝑖𝑗𝑤𝑖𝑘

=

(︁
𝑊 [2

3]
)︁3

𝑖𝑖(︂
𝑠
[1
2]

𝑖

)︂2

− 𝑠𝑖

for undirected networks, with 𝑊 = {𝑤𝑖𝑗} = 𝑊̃/max(𝑊̃) the normalized weight matrix, 𝑠𝑖 the normalized

strength of node 𝑖, and 𝑠
[12]
𝑖 =

∑︀
𝑘

√
𝑤𝑖𝑘 the strength associated to the matrix 𝑊 [12] = {√𝑤𝑖𝑗}.

For directed networks, we used the total clustering defined in [Fagiolo2007] by default, hence the second equa-
tion becomes:

𝐶𝑖 =

1
2

(︁
𝑊 [2

3] + 𝑊 [2
3],𝑇

)︁3

𝑖𝑖(︂
𝑠
[1
2]

𝑖

)︂2

− 2𝑠↔𝑖 − 𝑠𝑖

with 𝑠↔ =
∑︀

𝑘

√
𝑤𝑖𝑘𝑤𝑘𝑖 the reciprocal strength (associated to reciprocal connections).

For the other modes, see the generalized definitions in [Fagiolo2007].

Contrary to ‘barrat’ and ‘onnela’ [Saramaki2007], this method displays all following properties:

• fully continuous (no jump in clustering when weights go to zero),

• equivalent to binary clustering when all weights are 1,

• equivalence between no-edge and zero-weight edge cases,

• normalized (always between zero and 1).

Using either ‘continuous’ or ‘zhang’ is recommended for weighted graphs.

Parameters

• g (Graph object) – Graph to analyze.

• nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which
the local clustering coefficient should be computed.

• directed (bool, optional (default: True)) – Whether to compute the directed clustering if the
graph is directed.

122 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• method (str, optional (default: ‘continuous’)) – Method used to compute the weighted clus-
tering, either ‘barrat’ [Barrat2004]/[Clemente2018], ‘continuous’, ‘onnela’ [Onnela2005]/
[Fagiolo2007], or ‘zhang’ [Zhang2005].

• mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among
“total”, “fan-in”, “fan-out”, “middleman”, and “cycle” [Fagiolo2007].

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “sum”: equivalent to mean due to weight normalization.

Returns lc (numpy.ndarray) – The list of clustering coefficients, on per node.

References

See also:

undirected_binary_clustering(), global_clustering()

nngt.analysis.local_clustering_binary_undirected(g, nodes=None)
Returns the undirected local clustering coefficient of some nodes.

If g is directed, then it is converted to a simple undirected graph (no parallel edges).

Parameters

• g (Graph) – Graph to analyze.

• nodes (list, optional (default: all nodes)) – The list of nodes for which the clustering will
be returned

Returns lc (numpy.ndarray) – The list of clustering coefficients, on per node.

References

nngt.analysis.node_attributes(network, attributes, nodes=None, data=None)
Return node attributes for a set of nodes.

Parameters

• network (Graph) – The graph where the nodes belong.

• attributes (str or list) – Attributes which should be returned, among: * “between-
ness” * “clustering” * “closeness” * “in-degree”, “out-degree”, “total-degree” * “sub-
graph_centrality”

• nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be re-
turned.

• data (numpy.array of shape (N, 2), optional (default: None)) – Potential data on the
spike events; if not None, it must contain the sender ids on the first column and the spike
times on the second.

2.2. Intro & user manual 123

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

Returns values (array-like or dict) – Returns the attributes, either as an array if only one attribute is
required (attributes is a str) or as a dict of arrays.

nngt.analysis.num_iedges(graph)
Returns the number of inhibitory connections.

For Network objects, this corresponds to the number of edges stemming from inhibitory nodes (given by
nngt.NeuralPop.inhibitory()). Otherwise, counts the edges where the type attribute is -1.

nngt.analysis.reciprocity(g)
Calculate the edge reciprocity of the graph.

The reciprocity is defined as the number of edges that have a reciprocal edge (an edge between the same nodes
but in the opposite direction) divided by the total number of edges. This is also the probability for any given
edge, that its reciprocal edge exists. By definition, the reciprocity of undirected graphs is 1.

@todo: check whether we can get this for single nodes for all libraries.

Parameters g (Graph) – Graph to analyze.

References

nngt.analysis.shortest_distance(g, sources=None, targets=None, directed=None,
weights=None, combine_weights=’mean’)

Returns the length of the shortest paths between sources‘and ‘targets. The algorithms return infinity if there are
no paths between nodes.

Parameters

• g (Graph) – Graph to analyze.

• sources (list of nodes, optional (default: all)) – Nodes from which the paths must be com-
puted.

• targets (list of nodes, optional (default: all)) – Nodes to which the paths must be computed.

• directed (bool, optional (default: g.is_directed())) – Whether the edges should be
considered as directed or not (automatically set to False if g is undirected).

• weights (str or array, optional (default: binary)) – Whether to use weighted edges to com-
pute the distances. By default, all edges are considered to have distance 1.

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

Returns distance (float, or 1d/2d numpy array of floats) – Distance (if single source and single
target) or distance array. For multiple sources and targets, the shape of the matrix is (S, T),
with S the number of sources and T the number of targets; for a single source or target, return a
1d-array of length T or S.

124 Chapter 2. The docs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

NNGT Documentation, Release 2.3.0

References

nngt.analysis.shortest_path(g, source, target, directed=None, weights=None, com-
bine_weights=’mean’)

Returns a shortest path between source‘and ‘target. The algorithms returns an empty list if there is no path
between the nodes.

Parameters

• g (Graph) – Graph to analyze.

• source (int) – Node from which the path starts.

• target (int) – Node where the path ends.

• directed (bool, optional (default: g.is_directed())) – Whether the edges should be
considered as directed or not (automatically set to False if g is undirected).

• weights (str or array, optional (default: binary)) – Whether to use weighted edges to com-
pute the distances. By default, all edges are considered to have distance 1.

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

Returns path (list of ints) – Order of the nodes making up the path from source to target.

References

nngt.analysis.small_world_propensity(g, directed=None, use_global_clustering=False,
use_diameter=False, weights=None, com-
bine_weights=’mean’, clustering=’continuous’, lat-
tice=None, random=None, return_deviations=False)

Returns the small-world propensity of the graph as first defined in [Muldoon2016].

𝜑 = 1 −

√︃
Π[0,1](∆

2
𝐶) + Π[0,1](∆

2
𝐿)

2

with ∆𝐶 the clustering deviation, i.e. the relative global or average clustering of g compared to two reference
graphs

∆𝐶 =
𝐶𝑙𝑎𝑡𝑡 − 𝐶𝑔

𝐶𝑙𝑎𝑡𝑡 − 𝐶𝑟𝑎𝑛𝑑

and 𝐷𝑒𝑙𝑡𝑎𝐿 the deviation of the average path length or diameter, i.e. the relative average path length of g
compared to that of the reference graphs

∆𝐿 =
𝐿𝑔 − 𝐿𝑟𝑎𝑛𝑑

𝐿𝑙𝑎𝑡𝑡 − 𝐿𝑟𝑎𝑛𝑑
.

In both cases, latt and rand refer to the equivalent lattice and Erdos-Renyi (ER) graphs obtained by rewiring g
to obtain respectively the highest and lowest combination of clustering and average path length.

Both deviations are clipped to the [0, 1] range in case some graphs have a higher clustering than the lattice or a
lower average path length than the ER graph.

2.2. Intro & user manual 125

NNGT Documentation, Release 2.3.0

Parameters

• g (Graph object) – Graph to analyze.

• directed (bool, optional (default: True)) – Whether to compute the directed clustering if the
graph is directed. If False, then the graph is treated as undirected. The option switches to
False automatically if g is undirected.

• use_global_clustering (bool, optional (default: True)) – If False, then the average local
clustering is used instead of the global clustering.

• use_diameter (bool, optional (default: False)) – Use the diameter instead of the average
path length to have more global information. Ccan also be much faster in some cases,
especially using graph-tool as the backend.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

• clustering (str, optional (default: ‘continuous’)) – Method used to compute the weighted
clustering coefficients, either ‘barrat’ [Barrat2004], ‘continuous’ (recommended), or ‘on-
nela’ [Onnela2005].

• lattice (nngt.Graph, optional (default: generated from g)) – Lattice to use as reference
(since its generation is deterministic, enables to avoid multiple generations when running
the algorithm several times with the same graph)

• random (nngt.Graph, optional (default: generated from g)) – Random graph to use as
reference. Can be useful for reproducibility or for very sparse graphs where ER algorithm
would statistically lead to a disconnected graph.

• return_deviations (bool, optional (default: False)) – If True, the deviations are also re-
turned, in addition to the small-world propensity.

Note: If weights are provided, the distance calculation uses the inverse of the weights. This implementation
differs slightly from the original implementation as it can also use the global instead of the average clustering
coefficient, the diameter instead of the avreage path length, and it is generalized to directed networks.

References

Returns

• phi (float in [0, 1]) – The small-world propensity.

• delta_l (float) – The average path-length deviation (if return_deviations is True).

• delta_c (float) – The clustering deviation (if return_deviations is True).

126 Chapter 2. The docs

https://github.com/KordingLab/nctpy

NNGT Documentation, Release 2.3.0

See also:

nngt.analysis.average_path_length(), nngt.analysis.diameter(), nngt.
analysis.global_clustering(), nngt.analysis.local_clustering(), nngt.
generation.lattice_rewire(), nngt.generation.random_rewire()

nngt.analysis.spectral_radius(graph, typed=True, weights=True)
Spectral radius of the graph, defined as the eigenvalue of greatest module.

Parameters

• graph (Graph or subclass) – Network to analyze.

• typed (bool, optional (default: True)) – Whether the excitatory/inhibitory type of the
connnections should be considered.

• weights (bool, optional (default: True)) – Whether weights should be taken into account,
defaults to the “weight” edge attribute if present.

Returns the spectral radius as a float.

nngt.analysis.subgraph_centrality(graph, weights=True, nodes=None, normal-
ize=’max_centrality’)

Returns the subgraph centrality for each node in the graph.

Defined according to [Estrada2005] as:

𝑠𝑐(𝑖) = 𝑒𝑊𝑖𝑖

where 𝑊 is the (potentially weighted and normalized) adjacency matrix.

Parameters

• graph (Graph or subclass) – Network to analyze.

• weights (bool or string, optional (default: True)) – Whether weights should be taken into
account; if True, then connections are weighed by their synaptic strength, if False, then a
binary matrix is returned, if weights is a string, then the ponderation is the correponding
value of the edge attribute (e.g. “distance” will return an adjacency matrix where each
connection is multiplied by its length).

• nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which
the subgraph centrality should be returned (all centralities are computed anyway in the al-
gorithm).

• normalize (str or False, optional (default: “max_centrality”)) – Whether the centrality
should be normalized. Accepted normalizations are “max_eigenvalue” (the matrix is divided
by its largest eigenvalue), “max_centrality” (the largest centrality is one), and False to get
the non-normalized centralities.

Returns centralities (numpy.ndarray) – The subgraph centrality of each node.

References

nngt.analysis.total_firing_rate(network=None, spike_detector=None, nodes=None,
data=None, kernel_center=0.0, kernel_std=30.0, resolu-
tion=None, cut_gaussian=5.0)

Computes the total firing rate of the network from the spike times. Firing rate is obtained as the convolution of
the spikes with a Gaussian kernel characterized by a standard deviation and a temporal shift.

New in version 0.7.

2.2. Intro & user manual 127

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

Parameters

• network (nngt.Network, optional (default: None)) – Network for which the activity
was simulated.

• spike_detector (tuple of ints, optional (default: spike detectors)) – GID of the
“spike_detector” objects recording the network activity.

• data (numpy.array of shape (N, 2), optionale (default: None)) – Array containing the
spikes data (first line must contain the NEST GID of the neuron that fired, second line must
contain the associated spike time).

• kernel_center (float, optional (default: 0.)) – Temporal shift of the Gaussian kernel, in ms.

• kernel_std (float, optional (default: 30.)) – Characteristic width of the Gaussian kernel
(standard deviation) in ms.

• resolution (float or array, optional (default: 0.1*kernel_std)) – The resolution at which the
firing rate values will be computed. Choosing a value smaller than kernel_std is strongly
advised. If resolution is an array, it will be considered as the times were the firing rate should
be computed.

• cut_gaussian (float, optional (default: 5.)) – Range over which the Gaussian will be com-
puted. By default, we consider the 5-sigma range. Decreasing this value will increase speed
at the cost of lower fidelity; increasing it with increase the fidelity at the cost of speed.

Returns

• fr (array-like) – The firing rate in Hz.

• times (array-like) – The times associated to the firing rate values.

nngt.analysis.transitivity(g, directed=True, weights=None)
Same as global_clustering().

nngt.analysis.triangle_count(g, nodes=None, directed=True, weights=None, method=’normal’,
mode=’total’, combine_weights=’mean’)

Returns the number or the strength (also called intensity) of triangles for each node.

Parameters

• g (Graph object) – Graph to analyze.

• nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which
the local clustering coefficient should be computed.

• directed (bool, optional (default: True)) – Whether to compute the directed clustering if the
graph is directed.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• method (str, optional (default: ‘normal’)) – Method used to compute the weighted triangles,
either ‘normal’, where the weights are directly used, or the definitions associated to the
weighted clustering: ‘barrat’ [Barrat2004], ‘continuous’, ‘onnela’ [Onnela2005], or ‘zhang’
[Zhang2005].

• mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among
“total”, “fan-in”, “fan-out”, “middleman”, and “cycle” [Fagiolo2007].

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

128 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

Returns tr (array) – Number or weight of triangles to which each node belongs.

References

nngt.analysis.triplet_count(g, nodes=None, directed=True, weights=None, method=’normal’,
mode=’total’, combine_weights=’mean’)

Returns the number or the strength (also called intensity) of triplets for each node.

For binary networks, the triplets of node 𝑖 are defined as:

𝑇𝑖 =
∑︁
𝑗,𝑘

𝑎𝑖𝑗𝑎𝑖𝑘

Parameters

• g (Graph object) – Graph to analyze.

• nodes (array-like container with node ids, optional (default = all nodes)) – Nodes for which
the local clustering coefficient should be computed.

• directed (bool, optional (default: True)) – Whether to compute the directed clustering if the
graph is directed.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• method (str, optional (default: ‘continuous’)) – Method used to compute the weighted
triplets, either ‘normal’, where the edge weights are directly used, or the definitions
used for weighted clustering coefficients, ‘barrat’ [Barrat2004], ‘continuous’, ‘onnela’
[Onnela2005], or ‘zhang’ [Zhang2005].

• mode (str, optional (default: “total”)) – Type of clustering to use for directed graphs, among
“total”, “fan-in”, “fan-out”, “middleman”, and “cycle” [Fagiolo2007].

• combine_weights (str, optional (default: ‘mean’)) – How to combine the weights of recip-
rocal edges if the graph is directed but directed is set to False. It can be:

– “sum”: the sum of the edge attribute values will be used for the new edge.

– “mean”: the mean of the edge attribute values will be used for the new edge.

– “min”: the minimum of the edge attribute values will be used for the new edge.

– “max”: the maximum of the edge attribute values will be used for the new edge.

Returns tr (array) – Number or weight of triplets to which each node belongs.

References

Core module

Core classes and functions. Most of them are not visible in the module as they are directly loaded at nngt level.

2.2. Intro & user manual 129

NNGT Documentation, Release 2.3.0

Content

nngt.core.GraphObject
alias of nngt.core.nx_graph._NxGraph

Generation module

Functions that generates the underlying connectivity of graphs, as well as the connection properties (weight/strength
and delay).

Content

Generation functions

nngt.generation.all_to_all([nodes, . . .]) Generate a graph where all nodes are connected.
nngt.generation.circular(coord_nb[, . . .]) Generate a circular graph.
nngt.generation.distance_rule(scale[,
rule, . . .])

Create a graph using a 2D distance rule to create the
connection between neurons.

nngt.generation.erdos_renyi([density, . . .]) Generate a random graph as defined by Erdos and Renyi
but with a reciprocity that can be chosen.

nngt.generation.fixed_degree(degree[,
. . .])

Generate a random graph with constant in- or out-
degree.

nngt.generation.
from_degree_list(degrees[, . . .])

Generate a random graph from a given list of degrees.

nngt.generation.gaussian_degree(avg,
std[, . . .])

Generate a random graph with constant in- or out-
degree.

nngt.generation.newman_watts(coord_nb[,
. . .])

Generate a (potentially small-world) graph using the
Newman-Watts algorithm.

nngt.generation.price_scale_free(m[, c,
. . .])

Generate a Price graph model (Barabasi-Albert if undi-
rected).

nngt.generation.
random_scale_free(in_exp, . . .)

Generate a free-scale graph of given reciprocity and oth-
erwise devoid of correlations.

nngt.generation.
watts_strogatz(coord_nb[, . . .])

Generate a (potentially small-world) graph using the
Watts-Strogatz algorithm.

Connectors

nngt.generation.connect_nodes(network,
. . .)

Function to connect nodes with a given graph model.

nngt.generation.connect_groups(network,
. . .)

Function to connect groups with a given graph model.

nngt.generation.
connect_neural_types(. . . [, . . .])

Function to connect excitatory and inhibitory popula-
tion with a given graph model.

Rewiring functions

130 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

nngt.generation.random_rewire(g[, . . .]) Generate a new rewired graph from g.
nngt.generation.lattice_rewire(g[, . . .]) Build a (generally irregular) lattice by rewiring the

edges of a graph.

Details

nngt.generation.all_to_all(nodes=0, weighted=True, directed=True, multigraph=False,
name=’AllToAll’, shape=None, positions=None, population=None,
**kwargs)

Generate a graph where all nodes are connected.

New in version 1.0.

Parameters

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirec-
tional (only for directed graphs – undirected graphs have a reciprocity of 1 by definition)

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

Note: nodes is required unless population is provided.

Returns graph_all (Graph, or subclass) – A new generated graph.

nngt.generation.circular(coord_nb, reciprocity=1.0, reciprocity_choice=’random’, nodes=0,
weighted=True, directed=True, multigraph=False, name=’Circular’,
shape=None, positions=None, population=None, from_graph=None,
**kwargs)

Generate a circular graph.

The nodes are placed on a circle and connected to their coord_nb closest neighbours. If the graph is directed,
the number of connections depends on the value of reciprocity: if reciprocity == 0., then only half of all
possible connections will be created, so that no bidirectional edges exist; on the other hand, for reciprocity
== 1., all possible edges are created; for intermediate values of reciprocity, the number of edges increases
linearly as 0.5*(1 + reciprocity / (2 - reciprocity))*nodes*coord_nb.

Parameters

• coord_nb (int) – The number of neighbours for each node on the initial topological lattice
(must be even).

• reciprocity (double, optional (default: 1.)) – Proportion of reciprocal edges in the graph.

2.2. Intro & user manual 131

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• reciprocity_choice (str, optional (default: “random”)) – How reciprocal edges should be
chosen, which can be either “random” or “closest”. If the latter option is used, then connec-
tions between first neighbours are rendered reciprocal first, then between second neighbours,
etc.

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• density (double, optional (default: 0.1)) – Structural density given by edges /
(nodes‘*‘nodes).

• edges (int (optional)) – The number of edges between the nodes

• avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Returns graph_circ (Graph or subclass)

nngt.generation.connect_groups(network, source_groups, target_groups, graph_model,
density=None, edges=None, avg_deg=None, unit=’um’,
weighted=True, directed=True, multigraph=False,
check_existing=True, ignore_invalid=False, **kwargs)

Function to connect groups with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

Parameters

• network (Network or SpatialNetwork) – The network to connect.

• source_groups (str, NeuralGroup, or iterable) – Names of the source groups (which
contain the pre-synaptic neurons) or directly the group objects themselves.

• target_groups (str, NeuralGroup, or iterable) – Names of the target groups (which con-
tain the post-synaptic neurons) or directly the group objects themselves.

• graph_model (string) – The name of the connectivity model (among “erdos_renyi”, “ran-
dom_scale_free”, “price_scale_free”, and “newman_watts”).

• check_existing (bool, optional (default: True)) – Check whether some of the edges that will
be added already exist in the graph.

• ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added
to the graph and are silently dropped. Unless this is set to true, an error is raised if an existing
edge is re-generated.

• kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such
as weights or delays.

132 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

Note: For graph generation methods which set the properties of a specific degree (e.g.
gaussian_degree()), the groups which have their property sets are the source_groups.

nngt.generation.connect_neural_groups(*args, **kwargs)
Deprecatd alias of connect_groups().

nngt.generation.connect_neural_types(network, source_type, target_type, graph_model, den-
sity=None, edges=None, avg_deg=None, unit=’um’,
weighted=True, directed=True, multigraph=False,
check_existing=True, ignore_invalid=False,
**kwargs)

Function to connect excitatory and inhibitory population with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

Parameters

• network (Network or SpatialNetwork) – The network to connect.

• source_type (int or list) – The type of source neurons (1 for excitatory, -1 for inhibitory
neurons).

• target_type (int or list) – The type of target neurons.

• graph_model (string) – The name of the connectivity model (among “erdos_renyi”, “ran-
dom_scale_free”, “price_scale_free”, and “newman_watts”).

• check_existing (bool, optional (default: True)) – Check whether some of the edges that will
be added already exist in the graph.

• ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added
to the graph and are silently dropped. Unless this is set to true, an error is raised if an existing
edge is re-generated.

• kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers such
as weights or delays.

Note: For graph generation methods which set the properties of a specific degree (e.g.
gaussian_degree()), the nodes which have their property sets are the source_type.

nngt.generation.connect_nodes(network, sources, targets, graph_model, density=None,
edges=None, avg_deg=None, unit=’um’, weighted=True,
directed=True, multigraph=False, check_existing=True, ig-
nore_invalid=False, **kwargs)

Function to connect nodes with a given graph model.

Changed in version 2.0: Added check_existing and ignore_invalid arguments.

Parameters

• network (Network or SpatialNetwork) – The network to connect.

• sources (list) – Ids of the source nodes.

• targets (list) – Ids of the target nodes.

• graph_model (string) – The name of the connectivity model (among “erdos_renyi”, “ran-
dom_scale_free”, “price_scale_free”, and “newman_watts”).

2.2. Intro & user manual 133

NNGT Documentation, Release 2.3.0

• check_existing (bool, optional (default: True)) – Check whether some of the edges that will
be added already exist in the graph.

• ignore_invalid (bool, optional (default: False)) – Ignore invalid edges: they are not added
to the graph and are silently dropped. Unless this is set to true, an error is raised if an existing
edge is re-generated.

• **kwargs (keyword arguments) – Specific model parameters. or edge attributes specifiers
such as weights or delays.

Note: For graph generation methods which set the properties of a specific degree (e.g.
gaussian_degree()), the nodes which have their property sets are the sources.

nngt.generation.distance_rule(scale, rule=’exp’, shape=None, neuron_density=1000.0,
max_proba=-1.0, nodes=0, density=None, edges=None,
avg_deg=None, unit=’um’, weighted=True, directed=True, multi-
graph=False, name=’DR’, positions=None, population=None,
from_graph=None, **kwargs)

Create a graph using a 2D distance rule to create the connection between neurons. Available rules are linear and
exponential.

Parameters

• scale (float) – Characteristic scale for the distance rule. E.g for linear distance- rule,
𝑃 (𝑖, 𝑗) ∝ (1−𝑑𝑖𝑗/𝑠𝑐𝑎𝑙𝑒)), whereas for the exponential distance-rule, 𝑃 (𝑖, 𝑗) ∝ 𝑒−𝑑𝑖𝑗/𝑠𝑐𝑎𝑙𝑒.

• rule (string, optional (default: ‘exp’)) – Rule that will be apply to draw the connections be-
tween neurons. Choose among “exp” (exponential), “gaussian” (Gaussian), or “lin” (linear).

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment. If not
specified, a square will be created with the appropriate dimensions for the number of neurons
and the neuron spatial density.

• neuron_density (float, optional (default: 1000.)) – Density of neurons in space (𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ·
𝑚𝑚−2).

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• p (float, optional) – Normalization factor for the distance rule; it is equal to the probability
of connection when testing a node at zero distance.

• density (double, optional) – Structural density given by edges / (nodes * nodes).

• edges (int, optional) – The number of edges between the nodes

• avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

• unit (string (default: ‘um’)) – Unit for the length scale among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’.

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “DR”)) – Name of the created graph.

• positions (numpy.ndarray, optional (default: None)) – A 2D (N, 2) or 3D (N, 3) shaped
array containing the positions of the neurons in space.

134 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

nngt.generation.erdos_renyi(density=None, nodes=0, edges=None, avg_deg=None, reciprocity=-
1.0, weighted=True, directed=True, multigraph=False,
name=’ER’, shape=None, positions=None, population=None,
from_graph=None, **kwargs)

Generate a random graph as defined by Erdos and Renyi but with a reciprocity that can be chosen.

Parameters

• density (double, optional (default: -1.)) – Structural density given by edges / nodes2. It is
also the probability for each possible edge in the graph to exist.

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• edges (int (optional)) – The number of edges between the nodes

• avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

• reciprocity (double, optional (default: -1 to let it free)) – Fraction of edges that are bidirec-
tional (only for directed graphs – undirected graphs have a reciprocity of 1 by definition)

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Returns graph_er (Graph, or subclass) – A new generated graph or the modified from_graph.

Note: nodes is required unless from_graph or population is provided. If an from_graph is provided, all
preexistant edges in the object will be deleted before the new connectivity is implemented.

nngt.generation.fixed_degree(degree, degree_type=’in’, nodes=0, reciprocity=-
1.0, weighted=True, directed=True, multigraph=False,
name=’FD’, shape=None, positions=None, population=None,
from_graph=None, **kwargs)

Generate a random graph with constant in- or out-degree.

Parameters

• degree (int) – The value of the constant degree.

• degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in',
'out' or 'total'.

2.2. Intro & user manual 135

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

@todo ‘total’ not implemented yet.

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet.
Fraction of edges that are bidirectional (only for directed graphs – undirected graphs have a
reciprocity of 1 by definition)

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – @todo: only for directed graphs for now.
Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Note: nodes is required unless from_graph or population is provided. If an from_graph is provided, all
preexistant edges in the object will be deleted before the new connectivity is implemented.

Returns graph_fd (Graph, or subclass) – A new generated graph or the modified from_graph.

nngt.generation.from_degree_list(degrees, degree_type=’in’, weighted=True, directed=True,
multigraph=False, name=’DL’, shape=None, posi-
tions=None, population=None, from_graph=None,
**kwargs)

Generate a random graph from a given list of degrees.

Parameters

• degrees (list) – The list of degrees for each node in the graph.

• degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among 'in',
'out' or 'total'. @todo ‘total’ not implemented yet.

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – @todo: only for directed graphs for now.
Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

136 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Returns graph_dl (Graph, or subclass) – A new generated graph or the modified from_graph.

nngt.generation.gaussian_degree(avg, std, degree_type=’in’, nodes=0, reciprocity=-
1.0, weighted=True, directed=True, multigraph=False,
name=’GD’, shape=None, positions=None, population=None,
from_graph=None, **kwargs)

Generate a random graph with constant in- or out-degree.

Parameters

• avg (float) – The value of the average degree.

• std (float) – The standard deviation of the Gaussian distribution.

• degree_type (str, optional (default: ‘in’)) – The type of the fixed degree, among ‘in’, ‘out’
or ‘total’ (or the full version: ‘in-degree’. . .) @todo: Implement ‘total’ degree

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• reciprocity (double, optional (default: -1 to let it free)) – @todo: not implemented yet.
Fraction of edges that are bidirectional (only for directed graphs – undirected graphs have a
reciprocity of 1 by definition)

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – @todo: only for directed graphs for now.
Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Returns graph_gd (Graph, or subclass) – A new generated graph or the modified from_graph.

Note: nodes is required unless from_graph or population is provided. If an from_graph is provided, all
preexistant edges in the object will be deleted before the new connectivity is implemented.

nngt.generation.lattice_rewire(g, target_reciprocity=1.0, node_attr_constraints=None,
edge_attr_constraints=None, weight=None,
weight_constraint=’distance’, distance_sort=’inverse’)

Build a (generally irregular) lattice by rewiring the edges of a graph.

New in version 2.0.

2.2. Intro & user manual 137

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

The lattice is based on a circular graph, meaning that the nodes are placed on a circle and connected based on
the topological distance between them, the distance being defined through the positive modulo:

𝑑𝑖𝑗 = (𝑖− 𝑗)%𝑁

with 𝑁 the number of nodes in the graph.

Parameters

• g (Graph) – Graph based on which the lattice will be generated.

• target_reciprocity (float, optional (default: 1.)) – Value of reciprocity that should be aimed
at. Depending on the number of edges, it may not be possible to reach this value exactly.

• node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute
randomization is constrained: either “preserve”, where all nodes keep their attributes, or
“together”, where attributes are randomized by groups (all attributes of a given node are sent
to the same new node). By default, attributes are completely and separately randomized.

• edge_attr_constraints (str, optional (default: randomize all but weight)) – Whether at-
tribute randomization is constrained. If “distance” is used, then all number attributes (float
or int) are sorted and are first associated to the shortest or longest edges depending on the
value of distance_sort. Note that, for directed graphs, if a reciprocal edge exists, it is im-
mediately assigned the next highest (respectively lowest) attribute after that of its directed
couterpart. If “together” is used, edges attributes are randomized by groups (all attributes
of a given edge are sent to the same new edge) either randomly if weight is None, or fol-
lowing the constrained weight attribute. By default, attributes are completely and separately
randomized (except for weight if it has been provided).

• weight (str, optional (default: None)) – Whether a specific edge attribute should play the
role of weight and have special constraints.

• weight_constraint (str, optional (default: “distance”)) – Same as edge_attr_constraints‘
but only applies to weight and can only be “distance” or None since “together” was related
to weight.

• distance_sort (str, optional (default: “inverse”)) – How attributes are sorted with edge
distance: either “inverse”, with the shortest edges being assigned the largest weights, or
with a “linear” sort, where shortest edges are assigned the lowest weights.

nngt.generation.newman_watts(coord_nb, proba_shortcut=None, reciprocity_circular=1.0,
reciprocity_choice_circular=’random’, nodes=0, edges=None,
weighted=True, directed=True, multigraph=False,
name=’NW’, shape=None, positions=None, population=None,
from_graph=None, **kwargs)

Generate a (potentially small-world) graph using the Newman-Watts algorithm.

For directed networks, the reciprocity of the initial circular network can be chosen.

Changed in version 2.0: Added the reciprocity_circular and reciprocity_choice_circular options.

Parameters

• coord_nb (int) – The number of neighbours for each node on the initial topological lattice
(must be even).

• proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for
each existing edge on the initial lattice. If edges is provided, then will be computed automat-
ically as edges / (coord_nb * nodes * (1 + reciprocity_circular)
/ 2)

138 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the
initial circular graph.

• reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges
should be chosen in the initial circular graph. This can be either “random” or “closest”. If
the latter option is used, then connections between first neighbours are rendered reciprocal
first, then between second neighbours, etc.

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• edges (int (optional)) – The number of edges between the nodes.

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Returns graph_nw (Graph or subclass)

Note: nodes is required unless from_graph or population is provided.

nngt.generation.price_scale_free(m, c=None, gamma=1, nodes=0, reciprocity=0,
weighted=True, directed=True, multigraph=False,
name=’PriceSF’, shape=None, positions=None, popu-
lation=None, **kwargs)

Generate a Price graph model (Barabasi-Albert if undirected).

Parameters

• m (int) – The number of edges each new node will make.

• c (double, optional (0 if undirected, else 1)) – Constant added to the probability of a vertex
receiving an edge.

• gamma (double, optional (default: 1)) – Preferential attachment power.

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• reciprocity (float, optional (default: 0)) – Reciprocity of the graph (between 0 and 1). For
directed graphs, this will be the probability of the target node connecting back to the source
node when a new edge is added.

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

2.2. Intro & user manual 139

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

Returns graph_price (Graph or subclass.)

Note: nodes is required unless population is provided.

Notes

The (generalized) Price network is either a directed or undirected graph (the latter is better known as the
Barabási-Albert network). It is generated via a growth process, adding a new node at each step and connecting
it to 𝑚 previous nodes, chosen with probability:

𝑝 ∝ 𝑘𝛾 + 𝑐

where 𝑘 is the (in-)degree of the vertex.

We must therefore have 𝑐 ≥ 0 for directed graphs and 𝑐 > −1 for undirected graphs.

If the reciprocity 𝑟 is non-zero, each targeted node reciprocates the connection with probability 𝑟. Expected
reciprocity of the final graph is 2𝑟/(1 + 𝑟).

If 𝛾 = 1, and reciprocity is zero, the tail of resulting in-degree distribution of the directed case is given by

𝑃𝑘𝑖𝑛 ∼ 𝑘
−(2+𝑐/𝑚)
𝑖𝑛 ,

or for the undirected case

𝑃𝑘 ∼ 𝑘−(3+𝑐/𝑚).

However, if 𝛾 ̸= 1, the in-degree distribution is not scale-free.

nngt.generation.random_rewire(g, constraints=None, node_attr_constraints=None,
edge_attr_constraints=None)

Generate a new rewired graph from g.

New in version 2.0.

Parameters

• g (Graph) – Base graph based on which a new rewired graph will be generated.

• constraints (str, optional (default: no constraints)) – Defines which properties of g will
be maintained in the rewired graph. By default, the graph is completely rewired into an
Erdos-Renyi model. Available constraints are “in-degree”, “out-degree”, “total-degree”,
“all-degrees”, and “clustering”.

• node_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute
randomization is constrained: either “preserve”, where all nodes keep their attributes, or
“together”, where attributes are randomized by groups (all attributes of a given node are sent
to the same new node). By default, attributes are completely and separately randomized.

140 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• edge_attr_constraints (str, optional (default: randomize all attributes)) – Whether attribute
randomization is constrained. If constraints is “in-degree” (respectively “out-degree”) or
“degrees”, this can be “preserve_in” (respectively “preserve_out”), in which case all at-
tributes of a given edge are moved together to a new incoming (respectively outgoing) edge
of the same node. Regardless of constraints, “together” can be used so that edges attributes
are randomized by groups (all attributes of a given edge are sent to the same new edge). By
default, attributes are completely and separately randomized.

nngt.generation.random_scale_free(in_exp, out_exp, nodes=0, density=None, edges=None,
avg_deg=None, reciprocity=0.0, weighted=True, di-
rected=True, multigraph=False, name=’RandomSF’,
shape=None, positions=None, population=None,
from_graph=None, **kwargs)

Generate a free-scale graph of given reciprocity and otherwise devoid of correlations.

Parameters

• in_exp (float) – Absolute value of the in-degree exponent 𝛾𝑖, such that 𝑝(𝑘𝑖) ∝ 𝑘−𝛾𝑖

𝑖

• out_exp (float) – Absolute value of the out-degree exponent 𝛾𝑜, such that 𝑝(𝑘𝑜) ∝ 𝑘−𝛾𝑜
𝑜

• nodes (int, optional (default: 0)) – The number of nodes in the graph.

• density (double, optional) – Structural density given by edges / (nodes*nodes).

• edges (int optional) – The number of edges between the nodes

• avg_deg (double, optional) – Average degree of the neurons given by edges / nodes.

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes. can contain multiple edges between two

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment.

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network)

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Returns graph_fs (Graph)

Note: As reciprocity increases, requested values of in_exp and out_exp will be less and less respected as
the distribution will converge to a common exponent 𝛾 = (𝛾𝑖 + 𝛾𝑜)/2. Parameter nodes is required unless
from_graph or population is provided.

nngt.generation.watts_strogatz(coord_nb, proba_shortcut=None, reciprocity_circular=1.0,
reciprocity_choice_circular=’random’, shuffle=’random’,
nodes=0, weighted=True, directed=True, multigraph=False,
name=’WS’, shape=None, positions=None, population=None,
from_graph=None, **kwargs)

Generate a (potentially small-world) graph using the Watts-Strogatz algorithm.

2.2. Intro & user manual 141

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

For directed networks, the reciprocity of the initial circular network can be chosen.

New in version 2.0.

Parameters

• coord_nb (int) – The number of neighbours for each node on the initial topological lattice
(must be even).

• proba_shortcut (double, optional) – Probability of adding a new random (shortcut) edge for
each existing edge on the initial lattice. If edges is provided, then will be computed automat-
ically as edges / (coord_nb * nodes * (1 + reciprocity_circular)
/ 2)

• reciprocity_circular (double, optional (default: 1.)) – Proportion of reciprocal edges in the
initial circular graph.

• reciprocity_choice_circular (str, optional (default: “random”)) – How reciprocal edges
should be chosen in the initial circular graph. This can be either “random” or “closest”. If
the latter option is used, then connections between first neighbours are rendered reciprocal
first, then between second neighbours, etc.

• shuffle (str, optional (default: ‘random’)) – Whether to shuffle only ‘targets’ (out-degree of
all nodes remains constant), ‘sources’ (in-degree remains constant), or randomly the source
or the target for each edge (‘random’) in the case of directed graphs.

• nodes (int, optional (default: None)) – The number of nodes in the graph.

• weighted (bool, optional (default: True)) – Whether the graph edges have weights.

• directed (bool, optional (default: True)) – Whether the graph is directed or not.

• multigraph (bool, optional (default: False)) – Whether the graph can contain multiple
edges between two nodes.

• name (string, optional (default: “ER”)) – Name of the created graph.

• shape (Shape, optional (default: None)) – Shape of the neurons’ environment

• positions (numpy.ndarray, optional (default: None)) – A 2D or 3D array containing the
positions of the neurons in space.

• population (NeuralPop, optional (default: None)) – Population of neurons defining their
biological properties (to create a Network).

• from_graph (Graph or subclass, optional (default: None)) – Initial graph whose nodes are
to be connected.

Returns graph_nw (Graph or subclass)

Note: nodes is required unless from_graph or population is provided.

Geometry module

This module is a direct copy of the SENeC package PyNCulture. Therefore, in the examples below, you will have to
import nngt instead of PyNCulture and replace pnc by nngt.geometry.

142 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://github.com/SENeC-Initiative/PyNCulture

NNGT Documentation, Release 2.3.0

Overview

nngt.geometry.Area(shell[, holes, unit, . . .]) Specialized Shape that stores additional properties re-
garding the interactions with the neurons.

nngt.geometry.Shape(shell[, holes, unit, . . .]) Class containing the shape of the area where neurons
will be distributed to form a network.

nngt.geometry.culture_from_file(filename[,
. . .])

Generate a culture from an SVG, a DXF, or a
WKT/WKB file.

nngt.geometry.plot_shape(shape[, axis, m,
. . .])

Plot a shape (you should set the axis aspect to 1 to re-
spect the proportions).

nngt.geometry.pop_largest(shapes) Returns the largest shape, removing it from the list.
nngt.geometry.shapes_from_file(filename[,
. . .])

Generate a set of Shape objects from an SVG, a DXF,
or a WKT/WKB file.

Principle

Module dedicated to the description of the spatial boundaries of neuronal cultures. This allows for the generation of
neuronal networks that are embedded in space.

The shapely library is used to generate and deal with the spatial environment of the neurons.

Examples

Basic features

The module provides a backup Shape object, which can be used with only the numpy and scipy libraries. It allows
for the generation of simple rectangle, disk and ellipse shapes.

import matplotlib.pyplot as plt

import PyNCulture as nc

fig, ax = plt.subplots()

''' Choose a shape (uncomment the desired line) '''
culture = nc.Shape.rectangle(15, 20, (5, 0))
culture = nc.Shape.disk(20, (5, 0))
culture = nc.Shape.ellipse((20, 5), (5, 0))

''' Generate the neurons inside '''
pos = culture.seed_neurons(neurons=1000, xmax=0., ymax=0.)

''' Plot '''
nc.plot_shape(culture, ax, show=False)
ax.scatter(pos[:, 0], pos[:, 1], s=2, zorder=2)

plt.show()

All these features are of course still available with the more advanced Shape object which inherits from shapely.
geometry.Polygon.

2.2. Intro & user manual 143

http://toblerity.org/shapely/index.html

NNGT Documentation, Release 2.3.0

Complex shapes from files

import matplotlib.pyplot as plt

import PyNCulture as nc

''' Choose a file '''
culture_file = "culture_from_filled_polygons.svg"
culture_file = "culture_with_holes.svg"
culture_file = "culture.dxf"

shapes = nc.shapes_from_file(culture_file, min_x=-5000., max_x=5000.)

''' Plot the shapes '''
fig, ax = plt.subplots()
fig.suptitle("shapes")

for p in shapes:
nc.plot_shape(p, ax, show=False)

plt.show()

''' Make a culture '''
fig2, ax2 = plt.subplots()
plt.title("culture")

culture = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)

nc.plot_shape(culture, ax2)

''' Add neurons '''
fig3, ax3 = plt.subplots()
plt.title("culture with neurons")

culture_bis = nc.culture_from_file(culture_file, min_x=-5000., max_x=5000.)
pos = culture_bis.seed_neurons(neurons=1000, xmax=0)

nc.plot_shape(culture_bis, ax3, show=False)
ax3.scatter(pos[:, 0], pos[:, 1], s=2, zorder=3)

plt.show()

Content

class nngt.geometry.Area(shell, holes=None, unit=’um’, height=0.0, name=’area’, proper-
ties=None)

Specialized Shape that stores additional properties regarding the interactions with the neurons.

Each Area is characteristic of a given substrate and height. These two properties are homogeneous over the
whole area, meaning that the neurons interact in the same manner with an Area reagardless of their position
inside.

The substrate is described through its modulation of the neuronal properties compared to their default behavior.
Thus, a given area will modulate the speed, wall affinity, etc, of the growth cones that are growing above it.

Initialize the Shape object and the underlying shapely.geometry.Polygon.

144 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Parameters

• shell (array-like object of shape (N, 2)) – List of points defining the external border of the
shape.

• holes (array-like, optional (default: None)) – List of array-like objects of shape (M, 2),
defining empty regions inside the shape.

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’.

• height (float, optional (default: 0.)) – Height of the area.

• name (str, optional (default: “area”)) – The name of the area.

• properties (dict, optional (default: default neuronal properties)) – Dictionary containing
the list of the neuronal properties that are modified by the substrate. Since this describes
how the default property is modulated, all values must be positive reals or NaN.

add_subshape(subshape, position, unit=’um’)

areas
Returns the dictionary containing the Shape’s areas.

copy()
Create a copy of the current Area.

classmethod from_shape(shape, height=0.0, name=’area’, properties=None, unit=’um’,
min_x=None, max_x=None)

Create an Area from a Shape object.

Parameters shape (Shape) – Shape that should be converted to an Area.

Returns Area object.

properties

class nngt.geometry.Shape(shell, holes=None, unit=’um’, parent=None, default_properties=None)
Class containing the shape of the area where neurons will be distributed to form a network.

area
Area of the shape in the Shape’s Shape.unit() squared (𝜇𝑚2, 𝑚𝑚2, 𝑐𝑚2, 𝑑𝑚2 or 𝑚2).

Type double

centroid
Position of the center of mass of the current shape in unit.

Type tuple of doubles

See also:

Parent

Initialize the Shape object and the underlying shapely.geometry.Polygon.

Parameters

• exterior (array-like object of shape (N, 2)) – List of points defining the external border of
the shape.

• interiors (array-like, optional (default: None)) – List of array-like objects of shape (M, 2),
defining empty regions inside the shape.

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’.

2.2. Intro & user manual 145

NNGT Documentation, Release 2.3.0

• parent (nngt.Graph or subclass) – The graph which is associated to this Shape.

• default_properties (dict, optional (default: None)) – Default properties of the environment.

add_area(area, height=None, name=None, properties=None, override=False)
Add a new area to the Shape. If the new area has a part that is outside the main Shape, it will be cut and
only the intersection between the area and the container will be kept.

Parameters

• area (Area or Shape, or shapely.Polygon.) – Delimitation of the area. Only the
intersection between the parent Shape and this new area will be kept.

• name (str, optional, default (“areaX” where X is the number of areas)) – Name of the
area, under which it can be retrieved using the Shape.area() property of the Shape
object.

• properties (dict, optional (default: None)) – Properties of the area. If area is a Area,
then this is not necessary.

• override (bool, optional (default: False)) – If True, the new area will be made over exist-
ing areas that will be reduced in consequence.

add_hole(hole)
Make a hole in the shape.

New in version 0.4.

areas
Returns the dictionary containing the Shape’s areas.

contains_neurons(positions)
Check whether the neurons are contained in the shape.

New in version 0.4.

Parameters positions (point or 2D-array of shape (N, 2))

Returns contained (bool or 1D boolean array of length N) – True if the neuron is contained,
False otherwise.

copy()
Create a copy of the current Shape.

default_areas
Returns the dictionary containing only the default areas.

New in version 0.4.

static disk(radius, centroid=(0.0, 0.0), unit=’um’, parent=None, default_properties=None)
Generate a disk of given radius and center (centroid).

Parameters

• radius (float) – Radius of the disk in unit

• centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of
mass in unit

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’

• parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

• default_properties (dict, optional (default: None)) – Default properties of the environ-
ment.

146 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Returns shape (Shape) – Rectangle shape.

static ellipse(radii, centroid=(0.0, 0.0), unit=’um’, parent=None, default_properties=None)
Generate a disk of given radius and center (centroid).

Parameters

• radii (tuple of floats) – Couple (rx, ry) containing the radii of the two axes in unit

• centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of
mass in unit

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’

• parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

• default_properties (dict, optional (default: None)) – Default properties of the environ-
ment.

Returns shape (Shape) – Rectangle shape.

static from_file(filename, min_x=None, max_x=None, unit=’um’, parent=None, interpo-
late_curve=50, default_properties=None)

Create a shape from a DXF, an SVG, or a WTK/WKB file.

New in version 0.3.

Parameters

• filename (str) – Path to the file that should be loaded.

• min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost
point in the environment in unit (default: ‘um’). If None, no rescaling occurs.

• max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost
point in the environment in unit. If None, no rescaling occurs.

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’.

• parent (nngt.Graph object) – The parent which will become a nngt.
SpatialGraph.

• interpolate_curve (int, optional (default: 50)) – Number of points that should be used to
interpolate a curve.

• default_properties (dict, optional (default: None)) – Default properties of the environ-
ment.

static from_polygon(polygon, min_x=None, max_x=None, unit=’um’, parent=None, de-
fault_properties=None)

Create a shape from a shapely.geometry.Polygon.

Parameters

• polygon (shapely.geometry.Polygon) – The initial polygon.

• min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost
point in the environment in unit If None, no rescaling occurs.

• max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost
point in the environment in unit If None, no rescaling occurs.

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’

2.2. Intro & user manual 147

NNGT Documentation, Release 2.3.0

• parent (nngt.Graph object) – The parent which will become a nngt.
SpatialGraph.

• default_properties (dict, optional (default: None)) – Default properties of the environ-
ment.

static from_wkt(wtk, min_x=None, max_x=None, unit=’um’, parent=None, de-
fault_properties=None)

Create a shape from a WKT string.

New in version 0.2.

Parameters

• wtk (str) – The WKT string.

• min_x (float, optional (default: -5000.)) – Absolute horizontal position of the leftmost
point in the environment in unit If None, no rescaling occurs.

• max_x (float, optional (default: 5000.)) – Absolute horizontal position of the rightmost
point in the environment in unit If None, no rescaling occurs.

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’

• parent (nngt.Graph object) – The parent which will become a nngt.
SpatialGraph.

• default_properties (dict, optional (default: None)) – Default properties of the environ-
ment.

See also:

Shape.from_polygon()

non_default_areas
Returns the dictionary containing all Shape’s areas except the default ones.

New in version 0.4.

parent
Return the parent of the Shape.

random_obstacles(n, form, params=None, heights=None, properties=None, etching=0,
on_area=None)

Place random obstacles inside the shape.

New in version 0.4.

Parameters

• n (int or float) – Number of obstacles if n is an int, otherwise represents the fraction of
the shape’s bounding box that should be occupied by

the obstacles’ bounding boxes.

• form (str or Shape) – Form of the obstacles, among “disk”, “ellipse”, “rectangle”, or a
custom shape.

• params (dict, optional (default: None)) – Dictionnary containing the instructions to build
a predefined form (“disk”, “ellipse”, “rectangle”). See their creation methods for details.
Leave None when using a custom shape.

• heights (float or list, optional (default: None)) – Heights of the obstacles. If None, the
obstacle will considered as a “hole” in the structure, i.e. an uncrossable obstacle.

148 Chapter 2. The docs

https://docs.python.org/3/library/functions.html#int

NNGT Documentation, Release 2.3.0

• properties (dict or list, optional (default: None)) – Properties of the obstacles if they
constitue areas (only used if heights is not None). If not provided and heights is not None,
will default to the “default_area” properties.

• etching (float, optional (default: 0)) – Etching of the obstacles’ corners (rounded corners).
Valid only for

static rectangle(height, width, centroid=(0.0, 0.0), unit=’um’, parent=None, de-
fault_properties=None)

Generate a rectangle of given height, width and center of mass.

Parameters

• height (float) – Height of the rectangle in unit

• width (float) – Width of the rectangle in unit

• centroid (tuple of floats, optional (default: (0., 0.))) – Position of the rectangle’s center of
mass in unit

• unit (string (default: ‘um’)) – Unit in the metric system among ‘um’ (𝜇𝑚), ‘mm’, ‘cm’,
‘dm’, ‘m’

• parent (nngt.Graph or subclass, optional (default: None)) – The parent container.

• default_properties (dict, optional (default: None)) – Default properties of the environ-
ment.

Returns shape (Shape) – Rectangle shape.

return_quantity
Whether seed_neurons returns positions with units by default.

New in version 0.5.

seed_neurons(neurons=None, container=None, on_area=None, xmin=None, xmax=None,
ymin=None, ymax=None, soma_radius=0, unit=None, return_quantity=None)

Return the positions of the neurons inside the Shape.

Parameters

• neurons (int, optional (default: None)) – Number of neurons to seed. This argument is
considered only if the Shape has no parent, otherwise, a position is generated for each
neuron in parent.

• container (Shape, optional (default: None)) – Subshape acting like a mask, in which
the neurons must be contained. The resulting area where the neurons are generated is the
intersection() between of the current shape and the container.

• on_area (str or list, optional (default: None)) – Area(s) where the seeded neurons should
be.

• xmin (double, optional (default: lowest abscissa of the Shape)) – Limit the area where
neurons will be seeded to the region on the right of xmin.

• xmax (double, optional (default: highest abscissa of the Shape)) – Limit the area where
neurons will be seeded to the region on the left of xmax.

• ymin (double, optional (default: lowest ordinate of the Shape)) – Limit the area where
neurons will be seeded to the region on the upper side of ymin.

• ymax (double, optional (default: highest ordinate of the Shape)) – Limit the area where
neurons will be seeded to the region on the lower side of ymax.

2.2. Intro & user manual 149

NNGT Documentation, Release 2.3.0

• unit (string (default: None)) – Unit in which the positions of the neurons will be returned,
among ‘um’, ‘mm’, ‘cm’, ‘dm’, ‘m’.

• return_quantity (bool, optional (default: False)) – Whether the positions should be re-
turned as pint.Quantity objects (requires Pint).

• .. versionchanged:: 0.5 – Accepts pint units and return_quantity argument.

Note: If both container and on_area are provided, the intersection of the two is used.

Returns positions (array of double with shape (N, 2) or pint.Quantity if) – return_quantity is
True.

set_parent(parent)
Set the parent nngt.Graph.

set_return_units(b)
Set the default behavior for positions returned by seed_neurons. If True, then the positions returned are
quantities with units (from the pint library), otherwise they are simply numpy arrays.

New in version 0.5.

Note: set_return_units(True) requires pint to be installed on the system, otherwise an error will be raised.

unit
Return the unit for the Shape coordinates.

nngt.geometry.culture_from_file(filename, min_x=None, max_x=None, unit=’um’, par-
ent=None, interpolate_curve=50, internal_shapes_as=’holes’,
default_properties=None, other_properties=None)

Generate a culture from an SVG, a DXF, or a WKT/WKB file.

Valid file needs to contain only closed objects among: rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

Changed in version 0.6: Added internal_shapes_as and other_properties keyword parameters.

Parameters

• filename (str) – Path to the SVG, DXF, or WKT/WKB file.

• min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s
exterior, in unit.

• max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s
exterior, in unit.

• unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’),
milimeters (‘mm’), centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

• parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if
working with NNGT.

• interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should
be interpolated into segments.

• internal_shapes_as (str, optional (default: “holes”)) – Defines how additional shapes con-
tained in the main environment should be processed. If “holes”, then these shapes are sub-
stracted from the main environment; if “areas”, they are considered as areas.

150 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• default_properties (dict, optional (default: None)) – Properties of the default area of the
culture.

• other_properties (dict, optional (default: None)) – Properties of the non-default areas of
the culture (internal shapes if internal_shapes_as is set to “areas”).

Returns culture (Shape object) – Shape, vertically centred around zero, such that 𝑚𝑖𝑛(𝑦) +
𝑚𝑎𝑥(𝑦) = 0.

nngt.geometry.pop_largest(shapes)
Returns the largest shape, removing it from the list. If shapes is a shapely.geometry.MultiPolygon,
returns the largest shapely.geometry.Polygon without modifying the object.

New in version 0.3.

Parameters shapes (list of Shape objects or MultiPolygon.)

nngt.geometry.shapes_from_file(filename, min_x=None, max_x=None, unit=’um’, parent=None,
interpolate_curve=50, default_properties=None, **kwargs)

Generate a set of Shape objects from an SVG, a DXF, or a WKT/WKB file.

Valid file needs to contain only closed objects among: rectangles, circles, ellipses, polygons, and closed curves.
The objects do not have to be simply connected.

New in version 0.3.

Parameters

• filename (str) – Path to the SVG, DXF, or WKT/WKB file.

• min_x (float, optional (default: -5000.)) – Position of the leftmost coordinate of the shape’s
exterior, in unit.

• max_x (float, optional (default: 5000.)) – Position of the rightmost coordinate of the shape’s
exterior, in unit.

• unit (str, optional (default: ‘um’)) – Unit of the positions, among micrometers (‘um’),
milimeters (‘mm’), centimeters (‘cm’), decimeters (‘dm’), or meters (‘m’).

• parent (nngt.Graph or subclass, optional (default: None)) – Assign a parent graph if
working with NNGT.

• interpolate_curve (int, optional (default: 50)) – Number of points by which a curve should
be interpolated into segments.

Returns culture (Shape object) – Shape, vertically centred around zero, such that 𝑚𝑖𝑛(𝑦) +
𝑚𝑎𝑥(𝑦) = 0.

nngt.geometry.plot_shape(shape, axis=None, m=”, mc=’#999999’, fc=’#8888ff’, ec=’#444444’,
alpha=0.5, brightness=’height’, show_contour=True, show=True,
**kwargs)

Plot a shape (you should set the axis aspect to 1 to respect the proportions).

Parameters

• shape (Shape) – Shape to plot.

• axis (matplotlib.axes.Axes instance, optional (default: None)) – Axis on which the
shape should be plotted. By default, a new figure is created.

• m (str, optional (default: invisible)) – Marker to plot the shape’s vertices, matplotlib syntax.

• mc (str, optional (default: “#999999”)) – Color of the markers.

• fc (str, optional (default: “#8888ff”)) – Color of the shape’s interior.

2.2. Intro & user manual 151

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

NNGT Documentation, Release 2.3.0

• ec (str, optional (default: “#444444”)) – Color of the shape’s edges.

• alpha (float, optional (default: 0.5)) – Opacity of the shape’s interior.

• brightness (str, optional (default: height)) – Show how different other areas are from the
‘default_area’ (lower values are darker, higher values are lighter). Difference can concern
the ‘height’, or any of the properties of the Area objects.

• show_contour (bool, optional (default: True)) – Whether the shapes should be drawn with
a contour.

• show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

• **kwargs (keywords arguments for matplotlib.patches.PathPatch)

Lib module

Tools for the other modules.

Warning: These tools have been designed primarily for internal use throughout the library and often work only
in very specific situations (e.g. find_idx_nearest() works only on sorted arrays), so make sure you read
their doc carefully before using them.

Content

nngt.lib.InvalidArgument Error raised when an argument is invalid.
nngt.lib.delta_distrib([graph, elist, num,
. . .])

Delta distribution for edge attributes.

nngt.lib.find_idx_nearest(array, values) Find the indices of the nearest elements of values in a
sorted array.

nngt.lib.gaussian_distrib(graph[, elist,
. . .])

Gaussian distribution for edge attributes.

nngt.lib.is_integer(obj) Return whether the object is an integer
nngt.lib.is_iterable(obj) Return whether the object is iterable
nngt.lib.lin_correlated_distrib(graph[,
. . .])
nngt.lib.log_correlated_distrib(graph[,
. . .])
nngt.lib.lognormal_distrib(graph[, elist,
. . .])

Lognormal distribution for edge attributes.

nngt.lib.nonstring_container(obj) Returns true for any iterable which is not a string or byte
sequence.

nngt.lib.uniform_distrib(graph[, elist, . . .]) Uniform distribution for edge attributes.

Details

class nngt.lib.InvalidArgument
Error raised when an argument is invalid.

nngt.lib.delta_distrib(graph=None, elist=None, num=None, value=1.0, **kwargs)
Delta distribution for edge attributes.

152 Chapter 2. The docs

https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch

NNGT Documentation, Release 2.3.0

Parameters

• graph (Graph or subclass) – Graph for which an edge attribute will be generated.

• elist (list of edges, optional (default: all edges)) – Generate values for only a subset of
edges.

• value (float, optional (default: 1.)) – Value of the delta distribution.

• Returns (numpy.ndarray) – Attribute value for each edge in graph.

nngt.lib.find_idx_nearest(array, values)
Find the indices of the nearest elements of values in a sorted array.

Warning: Both array and values should be numpy.array objects and array MUST be sorted in increas-
ing order.

Parameters

• array (reference list or np.ndarray)

• values (double, list or array of values to find in array)

Returns idx (int or array representing the index of the closest value in array)

nngt.lib.gaussian_distrib(graph, elist=None, num=None, avg=None, std=None, **kwargs)
Gaussian distribution for edge attributes.

Parameters

• graph (Graph or subclass) – Graph for which an edge attribute will be generated.

• elist (list of edges, optional (default: all edges)) – Generate values for only a subset of
edges.

• avg (float, optional (default: 0.)) – Average of the Gaussian distribution.

• std (float, optional (default: 1.5)) – Standard deviation of the Gaussian distribution.

• Returns (numpy.ndarray) – Attribute value for each edge in graph.

nngt.lib.is_integer(obj)
Return whether the object is an integer

nngt.lib.is_iterable(obj)
Return whether the object is iterable

nngt.lib.lin_correlated_distrib(graph, elist=None, correl_attribute=’betweenness’,
noise_scale=None, lower=None, upper=None, slope=None,
offset=0.0, last_edges=False, **kwargs)

nngt.lib.log_correlated_distrib(graph, elist=None, correl_attribute=’betweenness’,
noise_scale=None, lower=0.0, upper=2.0, **kwargs)

nngt.lib.lognormal_distrib(graph, elist=None, num=None, position=None, scale=None,
**kwargs)

Lognormal distribution for edge attributes.

Parameters

• graph (Graph or subclass) – Graph for which an edge attribute will be generated.

• elist (list of edges, optional (default: all edges)) – Generate values for only a subset of
edges.

2.2. Intro & user manual 153

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

• position (float, optional (default: 0.)) – Average of the normal distribution (i.e. log of the
actual mean of the lognormal distribution).

• scale (float, optional (default: 1.5)) – Standard deviation of the normal distribution.

• Returns (numpy.ndarray) – Attribute value for each edge in graph.

nngt.lib.nonstring_container(obj)
Returns true for any iterable which is not a string or byte sequence.

nngt.lib.uniform_distrib(graph, elist=None, num=None, lower=None, upper=None, **kwargs)
Uniform distribution for edge attributes.

Parameters

• graph (Graph or subclass) – Graph for which an edge attribute will be generated.

• elist (list of edges, optional (default: all edges)) – Generate values for only a subset of
edges.

• lower (float, optional (default: 0.)) – Min value of the uniform distribution.

• upper (float, optional (default: 1.5)) – Max value of the uniform distribution.

• Returns (numpy.ndarray) – Attribute value for each edge in graph.

Plot module

Functions for plotting graphs and graph properties.

The following features are provided:

• basic graph plotting

• plotting the distribution of some attribute over the graph

• animation of some recorded activity

Content

nngt.plot.Animation2d(source, multimeter[,
. . .])

Class to plot the raster plot, firing-rate, and average tra-
jectory in a 2D phase-space for a network activity.

nngt.plot.AnimationNetwork(source, net-
work)

Class to plot the raster plot, firing-rate, and space-
embedded spiking activity (neurons on the graph rep-
resentation flash when spiking) in time.

nngt.plot.betweenness_distribution(network)Plotting the betweenness distribution of a graph.
nngt.plot.chord_diagram(network[, weights,
. . .])

Plot a chord diagram.

nngt.plot.compare_population_attributes(. . .)Compare node attributes between two sets of nodes.
nngt.plot.correlation_to_attribute(network,
. . .)

For each node plot the value of reference_attributes
against each of the other_attributes to check for corre-
lations.

nngt.plot.degree_distribution(network[,
. . .])

Plotting the degree distribution of a graph.

nngt.plot.draw_network(network[, nsize, . . .]) Draw a given graph/network.
nngt.plot.edge_attributes_distribution(. . .)Return node attributes for a set of nodes.

Continued on next page

154 Chapter 2. The docs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NNGT Documentation, Release 2.3.0

Table 12 – continued from previous page
nngt.plot.hive_plot(network, radial[, axes,
. . .])

Draw a hive plot of the graph.

nngt.plot.library_draw(network[, nsize, . . .]) Draw a given Graph using the underlying library’s
drawing functions.

nngt.plot.node_attributes_distribution(. . .)Return node attributes for a set of nodes.
nngt.plot.palette_continuous([numbers])
nngt.plot.palette_discrete([numbers])

Details

class nngt.plot.Animation2d(source, multimeter, start=0.0, timewindow=None, trace=5.0,
x=’time’, y=’V_m’, sort_neurons=None, network=None, inter-
val=50, vector_field=False, **kwargs)

Class to plot the raster plot, firing-rate, and average trajectory in a 2D phase-space for a network activity.

Generate a SubplotAnimation instance to plot a network activity.

Parameters

• source (tuple) – NEST gid of the ‘‘spike_detector‘‘(s) which recorded the network.

• multimeter (tuple) – NEST gid of the ‘‘multimeter‘‘(s) which recorded the network.

• timewindow (double, optional (default: None)) – Time window which will be shown for
the spikes and self.second.

• trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed
in red.

• x (str, optional (default: “time”)) – Name of the x-axis variable (must be either “time” or
the name of a NEST recordable in the multimeter).

• y (str, optional (default: “V_m”)) – Name of the y-axis variable (must be either “time” or
the name of a NEST recordable in the multimeter).

• vector_field (bool, optional (default: False)) – Whether the 𝑥̇ and 𝑦̇ arrows should be added
to phase space. Requires additional ‘dotx’ and ‘doty’ arguments which are user defined
functions to compute the derivatives of x and x in time. These functions take 3 parameters,
which are x, y, and time_dependent, where the last parameter is a list of doubles associated
to recordables from the neuron model (see example for details). These recordables must be
declared in a time_dependent parameter.

• sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological prop-
erty (“in-degree”, “out-degree”, “total-degree” or “betweenness”), an activity-related prop-
erty (“firing_rate”, ‘B2’) or a user-defined list of sorted neuron ids. Sorting is performed by
increasing value of the sort_neurons property from bottom to top inside each group.

• **kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’,
‘num_xarrows’, ‘num_yarrows’, ‘dotx’, ‘doty’, ‘time_dependent’, ‘recordables’, ‘ar-
row_scale’.

class nngt.plot.AnimationNetwork(source, network, resolution=1.0, start=0.0,
timewindow=None, trace=5.0, show_spikes=False,
sort_neurons=None, decimate_connections=False, inter-
val=50, repeat=True, resting_size=None, active_size=None,
**kwargs)

Class to plot the raster plot, firing-rate, and space-embedded spiking activity (neurons on the graph representa-
tion flash when spiking) in time.

2.2. Intro & user manual 155

NNGT Documentation, Release 2.3.0

Generate a SubplotAnimation instance to plot a network activity.

Parameters

• source (tuple) – NEST gid of the ‘‘spike_detector‘‘(s) which recorded the network.

• network (SpatialNetwork) – Network embedded in space to plot the actvity of the
neurons in space.

• resolution (double, optional (default: None)) – Time resolution of the animation.

• timewindow (double, optional (default: None)) – Time window which will be shown for
the spikes and self.second.

• trace (double, optional (default: 5.)) – Interval of time (ms) over which the data is overlayed
in red.

• show_spikes (bool, optional (default: True)) – Whether a spike trajectory should be dis-
played on the network.

• sort_neurons (str or list, optional (default: None)) – Sort neurons using a topological prop-
erty (“in-degree”, “out-degree”, “total-degree” or “betweenness”), an activity-related prop-
erty (“firing_rate”, ‘B2’) or a user-defined list of sorted neuron ids. Sorting is performed by
increasing value of the sort_neurons property from bottom to top inside each group.

• **kwargs (dict, optional (default: {})) – Optional arguments such as ‘make_rate’, or all
arguments for the nngt.plot.draw_network().

nngt.plot.betweenness_distribution(network, btype=’both’, weights=False, nodes=None,
logx=False, logy=False, num_nbins=None,
num_ebins=None, axes=None, colors=None,
norm=False, legend_location=’right’, show=True,
**kwargs)

Plotting the betweenness distribution of a graph.

Parameters

• graph (Graph or subclass) – the graph to analyze.

• btype (string, optional (default: “both”)) – type of betweenness to display (“node”, “edge”
or “both”)

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution
to a set of nodes (taken into account only for the node attribute).

• logx (bool, optional (default: False)) – use log-spaced bins.

• logy (bool, optional (default: False)) – use logscale for the degree count.

• num_nbins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the
node distribution. Defaults to max(num_nodes / 50., 10).

• num_ebins (int or ‘auto’, optional (default: None):) – Number of bins used to sample the
edge distribution. Defaults to max(num_edges / 500., 10) (‘auto’ method will be slow).

• axes (list of matplotlib.axis.Axis, optional (default: new ones)) – Axes which
should be used to plot the histogram, if None, new ones are created.

• legend_location (str, optional (default; ‘right’)) – Location of the legend.

156 Chapter 2. The docs

https://matplotlib.org/api/axis_api.html#matplotlib.axis.Axis

NNGT Documentation, Release 2.3.0

• show (bool, optional (default: True)) – Show the Figure right away if True, else keep it
warm for later use.

nngt.plot.chord_diagram(network, weights=True, names=None, order=None, width=0.1, pad=2.0,
gap=0.03, chordwidth=0.7, axis=None, colors=None, cmap=None, al-
pha=0.7, use_gradient=False, show=False, **kwargs)

Plot a chord diagram.

Parameters

• network (a nngt.Graph object) – Network used to plot the chord diagram.

• weights (bool or str, optional (default: ‘weight’ attribute)) – Weights used to plot the con-
nections.

• names (str or list of str, optional (default: no names)) – Names of the nodes that will be
displayed, either a node attribute or a custom list (must be ordered following the nodes’
indices).

• order (list, optional (default: order of the matrix entries)) – Order in which the arcs should
be placed around the trigonometric circle.

• width (float, optional (default: 0.1)) – Width/thickness of the ideogram arc.

• pad (float, optional (default: 2)) – Distance between two neighboring ideogram arcs. Unit:
degree.

• gap (float, optional (default: 0.03)) – Distance between the arc and the beginning of the
cord.

• chordwidth (float, optional (default: 0.7)) – Position of the control points for the chords,
controlling their shape.

• axis (matplotlib axis, optional (default: new axis)) – Matplotlib axis where the plot should
be drawn.

• colors (list, optional (default: from cmap)) – List of user defined colors or floats.

• cmap (str or colormap object (default: viridis)) – Colormap to use.

• alpha (float in [0, 1], optional (default: 0.7)) – Opacity of the chord diagram.

• use_gradient (bool, optional (default: False)) – Whether a gradient should be use so that
chord extremities have the same color as the arc they belong to.

• **kwargs (keyword arguments) – Available kwargs are “fontsize” and “sort” (either “size”
or “distance”), “zero_entry_size” (in degrees, default: 0.5), “rotate_names” (a bool or list
of bools) to rotate (some of) the names by 90°.

nngt.plot.compare_population_attributes(network, attributes, nodes=None, refer-
ence_nodes=None, num_bins=’auto’, refer-
ence_color=’gray’, title=None, logx=False,
logy=False, show=True, **kwargs)

Compare node attributes between two sets of nodes. Since number of nodes can vary, normalized distributions
are used.

Parameters

• network (Graph) – The graph where the nodes belong.

• attributes (str or list) – Attributes which should be returned, among: * “betweenness”
* “clustering” * “in-degree”, “out-degree”, “total-degree” * “subgraph_centrality” * “b2”
(requires NEST) * “firing_rate” (requires NEST)

2.2. Intro & user manual 157

NNGT Documentation, Release 2.3.0

• nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be re-
turned.

• reference_nodes (list, optional (default: all nodes)) – Reference nodes for which the at-
tributes should be returned in order to compare with nodes.

• num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions.
If only one int is provided, it is used for all attributes, otherwize a list containing one int per
attribute in attributes is required. Defaults to unsupervised Bayesian blocks method.

• logx (bool or list, optional (default: False)) – Use log-spaced bins.

• logy (bool or list, optional (default: False)) – use logscale for the node count.

nngt.plot.correlation_to_attribute(network, reference_attribute, other_attributes, at-
tribute_type=’node’, nodes=None, edges=None,
fig=None, title=None, show=True)

For each node plot the value of reference_attributes against each of the other_attributes to check for correlations.

Changed in version 2.0: Added fig argument.

Parameters

• network (Graph) – The graph where the nodes belong.

• reference_attribute (str or array-like) – Attribute which should serve as reference, among:

– “betweenness”

– “clustering”

– “in-degree”, “out-degree”, “total-degree”

– “in-strength”, “out-strength”, “total-strength”

– “subgraph_centrality”

– “b2” (requires NEST)

– “firing_rate” (requires NEST)

– a custom array of values, in which case one entry per node in nodes is required.

• other_attributes (str or list) – Attributes that will be compared to the reference.

• attribute_type (str, optional (default: ‘node’)) – Whether we are dealing with ‘node’ or
‘edge’ attributes

• nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be re-
turned.

• edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

• fig (matplotlib.figure.Figure, optional (default: new Figure)) – Figure to which
the plot should be added.

• title (str, optional (default: automatic).) – Custom title, use “” to remove the automatic title.

• show (bool, optional (default: True)) – Whether the plot should be displayed immediately.

nngt.plot.degree_distribution(network, deg_type=’total’, nodes=None, num_bins=’doane’,
weights=False, logx=False, logy=False, axis=None,
axis_num=None, colors=None, norm=False, show=True,
title=None, **kwargs)

Plotting the degree distribution of a graph.

Parameters

158 Chapter 2. The docs

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure

NNGT Documentation, Release 2.3.0

• graph (Graph or subclass) – The graph to analyze.

• deg_type (string or N-tuple, optional (default: “total”)) – Type of degree to consider (“in”,
“out”, or “total”)

• nodes (list or numpy.array of ints, optional (default: all nodes)) – Restrict the distribution
to a set of nodes.

• num_bins (str, int or N-tuple, optional (default: ‘doane’):) – Number of bins used to sample
the distribution. Defaults to ‘doane’. Use to ‘auto’ for numpy automatic selection or ‘bayes’
for unsupervised Bayesian blocks method.

• weights (bool or str, optional (default: binary edges)) – Whether edge weights should be
considered; if None or False then use binary edges; if True, uses the ‘weight’ edge
attribute, otherwise uses any valid edge attribute required.

• logx (bool, optional (default: False)) – Use log-spaced bins.

• logy (bool, optional (default: False)) – Use logscale for the degree count.

• axis (matplotlib.axes.Axes instance, optional (default: new one)) – Axis which
should be used to plot the histogram, if None, a new one is created.

• show (bool, optional (default: True)) – Show the Figure right away if True, else keep it
warm for later use.

• **kwargs (keyword arguments for matplotlib.axes.Axes.bar().)

nngt.plot.draw_network(network, nsize=’total-degree’, ncolor=’group’, nshape=’o’, nbor-
der_color=’k’, nborder_width=0.5, esize=1.0, ecolor=’k’, ealpha=0.5,
max_nsize=None, max_esize=2.0, curved_edges=False, threshold=0.5,
decimate_connections=None, spatial=True, restrict_sources=None,
restrict_targets=None, restrict_nodes=None, restrict_edges=None,
show_environment=True, fast=False, size=(600, 600), xlims=None,
ylims=None, dpi=75, axis=None, colorbar=False, cb_label=None, lay-
out=None, show=False, **kwargs)

Draw a given graph/network.

Parameters

• network (Graph or subclass) – The graph/network to plot.

• nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes
as a percentage of the canvas length. Otherwise, it can be a string that correlates the size to
a node attribute among “in/out/total-degree”, “in/out/total-strength”, or “betweenness”.

• ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a
float in [0, 1], position of the color in the current palette, otherwise a string that correlates
the color to a node attribute among “in/out/total-degree”, “betweenness” or “group”.

• nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see
Matplotlib markers). When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

• nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border
using predefined Matplotlib colors). or floats in [0, 1] defining the position in the palette.

• nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in
percent of canvas size.

• esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of
canvas length. Available string values are “betweenness” and “weight”.

2.2. Intro & user manual 159

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers
http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors

NNGT Documentation, Release 2.3.0

• ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”,
edges color will depend on the source and target groups, i.e. only edges from and toward
same groups will have the same color.

• max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this
normalizes the edge width between 0. and max_esize.

• threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

• decimate_connections (int, optional (default: keep all connections)) – Plot only one con-
nection every decimate_connections. Use -1 to hide all edges.

• spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

• restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from
a restricted set of source nodes.

• restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a
restricted set of target nodes.

• restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset
of nodes.

• restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

• show_environment (bool, optional (default: True)) – Plot the environment if the graph is
spatial.

• fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. Zooming on
the drawing made using this method leaves the size of the nodes and edges unchanged, it is
therefore not recommended when size consistency matters, e.g. for some spatial represen-
tations.

• size (tuple of ints, optional (default: (600,600))) – (width, height) tuple for the canvas size
(in px).

• dpi (int, optional (default: 75)) – Resolution (dot per inch).

• axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will
be plotted.

• colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node
colors or not.

• cb_label (str, optional (default: None)) – A label for the colorbar.

• layout (str, optional (default: random or spatial positions)) – Name of a standard layout
to structure the network. Available layouts are: “circular” or “random”. If no layout is
provided and the network is spatial, then node positions will be used by default.

• show (bool, optional (default: True)) – Display the plot immediately.

• **kwargs (dict) – Optional keyword arguments including node_cmap to set the nodes col-
ormap (default is “magma” for continuous variables and “Set1” for groups) and “title” to
add a title to the plot.

nngt.plot.edge_attributes_distribution(network, attributes, edges=None, num_bins=’auto’,
logx=False, logy=False, norm=False, title=None,
colors=None, show=True, **kwargs)

Return node attributes for a set of nodes.

New in version 1.0.3.

Parameters

160 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• network (Graph) – The graph where the nodes belong.

• attributes (str or list) – Attributes which should be returned (e.g. “betweenness”, “delay”,
“weight”).

• edges (list, optional (default: all edges)) – Edges for which the attributes should be returned.

• num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions.
If only one int is provided, it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised Bayesian blocks method.

• logx (bool or list, optional (default: False)) – Use log-spaced bins.

• logy (bool or list, optional (default: False)) – use logscale for the node count.

nngt.plot.hive_plot(network, radial, axes=None, axes_bins=None, axes_range=None,
axes_angles=None, axes_labels=None, axes_units=None, in-
tra_connections=True, highlight_nodes=None, highlight_edges=None,
nsize=None, esize=None, max_nsize=10, max_esize=1, axes_colors=None,
edge_colors=None, edge_alpha=0.05, nborder_color=’k’, nborder_width=0.2,
show_names=True, show_circles=False, axis=None, tight=True, show=False)

Draw a hive plot of the graph.

Note: For directed networks, the direction of intra-axis connections is counter-clockwise. For inter-axes
connections, the default edge color is closest to the color of the source group (i.e. from a red group to a blue
group, edge color will be a reddish violet , while from blue to red, it will be a blueish violet).

Parameters

• network (Graph) – Graph to plot.

• radial (str, list of str or array-like) – Values that will be used to place the nodes on the
axes. Either one identical property is used for all axes (traditional hive plot) or one radial
coordinate per axis is used (custom hive plot). If radial is a string or a list of strings, then
these must correspond to the names of node attributes stored in the graph.

• axes (str, or list of str, optional (default: one per radial coordinate)) – Name of the at-
tribute(s) that will be used to make each of the axes (i.e. each group of nodes). This can be
either “groups” if the graph has a structure or is a Network, a list of (Meta)Group names,
or any (list of) node attribute(s). If a single node attribute is used, axes_bins must be pro-
vided to make one axis for each range of values. If there are multiple radial coordinates,
then leaving axes blanck will plot all nodes on each of the axes (one per radial coordinate).

• axes_bins (int or array-like, optional (default: all nodes on each axis)) – Required if there
is a single radial coordinate and a single axis entry: provides the bins that will be used to
separate the nodes into groups (one per axis). For N axes, there must therefore be N + 1
entries in axes_bins, or axis_bins must be equal to N, in which case the nodes are separated
into N evenly sized bins.

• axes_units (str, optional) – Units used to scale the axes. Either “native” to have them scaled
between the minimal and maximal radial coordinates among all axes, “rank”, to use the
min and max ranks of the nodes on all axes, or “normed”, to have each axis go from zero
(minimal local radial coordinate) to one (maximal local radial coordinate). “native” is the
default if there is a single radial coordinate, “normed” is the default for multiple coordinates.

• axes_angles (list of angles, optional (default: automatic)) – Angles for each of the axes,
by increasing degree. If intra_connections is True, then angles of duplicate axes must be
adjacent, e.g. [a1, a1bis, a2, a2bis, a3, a3bis].

2.2. Intro & user manual 161

NNGT Documentation, Release 2.3.0

• axes_labels (str or list of str, optional) – Label of each axis. For binned axes, it can be
automatically formatted via the three entries {name}, {start}, {stop}. E.g. “{name}
in [{start}, {stop}]” would give “CC in [0, 0.2]” for a first axis and “CC in [0.2, 0.4]” for a
second axis.

• intra_connections (bool, optional (default: True)) – Show connections between nodes be-
longing to the same axis. If true, then each axis is duplicated to display intra-axis connec-
tions.

• highlight_nodes (list of nodes, optional (default: all nodes)) – Highlight a subset of nodes
and their connections, all other nodes and connections will be gray.

• highlight_edges (list of edges, optional (default: all edges)) – Highlight a subset of edges;
all other connections will be gray.

• nsize (float, str, or array-like, optional (default: automatic)) – Size of the nodes on the axes.
Either a fixed size, the name of a node attribute, or a list of user-defined values.

• esize (float or str, optional (default: 1)) – Size of the edges. Either a fixed size or the name
of an edge attribute.

• max_nsize (float, optional (default: 10)) – Maximum node size if nsize is an attribute or a
list of user-defined values.

• max_esize (float, optional (default: 1)) – Maximum edge size if esize is an attribute.

• axes_colors (valid matplotlib color/colormap, optional (default: Set1)) – Color associated
to each axis.

• nborder_color (matplotlib color, optional (default: “k”)) – Color of the node’s border. or
floats in [0, 1] defining the position in the palette.

• nborder_width (float, optional (default: 0.2)) – Width of the border.

• edge_colors (valid matplotlib color/colormap, optional (default: auto)) – Color of the
edges. By default it is the intermediate color between two axes colors. To provide custom
colors, they must be provided as a dictionnary of axes edges {(0, 0): "r", (0,
1): "g", (1, 0): "b"} with default color being black.

• edge_alpha (float, optional (default: 0.05)) – Edge opacity.

• show_names (bool, optional (default: True)) – Show axes names and properties.

• show_circles (bool, optional (default: False)) – Show the circles associated to the maximum
value of each axis.

• axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will
be plotted.

• tight (bool, optional (default: True)) – Set figure layout to tight (set to False if plotting
multiple axes on a single figure).

• show (bool, optional (default: True)) – Display the plot immediately.

nngt.plot.library_draw(network, nsize=’total-degree’, ncolor=’group’, nshape=’o’, nbor-
der_color=’k’, nborder_width=0.5, esize=1.0, ecolor=’k’, ealpha=0.5,
max_nsize=5.0, max_esize=2.0, curved_edges=False, threshold=0.5,
decimate_connections=None, spatial=True, restrict_sources=None,
restrict_targets=None, restrict_nodes=None, restrict_edges=None,
show_environment=True, size=(600, 600), xlims=None, ylims=None,
dpi=75, axis=None, colorbar=False, show_labels=False, layout=None,
show=False, **kwargs)

Draw a given Graph using the underlying library’s drawing functions.

162 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

New in version 2.0.

Warning: When using igraph or graph-tool, if you want to use the axis argument, then you must first switch
the matplotlib backend to its cairo version using e.g. plt.switch_backend("Qt5Cairo") if your
normal backend is Qt5 (“Qt5Agg”).

Parameters

• network (Graph or subclass) – The graph/network to plot.

• nsize (float, array of float or string, optional (default: “total-degree”)) – Size of the nodes
as a percentage of the canvas length. Otherwise, it can be a string that correlates the size to
a node attribute among “in/out/total-degree”, or “betweenness”.

• ncolor (float, array of floats or string, optional (default: 0.5)) – Color of the nodes; if a
float in [0, 1], position of the color in the current palette, otherwise a string that correlates
the color to a node attribute among “in/out/total-degree”, “betweenness” or “group”.

• nshape (char, array of chars, or groups, optional (default: “o”)) – Shape of the nodes (see
Matplotlib markers). When using groups, they must be pairwise disjoint; markers will be
selected iteratively from the matplotlib default markers.

• nborder_color (char, float or array, optional (default: “k”)) – Color of the node’s border
using predefined Matplotlib colors). or floats in [0, 1] defining the position in the palette.

• nborder_width (float or array of floats, optional (default: 0.5)) – Width of the border in
percent of canvas size.

• esize (float, str, or array of floats, optional (default: 0.5)) – Width of the edges in percent of
canvas length. Available string values are “betweenness” and “weight”.

• ecolor (str, char, float or array, optional (default: “k”)) – Edge color. If ecolor=”groups”,
edges color will depend on the source and target groups, i.e. only edges from and toward
same groups will have the same color.

• max_esize (float, optional (default: 5.)) – If a custom property is entered as esize, this
normalizes the edge width between 0. and max_esize.

• threshold (float, optional (default: 0.5)) – Size under which edges are not plotted.

• decimate_connections (int, optional (default: keep all connections)) – Plot only one con-
nection every decimate_connections. Use -1 to hide all edges.

• spatial (bool, optional (default: True)) – If True, use the neurons’ positions to draw them.

• restrict_sources (str, group, or list, optional (default: all)) – Only draw edges starting from
a restricted set of source nodes.

• restrict_targets (str, group, or list, optional (default: all)) – Only draw edges ending on a
restricted set of target nodes.

• restrict_nodes (str, group, or list, optional (default: plot all nodes)) – Only draw a subset
of nodes.

• restrict_edges (list of edges, optional (default: all)) – Only draw a subset of edges.

• show_environment (bool, optional (default: True)) – Plot the environment if the graph is
spatial.

2.2. Intro & user manual 163

http://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers
http://matplotlib.org/api/colors_api.html?highlight=color#module-matplotlib.colors

NNGT Documentation, Release 2.3.0

• fast (bool, optional (default: False)) – Use a faster algorithm to plot the edges. This method
leads to less pretty plots and zooming on the graph will make the edges start or ending in
places that will differ more or less strongly from the actual node positions.

• size (tuple of ints, optional (default: (600, 600))) – (width, height) tuple for the canvas size
(in px).

• dpi (int, optional (default: 75)) – Resolution (dot per inch).

• colorbar (bool, optional (default: False)) – Whether to display a colorbar for the node
colors or not.

• axis (matplotlib axis, optional (default: create new axis)) – Axis on which the network will
be plotted.

• layout (str, optional (default: library-dependent or spatial positions)) – Name of a standard
layout to structure the network. Available layouts are: “circular”, “spring-block”, “random”.
If no layout is provided and the network is spatial, then node positions will be used by
default.

• show (bool, optional (default: True)) – Display the plot immediately.

• **kwargs (dict) – Optional keyword arguments including node_cmap to set the nodes col-
ormap (default is “magma” for continuous variables and “Set1” for groups) and the boolean
simple_nodes to make node plotting faster.

nngt.plot.node_attributes_distribution(network, attributes, nodes=None, num_bins=’auto’,
logx=False, logy=False, norm=False, title=None,
colors=None, show=True, **kwargs)

Return node attributes for a set of nodes.

Parameters

• network (Graph) – The graph where the nodes belong.

• attributes (str or list) – Attributes which should be returned, among: * “between-
ness” * “clustering” * “closeness” * “in-degree”, “out-degree”, “total-degree” * “sub-
graph_centrality” * “b2” (requires NEST) * “firing_rate” (requires NEST)

• nodes (list, optional (default: all nodes)) – Nodes for which the attributes should be re-
turned.

• num_bins (int or list, optional (default: ‘auto’)) – Number of bins to plot the distributions.
If only one int is provided, it is used for all attributes, otherwise a list containing one int per
attribute in attributes is required. Defaults to unsupervised Bayesian blocks method.

• logx (bool or list, optional (default: False)) – Use log-spaced bins.

• logy (bool or list, optional (default: False)) – use logscale for the node count.

nngt.plot.palette_continuous(numbers=None)

nngt.plot.palette_discrete(numbers=None)

Known bugs

• erratic key release issue with animation of spiking networks,

• see the issue tracker for an updated list.

164 Chapter 2. The docs

https://github.com/Silmathoron/NNGT/issues

NNGT Documentation, Release 2.3.0

2.3 Tutorial

This page provides a step-by-step walkthrough of the basic features of NNGT.

To run this tutorial, it is recommended to use either IPython or Jupyter, since they will provide automatic autocomple-
tion of the various functions, as well as easy access to the docstring help.

First, import the NNGT package:

>>> import nngt

Then, you will be able to use the help from IPython by typing, for instance:

>>> nngt.Graph?

In Jupyter, the docstring can be viewed using Shift + Tab.

The source file for the tutorial can be found here: doc/examples/introductory_tutorial.py.

Note: For a list of example files, see the ‘examples’ directory on GitHub.

For specific tutorials see also:

• Graph generation

• Parallelism

• Groups, structures, and neuronal populations

• Interacting with the NEST simulator

• Activity analysis

• Properties of graph components

Content:

• NNGT properties and configuration

• The Graph object

– Basic functions

– Node and edge attributes

• Generating and analyzing more complex networks

• Using random numbers

• Structuring nodes: Group and Structure

• The same with neurons: NeuralGroup, NeuralPop

• Real neuronal networks and NEST interaction: the Network

• Underlying graph objects and libraries

– Example using graph-tool

– Example using igraph

– Example using networkx

2.3. Tutorial 165

http://ipython.org/
https://jupyter.org/
https://git.sr.ht/~tfardet/NNGT/tree/main/item/doc/examples/introductory_tutorial.py
https://github.com/Silmathoron/NNGT/tree/master/doc/examples

NNGT Documentation, Release 2.3.0

2.3.1 NNGT properties and configuration

Upon loading, NNGT will display its current configuration, e.g.:

NNGT loaded

Graph library: igraph 0.7.1
Multithreading: True (1 thread)
MPI: False
Plotting: True
NEST support: NEST 2.14.0
Shapely: 1.6.1
SVG support: True
DXF support: False
Database: False

Let’s walk through this configuration:

• the backend used here is igraph, so all graph-theoretical tools will be derived from those of the igraph library
and we’re using version 0.7.1.

• Multithreaded algorithms will be used, currently running on only one thread (see Parallelism for more details)

• MPI algorithms are not in use (you cannot use both MT and MPI at the same time)

• Plotting is available because the matplotlib library is installed

• NEST is installed on the machine (version 2.14), so NNGT automatically loaded it

• Shapely is also available, which allows the creation of complex structures for space-embedded networks (see
Geometry module for more details)

• Importing SVG files to generate spatial structures is possible, meaning that the svg.path module is installed.

• Importing DXF files to generate spatial structures is not possible because the dxfgrabber module is not installed.

• Using the database is not possible because peewee is not installed.

In general, most of NNGT options can be found/set through the get_config()/set_config() functions, or
made permanent by modifying the ~/.nngt/nngt.conf configuration file.

2.3.2 The Graph object

Basic functions

Let’s create an empty Graph:

g = nngt.Graph()

We can then add some nodes to it

g.new_node(10) # create nodes 0, 1, ... to 9
print(g.node_nb(), '\n') # returns 10

And create edges between these nodes:

166 Chapter 2. The docs

http://igraph.org/
https://matplotlib.org/
http://toblerity.org/shapely/manual.html
https://pypi.python.org/pypi/svg.path
https://pythonhosted.org/dxfgrabber/
http://docs.peewee-orm.com/en/latest/

NNGT Documentation, Release 2.3.0

g.new_edge(1, 4) # create one connection going from 1 to 4
print(g.edge_nb()) # returns 1
g.new_edges([(0, 3), (5, 9), (9, 3)])
print(g.edge_nb(), '\n') # returns 4

Node and edge attributes

Adding a node with specific attributes:

g2 = nngt.Graph()

add a new node with attributes
attributes = {

'size': 2.,
'color': 'blue',
'a': 5,
'blob': []

}

attribute_types = {
'size': 'double',
'color': 'string',
'a': 'int',
'blob': 'object'

}

g2.new_node(attributes=attributes, value_types=attribute_types)
print(g2.node_attributes, '\n')

By default, nodes that are added without specifying attribute values will get their attributes filled with default values
which depend on the type:

• NaN for “double”

• 0 for “int”

• "" for “string”

• None for “object”

g2.new_node(2)
for a double attribute like 'size', default value is NaN
print(g2.get_node_attributes(name="size"))
for a string attribute like 'color', default value is ""
print(g2.get_node_attributes(name="color"))
for an int attribute like 'a', default value is 0
print(g2.get_node_attributes(name='a'))
for an object attribute like 'blob', default value is None
print(g2.get_node_attributes(name='blob'), '\n')

Adding several nodes and attributes at the same time:

g2.new_node(3, attributes={'size': [4., 5., 1.], 'color': ['r', 'g', 'b']},
value_types={'size': 'double', 'color': 'string'})

print(g2.node_attributes['size'])
print(g2.node_attributes['color'], '\n')

Attributes can also be created afterwards:

2.3. Tutorial 167

NNGT Documentation, Release 2.3.0

import numpy as np
g3 = nngt.Graph(nodes=100)
g3.new_node_attribute('size', 'double',

values=np.random.uniform(0, 20, 100))
print(g3.node_attributes['size'][:5], '\n')

All the previous techniques can also be used with new_edge() or new_edges(), and
new_edge_attribute(). Note that attributes can also be set selectively:

edges = g3.new_edges(np.random.randint(0, 50, (10, 2)), ignore_invalid=True)
g3.new_edge_attribute('rank', 'int')
g3.set_edge_attribute('rank', val=2, edges=edges[:3, :])
print(g3.edge_attributes['rank'], '\n')

2.3.3 Generating and analyzing more complex networks

NNGT provides a whole set of methods to connect nodes in specific fashions inside a graph. These methods are
present in the nngt.generation module, and the network properties can then be plotted and analyzed via the
tools present in the nngt.plot and nngt.analysis modules.

from nngt import generation as ng
from nngt import analysis as na
from nngt import plot as nplt

NNGT implements some fast generation tools to create several of the standard networks, such as Erdős-Rényi:

g = ng.erdos_renyi(nodes=1000, avg_deg=100)

if nngt.get_config("with_plot"):
nplt.degree_distribution(g, ('in', 'total'), show=False)

print("Clustering ER: {}".format(na.global_clustering(g)))

More heterogeneous networks, with scale-free degree distribution (but no correlations like in Barabasi-Albert networks
and user-defined exponents) are also implemented:

g = ng.random_scale_free(1.8, 3.2, nodes=1000, avg_deg=100)

if nngt.get_config("with_plot"):
nplt.degree_distribution(g, ('in', 'out'), num_bins=30, logx=True,

logy=True, show=True)

print("Clustering SF: {}".format(na.global_clustering(g)))

For more details, see the full page on Graph generation.

2.3.4 Using random numbers

By default, NNGT uses the numpy random-number generators (RNGs) which are seeded automatically when numpy
is loaded.

However, you can seed the RNGs manually using the following command:

nngt.set_config("msd", 0)

168 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

which will seed the master seed to 0 (or any other value you enter). Once seeded manually, a NNGT script will always
give the same results provided the same number of thread is being used.

Indeed, when using multithreading, sub-RNGs are used (one per thread). By default, these RNGs are seeded from the
master seed as msd + n + 1 where n is the thread number, starting from zero. If needed, these sub-RNGs can also be
seeded manually using (for 4 threads)

nngt.set_config("seeds", [1, 2, 3, 4])

Warning: When using NEST, the simulator’s RNGs must be seeded separately using the NEST commands; see
the NEST user manual for details.

2.3.5 Structuring nodes: Group and Structure

The Group allows the creation of nodes that belong together. You can then make a complex Structure from these
groups and connect them with specific connectivities using the connect_groups() function.

''' ------------------------- #
Creating a structured graph
------------------------- '''

room1 = nngt.Group(25)
room2 = nngt.Group(50)
room3 = nngt.Group(40)
room4 = nngt.Group(35)

names = ["R1", "R2", "R3", "R4"]

struct = nngt.Structure.from_groups((room1, room2, room3, room4), names)

g = nngt.Graph(structure=struct)

for room in struct:
nngt.generation.connect_groups(g, room, room, "all_to_all")

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
avg_deg=10, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=20)

nngt.generation.connect_groups(g, room4, room3, "erdos_renyi", avg_deg=10)

if nngt.get_config("with_plot"):
chord diagram
sg = g.get_structure_graph()

nngt.plot.chord_diagram(sg, names="name", sort="distance",
use_gradient=True, show=True)

spring-block layout
nngt.plot.library_draw(g, node_cmap="viridis", show=True)

For more details, see the full page on Groups, structures, and neuronal populations.

2.3. Tutorial 169

http://www.nest-simulator.org/random-numbers/

NNGT Documentation, Release 2.3.0

2.3.6 The same with neurons: NeuralGroup, NeuralPop

The NeuralGroup allows the creation of nodes that belong together. You can then make a population from these
groups and connect them with specific connectivities using the connect_groups() function.

neuron_param={"tau_m": 20.},
name="fast_spiking_interneurons")

''' --------------------------- #
Creating neuronal populations
--------------------------- '''

making populations from scratch
pop = nngt.NeuralPop(with_models=False) # empty population
syn_spec = {

'default': {"model": "tsodyks2_synapse"}, # default connections
("pyramidal_cells", "pyramidal_cells"): {"U": 0.6} # change a parameter

}

nest_pop = NeuralPop.from_groups([pyr, fsi], syn_spec=syn_spec)

''' ------------------------------- #
Complex population and metagroups
------------------------------- '''

Let's model part of a cortical column with

For more details, see the full page on Groups, structures, and neuronal populations.

2.3.7 Real neuronal networks and NEST interaction: the Network

Besides connectivity, the main interest of the NeuralGroup is that you can pass it the biological properties that the
neurons belonging to this group will share.

Since we are using NEST, these properties are:

• the model’s name

• its non-default properties

• the synapses that the neurons have and their properties

• the type of the neurons (1 for excitatory or -1 for inhibitory)

''' Create groups with different parameters '''
adaptive spiking neurons
base_params = {

'E_L': -60., 'V_th': -58., 'b': 20., 'tau_w': 100.,
'V_reset': -65., 't_ref': 2., 'g_L': 10., 'C_m': 250.

}
oscillators
params1, params2 = base_params.copy(), base_params.copy()
params1.update(

{'E_L': -65., 'b': 40., 'I_e': 200., 'tau_w': 400., "V_th": -57.})
bursters
params2.update({'b': 25., 'V_reset': -55., 'tau_w': 300.})

(continues on next page)

170 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

(continued from previous page)

oscill = nngt.NeuralGroup(
nodes=400, neuron_model='aeif_psc_alpha', neuron_type=1,
neuron_param=params1)

burst = nngt.NeuralGroup(
nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
neuron_param=params2)

adapt = nngt.NeuralGroup(
nodes=200, neuron_model='aeif_psc_alpha', neuron_type=1,
neuron_param=base_params)

synapses = {
'default': {'model': 'tsodyks2_synapse'},
('oscillators', 'bursters'): {'model': 'tsodyks2_synapse', 'U': 0.6},
('oscillators', 'oscillators'): {'model': 'tsodyks2_synapse', 'U': 0.7},
('oscillators', 'adaptive'): {'model': 'tsodyks2_synapse', 'U': 0.5}

}

'''
Create the population that will represent the neuronal
network from these groups
'''
pop = nngt.NeuralPop.from_groups(

[oscill, burst, adapt],
names=['oscillators', 'bursters', 'adaptive'], syn_spec=synapses)

'''
Create the network from this population,
using a Gaussian in-degree
'''
net = ng.gaussian_degree(

100., 15., population=pop, weights=155., delays=5.)

Once this network is created, it can simply be sent to nest through the command: gids = net.to_nest(), and
the NEST gids are returned.

In order to access the gids from each group, you can do:

oscill_gids = net.nest_gid[oscill.ids]

For more details to use NNGT with NEST, see Interacting with the NEST simulator.

2.3.8 Underlying graph objects and libraries

Starting with version 2.0 of NNGT, the library no longer uses inheritance but composition to provide access to the
underlying graph object, which is stored in the graph attribute of the Graph class.

It can simply be accessed via:

g = nngt.Graph()

library_graph = g.graph

Using graph attribute, on can directly use functions of the underlying graph library (networkx, igraph, or graph-tool)
if their equivalent is not yet provided in NNGT – see Consistent tools for graph analysis for implemented functions.

2.3. Tutorial 171

NNGT Documentation, Release 2.3.0

Warning: One notable exception to this behaviour relates to the creation and deletion of nodes or edges, for
which you have to use the functions provided by NNGT. As a general rule, any operation that might alter the
graph structure should be done through NNGT and never directly by calling functions or methods on the graph
attribute.

Apart from this, you can use any analysis or drawing tool from the graph library.

Example using graph-tool

>>> import graph_tool as gt
>>> import matplotlib.pyplot as plt
>>> print(gt.centrality.closeness(g.graph))
>>> gt.draw.graph_draw(g.graph)
>>> nngt.plot.draw_network(g)
>>> plt.show()

Example using igraph

>>> import igraph as ig
>>> import matplotlib.pyplot as plt
>>> print(g.graph.closeness(mode='out'))
>>> ig.plot(g.graph)
>>> nngt.plot.draw_network(g)
>>> plt.show()

Example using networkx

>>> import networkx as nx
>>> import matplotlib.pyplot as plt
>>> print(nx.closeness_centrality(g.graph.reverse()))
>>> nx.draw(g.graph)
>>> nngt.plot.draw_network(g)
>>> plt.show()

Note: People testing these 3 codes will notice that all closeness results are different (though I made sure the functions
of each libraries worked on the same outgoing edges)! This example is given voluntarily to remind you, when using
these libraries, to check that they indeed compute what you think they do and what are the underlying hypotheses or
definitions.

To avoid such issues and make sure that results are the same with all libraries, use the functions provided in Consistent
tools for graph analysis.

Go to other tutorials:

• Intro & user manual

• Graph generation

• Parallelism

• Groups, structures, and neuronal populations

172 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

• Interacting with the NEST simulator

• Activity analysis

• Properties of graph components

2.4 Gallery

This page contains a set of examples about different ways of visualizing graphs and their properties using NNGT.

2.4.1 Visualizing graph structures

The following examples show how to use NNGT to draw graphs in ways that make their structural properties stand
out.

Chord diagram

import matplotlib.pyplot as plt

import nngt

(continues on next page)

2.4. Gallery 173

NNGT Documentation, Release 2.3.0

(continued from previous page)

nngt.seed(0)

create a structured graph

room1 = nngt.Group(25)
room2 = nngt.Group(50)
room3 = nngt.Group(40)
room4 = nngt.Group(35)

names = ["R1", "R2", "R3", "R4"]

struct = nngt.Structure.from_groups((room1, room2, room3, room4), names)

g = nngt.Graph(structure=struct)

for room in struct:
nngt.generation.connect_groups(g, room, room, "all_to_all")

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
avg_deg=10, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=20)

nngt.generation.connect_groups(g, room4, room3, "erdos_renyi", avg_deg=10)

get the structure graph and plot

sg = g.get_structure_graph()

nngt.plot.chord_diagram(sg, names="name", sort="distance",
use_gradient=True, show=True)

Total running time of the script: (0 minutes 1.711 seconds)

174 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Hive plot panel

import os

import matplotlib.pyplot as plt

import nngt

dirpath = os.path.abspath(os.getcwd())
rootpath = os.path.abspath(dirpath + "/../../..")

load graph

g = nngt.load_from_file(rootpath + "/testing/Networks/rat_brain.graphml",
attributes=["weight"], cleanup=True,
attributes_types={"weight": float})

(continues on next page)

2.4. Gallery 175

NNGT Documentation, Release 2.3.0

(continued from previous page)

prepare attributes

cc = nngt.analysis.local_clustering(g, weights="weight")

g.new_node_attribute("cc", "double", values=cc)

g.new_node_attribute("strength", "double",
values=g.get_degrees(weights="weight"))

flux = g.get_degrees("out") - g.get_degrees("in")

g.new_node_attribute("flux", "double", values=flux)

figure parameters

cc_bins = [0, 0.1, 0.25, 0.6]

todo = ["strength", "cc", "flux"]
bins = [3, cc_bins, 3]

make plot

fig, axes = plt.subplots(len(todo), len(todo), figsize=(10, 9))

for i in range(len(todo)):
radial = todo[i]

for j in range(len(todo)):
ax_name = todo[j]
ax_bins = bins[j]

ax = axes[i, j]

if i == 0:
ax.set_title(ax_name)

if j == 0:
ax.set_ylabel(radial)

size = todo[list(set([0, 1, 2]).difference([i, j]))[0]]

nngt.plot.hive_plot(
g, radial, axes=ax_name, edge_alpha=0.1, nsize=size, max_nsize=50,
axes_bins=ax_bins, axes_units="native", axis=ax, show_names=False)

for i in range(len(todo)):
fig.text(0.03, 0.8 - i*0.33, todo[i], rotation=90, fontsize="large")

plt.tight_layout()

plt.show()

Total running time of the script: (0 minutes 23.391 seconds)

176 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Layouts for topological representations

import os

import matplotlib as mpl
import matplotlib.pyplot as plt

import nngt

nngt.seed(0)

set matplotlib backend depending on the library
mpl_backend = mpl.get_backend()

if nngt.get_config("backend") in ("graph-tool", "igraph"):

if mpl_backend.startswith("Qt4"):
if mpl_backend != "Qt4Cairo":

plt.switch_backend("Qt4Cairo")
elif mpl_backend.startswith("Qt5"):

if mpl_backend != "Qt5Cairo":
plt.switch_backend("Qt5Cairo")

elif mpl_backend.startswith("GTK"):
if mpl_backend != "GTK3Cairo":

plt.switch_backend("GTK3Cairo")
elif mpl_backend != "cairo":

plt.switch_backend("cairo")

prepare figure and parameters

_, axes = plt.subplots(2, 2, figsize=(10, 8))

num_nodes = 50

spring-block layout for structured graph

room1 = nngt.Group(10)
room2 = nngt.Group(20)
room3 = nngt.Group(20)

names = ["R1", "R2", "R3"]

struct = nngt.Structure.from_groups((room1, room2, room3), names)

g = nngt.Graph(structure=struct)

for room in struct:
nngt.generation.connect_groups(g, room, room, "erdos_renyi", avg_deg=5)

nngt.generation.connect_groups(g, (room1, room2), struct, "erdos_renyi",
avg_deg=3, ignore_invalid=True)

nngt.generation.connect_groups(g, room3, room1, "erdos_renyi", avg_deg=5)

(continues on next page)

2.4. Gallery 177

NNGT Documentation, Release 2.3.0

(continued from previous page)

nngt.plot.library_draw(g, tight=False, axis=axes[0, 0], show=False)

axes[0, 0].set_title("Spring-block layout")

random layout

sw = nngt.generation.watts_strogatz(4, 0.3, nodes=num_nodes)

betw = nngt.analysis.betweenness(sw, "node")

nngt.plot.draw_network(sw, nsize=betw, ncolor="out-degree", axis=axes[0, 1],
tight=False, show=False)

axes[0, 1].set_title("Random layout")

circular layout for small-world networks

nngt.plot.draw_network(sw, nsize=betw, ncolor="out-degree", layout="circular",
axis=axes[1, 0], show=False, tight=False)

axes[1, 0].set_title("Circular layout")

spatial layout

c1 = nngt.geometry.Shape.disk(100)
c2 = nngt.geometry.Shape.disk(100, centroid=(50, 0))

shape = nngt.geometry.Shape.from_polygon(c1.union(c2))

npos = shape.seed_neurons(num_nodes)

g = nngt.generation.distance_rule(10, shape=shape, nodes=num_nodes, avg_deg=5)

cc = nngt.analysis.local_clustering(g)

nngt.plot.draw_network(g, ncolor=cc, axis=axes[1, 1], tight=False, show=False)

axes[1, 1].set_title("Spatial layout")

plt.tight_layout()

save figure

fname = os.getcwd() + "/layouts.png"

plt.savefig(fname)
plt.switch_backend(mpl_backend)

img = plt.imread(fname)

_, ax = plt.subplots(figsize=(10, 8))
ax.imshow(img)

(continues on next page)

178 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

(continued from previous page)

ax.axis('off')

plt.tight_layout()
plt.show()

try:
os.remove(fname)

except:
pass

Note that the last lines are just a little trick to make the figure be automatically detected by Sphinx-gallery. For normal
use cases you can just do a regular plt.show().

Total running time of the script: (0 minutes 3.554 seconds)

2.4.2 Visualizing graph properties

2.4. Gallery 179

NNGT Documentation, Release 2.3.0

Plot the degree distributions of a graph

import nngt
import nngt.plot as nplt

nngt.seed(0)

First, let’s create a scale-free network

g = nngt.generation.random_scale_free(2.1, 3.2, nodes=1000, avg_deg=100)

Plot the degree distribution

nplt.degree_distribution(g, deg_type=["in", "out"], show=True)

It’s not bad. . . but we don’t see much! Let’s move a more relevant scale

nplt.degree_distribution(g, deg_type=["in", "out"], logy=True, show=True)

180 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Or we can use Bayesian binning

nplt.degree_distribution(g, deg_type=["in", "out"], num_bins="bayes",
show=True)

2.4. Gallery 181

NNGT Documentation, Release 2.3.0

Total running time of the script: (0 minutes 1.818 seconds)

Plot the betweenness distributions of a graph

import nngt
import nngt.plot as nplt
from nngt.geometry import Shape

nngt.seed(0)

Let’s start by making a random exponential graph

shape = Shape.disk(100)

g = nngt.generation.distance_rule(5, shape=shape, nodes=1000, avg_deg=3)

then we can plot the betweenness

nplt.betweenness_distribution(g, logx=True, show=True,
legend_location='left')

182 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

we can of course change various parameters and plot only the nodes

nplt.betweenness_distribution(g, logx=False, show=True)

nplt.betweenness_distribution(g, btype="node", num_nbins="auto",
alpha=0.5, show=True)

2.4. Gallery 183

NNGT Documentation, Release 2.3.0

•

184 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

•

By the way, this is the graph we’re looking at

nplt.draw_network(g, max_nsize=1, show_environment=False, show=True)

2.4. Gallery 185

NNGT Documentation, Release 2.3.0

Total running time of the script: (0 minutes 41.210 seconds)

Plot various graph properties

import nngt
import nngt.plot as nplt
from nngt.geometry import Shape

nngt.seed(0)

Let’s start by making a random exponential graph

186 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

shape = Shape.disk(100)

g = nngt.generation.distance_rule(5, shape=shape, nodes=1000, avg_deg=20)

Let’s plot the distances

nplt.edge_attributes_distribution(g, "distance", show=True)

We then compute the betweenness and see how it correlates with the distance

nbetw, ebetw = nngt.analysis.betweenness(g)

g.new_edge_attribute("betweenness", "float", values=ebetw)

nplt.correlation_to_attribute(g, "distance", "betweenness",
attribute_type="edge", show=True)

2.4. Gallery 187

NNGT Documentation, Release 2.3.0

Let’s check the correlations between various node properties and their degree

g.new_node_attribute("betweenness", "float", values=nbetw)

attr = ["betweenness", "clustering", "in-degree", "subgraph_centrality"]

nplt.correlation_to_attribute(g, "out-degree", attr, show=True)

188 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

Total running time of the script: (1 minutes 12.720 seconds)

2.4.3 Visualizing graph structures

The following examples show how to use NNGT to draw graphs in ways that make their structural properties stand
out.

2.4.4 Visualizing graph properties

2.5 Contributing to NNGT

• Signaling issues and bugs

• Preparing a contribution

• Sending a patch to SourceHut

– First contribution

– Post-review changes: later contributions

• Making a PR on GitHub

2.5. Contributing to NNGT 189

NNGT Documentation, Release 2.3.0

2.5.1 Signaling issues and bugs

If you encounter something that you think is an error, please let me know either via the user mailing list or directly on
the issue tracker.

Warning: When signaling a bug, please always include a python script containing a minimal working example
(MWE) that reproduces the issue.

2.5.2 Preparing a contribution

To prepare a contribution to NNGT, you should follow these successive steps:

1. start from the main branch: git checkout main,

2. create a new branch from main: git checkout -b name-of-your-choice,

3. make the changes you want to and commit them,

4. check them locally using: pytest testing (you’ll need to install pytest via pip install pytest)

2.5.3 Sending a patch to SourceHut

To contribute on SourceHut, you don’t need an account (though you can also make a patch using the website if you
have an account there).

What you need is to use git send-email, and you can find how to install and set it up on this page.

Before sending you patch, please squash you commits using:

git checkout -b patch-branch
git merge --squash name-of-your-choice
git checkout -a -m "A descriptive message of the changes"

First contribution

Once this is done, you can push your patch to the mailing list using:

git send-email --annotate --to=~tfardet/nngt-developers@lists.sr.ht -v1 HEAD^

you can add further information in the description using annotate.

Warning: Always use --annotate because you will need to change the subject from “[PATCH v1]” to
“[PATCH NNGT]” or “[PATCH NNGT v1]” (as you prefer as long as the second word is NNGT) so that the
patch is automatically tested on SourceHut

Do not hesitate to ask for help on the developer mailing list if you need help on your first contribution.

Post-review changes: later contributions

If changes are requested, apply the changes to the branch name-of-your-choice, then reset patch-branch

190 Chapter 2. The docs

https://lists.sr.ht/~tfardet/nngt-users
https://github.com/tfardet/NNGT/issues
https://git-send-email.io
https://lists.sr.ht/~tfardet/nngt-developers

NNGT Documentation, Release 2.3.0

git checkout patch-branch
git fetch origin
git reset --hard origin/main
git merge --squash name-of-your-choice
git checkout -a -m "A descriptive message of the changes"

then, publish the patch saying it’s a new version:

git send-email --annotate --to=~tfardet/nngt-developers@lists.sr.ht -v2 HEAD^

Or -v3, -v4, etc for later patches.

Warning: As before, use annotate to change the subject to “[PATCH NNGT]” or “[PATCH NNGT v2]” so that
the patch is automatically tested on SourceHut

2.5.4 Making a PR on GitHub

If you prefer using GitHub, then you can open a PR on the repo.

2.6 Database module

NNGT provides a database to store NEST simulations. This database requires peewee>3 to work and can be switched
on using:

nngt.set_config("use_database", True)

The commands are then used by calling nngt.database to access the database tools.

• Functions

• Recording a simulation

• Checking results in the database

2.6.1 Functions

nngt.database.get_results(table, column=None, value=None)
Return the entries where the attribute column satisfies the required equality.

Parameters

• table (str) – Name of the table where the search should be performed (among
'simulation', 'computer', 'neuralnetwork', 'activity', 'synapse',
'neuron', or 'connection').

• column (str, optional (default: None)) – Name of the variable of interest (a column on the
table). If None, the whole table is returned.

• value (column corresponding type, optional (default: None)) – Specific value for the vari-
able of interest. If None, the whole column is returned.

2.6. Database module 191

https://github.com/tfardet/NNGT/pulls

NNGT Documentation, Release 2.3.0

Returns peewee.SelectQuery with entries matching the request.

nngt.database.is_clear()
Check that the logs are clear.

nngt.database.log_simulation_end(network=None, log_activity=True)
Record the simulation completion and simulated times, save the data, then reset.

nngt.database.log_simulation_start(network, simulator, save_network=True)
Record the simulation start time, all nodes, connections, network, and computer properties, as well as some of
simulation’s.

Parameters

• network (Network or subclass) – Network used for the current simulation.

• simulator (str) – Name of the simulator.

• save_network (bool, optional (default: True)) – Whether to save the network or not.

nngt.database.reset()
Reset log status.

2.6.2 Recording a simulation

nngt.database.log_simulation_start(net, "nest-2.14")
nest.Simulate(1000.)
nngt.database.log_simulation_end()

2.6.3 Checking results in the database

The database contains the following tables, associated to their respective fields:

• ‘activity’: Activity ,

• ‘computer’: Computer,

• ‘connection’: Connection,

• ‘neuralnetwork’: NeuralNetwork,

• ‘neuron’: Neuron,

• ‘simulation’: Simulation,

• ‘synapse’: Synapse.

These tables are the first keyword passed to get_results(), you can find the existing columns for each of the
tables in the following classes descriptions:

Store results into a database

class nngt.database.db_generation.Activity(*args, **kwargs)
Class detailing the network’s simulated activity.

DoesNotExist
alias of ActivityDoesNotExist

id = <IntegerField: Activity.id>

raster = <PickledField: Activity.raster>
Raster of the simulated activity.

192 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

simulations

class nngt.database.db_generation.Computer(*args, **kwargs)
Class containing informations about the conputer.

DoesNotExist
alias of ComputerDoesNotExist

cores = <IntegerField: Computer.cores>
Number of cores returned by psutil.cpu_count() or -1

id = <IntegerField: Computer.id>

name = <TextField: Computer.name>
Name from platform.node() or "unknown"

platform = <TextField: Computer.platform>
System information from platform.platform()

python = <TextField: Computer.python>
Python version given by platform.python_version()

ram = <IntegerField: Computer.ram>
Total memory given by psutil.virtual_memory().total (long) or -1

simulations

class nngt.database.db_generation.Connection(*args, **kwargs)
Class detailing the existing connections in the network: a couple of pre- and post-synaptic neurons and a
synapse.

DoesNotExist
alias of ConnectionDoesNotExist

id = <IntegerField: Connection.id>

post = <ForeignKeyField: Connection.post>

post_id = <ForeignKeyField: Connection.post>

pre = <ForeignKeyField: Connection.pre>

pre_id = <ForeignKeyField: Connection.pre>

simulations

synapse = <ForeignKeyField: Connection.synapse>

synapse_id = <ForeignKeyField: Connection.synapse>

nngt.database.db_generation.migrate(*operations, **kwargs)

class nngt.database.db_generation.NeuralNetwork(*args, **kwargs)
Class containing informations about the neural network.

DoesNotExist
alias of NeuralNetworkDoesNotExist

compressed_file = <LongCompressedField: NeuralNetwork.compressed_file>
Compressed (bz2) string of the graph from str(graph); once uncompressed, can be loaded using
Graph.from_file(name, from_string=True).

directed = <IntegerField: NeuralNetwork.directed>
Whether the graph is directed or not

2.6. Database module 193

NNGT Documentation, Release 2.3.0

edges = <IntegerField: NeuralNetwork.edges>
Number of edges.

id = <IntegerField: NeuralNetwork.id>

network_type = <TextField: NeuralNetwork.network_type>
Type of the network from Graph.type

nodes = <IntegerField: NeuralNetwork.nodes>
Number of nodes.

simulations

weight_distribution = <TextField: NeuralNetwork.weight_distribution>
Name of the weight_distribution used.

weighted = <IntegerField: NeuralNetwork.weighted>
Whether the graph is weighted or not.

class nngt.database.db_generation.Neuron(*args, **kwargs)
Base class that will be modified to contain all the properties of the neurons used during a simulation.

DoesNotExist
alias of NeuronDoesNotExist

id = <IntegerField: Neuron.id>

int_connections

out_connections

class nngt.database.db_generation.Simulation(*args, **kwargs)
Class containing all informations about the simulation properties.

DoesNotExist
alias of SimulationDoesNotExist

activity = <ForeignKeyField: Simulation.activity>
Activity table entry where the simulated activity is described.

activity_id = <ForeignKeyField: Simulation.activity>

completion_time = <DateTimeField: Simulation.completion_time>
Date and time at which the simulation ended.

computer = <ForeignKeyField: Simulation.computer>
Computer table entry where the computer used is defined.

computer_id = <ForeignKeyField: Simulation.computer>

connections = <ForeignKeyField: Simulation.connections>
Connection table entry where the connections are described.

connections_id = <ForeignKeyField: Simulation.connections>

grnd_seed = <IntegerField: Simulation.grnd_seed>
Master seed of the simulation.

id = <IntegerField: Simulation.id>

local_seeds = <PickledField: Simulation.local_seeds>
List of the local threads seeds.

network = <ForeignKeyField: Simulation.network>
Network table entry where the simulated network is described.

194 Chapter 2. The docs

NNGT Documentation, Release 2.3.0

network_id = <ForeignKeyField: Simulation.network>

pop_sizes = <PickledField: Simulation.pop_sizes>
Pickled list containing the group sizes.

population = <PickledField: Simulation.population>
Pickled list containing the neural group names.

resolution = <FloatField: Simulation.resolution>
Timestep used to simulate the components of the neural network

simulated_time = <FloatField: Simulation.simulated_time>
Virtual time that was simulated for the neural network.

simulator = <TextField: Simulation.simulator>
Name of the neural simulator used (NEST, Brian. . .)

start_time = <DateTimeField: Simulation.start_time>
Date and time at which the simulation started.

class nngt.database.db_generation.Synapse(*args, **kwargs)
Base class that will be modified to contain all the properties of the synapses used during a simulation.

DoesNotExist
alias of SynapseDoesNotExist

connections

id = <IntegerField: Synapse.id>

2.6. Database module 195

NNGT Documentation, Release 2.3.0

196 Chapter 2. The docs

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

197

NNGT Documentation, Release 2.3.0

198 Chapter 3. Indices and tables

Bibliography

[Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The Architecture of Complex Weighted Networks.
PNAS 2004, 101 (11). DOI: 10.1073/pnas.0400087101.

[Clemente2018] Clemente, Grassi. Directed Clustering in Weighted Networks: A New Perspective. Chaos, Solitons
& Fractals 2018, 107, 26–38. DOI: 10.1016/j.chaos.2017.12.007, arXiv: 1706.07322.

[Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks. Phys. Rev. E 2007, 76, (2), 026107. DOI:
10.1103/PhysRevE.76.026107, arXiv: physics/0612169.

[Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence of Motifs in Weighted Complex Networks.
Phys. Rev. E 2005, 71 (6), 065103. DOI: 10.1103/physreve.71.065103, arXiv: cond-mat/0408629.

[Saramaki2007] Saramäki, Kivelä, Onnela, Kaski, Kertész. Generalizations of the Clustering Coefficient to Weighted
Complex Networks. Phys. Rev. E 2007, 75 (2), 027105. DOI: 10.1103/PhysRevE.75.027105, arXiv: cond-
mat/0608670.

[Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical
Applications in Genetics and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128, PDF.

[ig-connected] igraph - is_connected

[ig-connected] igraph - is_connected

[gt-adjacency] graph-tool - spectral.adjacency

[nx-adjacency] networkx - convert_matrix.to_scipy_sparse_matrix

[nx-sp] networkx - algorithms.shortest_paths.generic.all_shortest_paths

[nx-assortativity] networkx - algorithms.assortativity.degree_assortativity_coefficient

[nx-sp] networkx - algorithms.shortest_paths.generic.average_shortest_path_length

[nx-ebetw] networkx - algorithms.centrality.edge_betweenness_centrality

[nx-nbetw] networkx - networkx.algorithms.centrality.betweenness_centrality

[nx-harmonic] networkx - algorithms.centrality.harmonic_centrality

[nx-closeness] networkx - algorithms.centrality.closeness_centrality

[nx-ucc] networkx - algorithms.components.connected_components

[nx-scc] networkx - algorithms.components.strongly_connected_components

199

https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1016/j.chaos.2017.12.007
https://arxiv.org/abs/1706.07322
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://arxiv.org/abs/physics/0612169
https://dx.doi.org/10.1103/physreve.71.065103
https://arxiv.org/abs/cond-mat/0408629
https://dx.doi.org/10.1103/PhysRevE.75.027105
https://arxiv.org/abs/cond-mat/0608670
https://arxiv.org/abs/cond-mat/0608670
https://dx.doi.org/10.2202/1544-6115.1128
https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf
https://igraph.org/python/doc/igraph.GraphBase-class.html#is_connected
https://igraph.org/python/doc/igraph.GraphBase-class.html#is_connected
https://graph-tool.skewed.de/static/doc/spectral.html#graph_tool.spectral.adjacency
https://networkx.github.io/documentation/stable/reference/generated/networkx.convert_matrix.to_scipy_sparse_matrix.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.all_shortest_paths.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.assortativity.degree_assortativity_coefficient.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.average_shortest_path_length.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.edge_betweenness_centrality.html
https://networkx.github.io/documentation/stable/reference/networkx/generated/networkx.networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.harmonic_centrality.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.connected_components.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.strongly_connected_components.html

NNGT Documentation, Release 2.3.0

[nx-wcc] networkx - algorithms.components.weakly_connected_components

[nx-diameter] networkx - algorithms.distance_measures.diameter

[nx-dijkstra] networkx - algorithms.shortest_paths.weighted.all_pairs_dijkstra

[gt-global-clustering] graph-tool - clustering.global_clustering

[ig-global-clustering] igraph - transitivity_undirected

[nx-global-clustering] networkx - algorithms.cluster.transitivity

[Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The Architecture of Complex Weighted Networks.
PNAS 2004, 101 (11). DOI: 10.1073/pnas.0400087101.

[Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence of Motifs in Weighted Complex Networks.
Phys. Rev. E 2005, 71 (6), 065103. DOI: 10.1103/physreve.71.065103, arxiv:cond-mat/0408629.

[Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks. Phys. Rev. E 2007, 76 (2), 026107. DOI:
10.1103/PhysRevE.76.026107, arXiv: physics/0612169.

[Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical
Applications in Genetics and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128, PDF.

[nx-global-clustering] networkx - algorithms.cluster.transitivity

[Yin2019] Yin, Benson, and Leskovec. The Local Closure Coefficient: A New Perspective On Network Clustering.
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining 2019, 303-311.
DOI: 10.1145/3289600.3290991, PDF.

[Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The Architecture of Complex Weighted Networks.
PNAS 2004, 101 (11). DOI: 10.1073/pnas.0400087101.

[Clemente2018] Clemente, Grassi. Directed Clustering in Weighted Networks: A New Perspective. Chaos, Solitons
& Fractals 2018, 107, 26–38. DOI: 10.1016/j.chaos.2017.12.007, arXiv: 1706.07322.

[Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks. Phys. Rev. E 2007, 76, (2), 026107. DOI:
10.1103/PhysRevE.76.026107, arXiv: physics/0612169.

[Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence of Motifs in Weighted Complex Networks.
Phys. Rev. E 2005, 71 (6), 065103. DOI: 10.1103/physreve.71.065103, arXiv: cond-mat/0408629.

[Saramaki2007] Saramäki, Kivelä, Onnela, Kaski, Kertész. Generalizations of the Clustering Coefficient to Weighted
Complex Networks. Phys. Rev. E 2007, 75 (2), 027105. DOI: 10.1103/PhysRevE.75.027105, arXiv: cond-
mat/0608670.

[Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical
Applications in Genetics and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128, PDF.

[nx-local-clustering] networkx - algorithms.cluster.clustering

[nx-reciprocity] networkx - algorithms.reciprocity.overall_reciprocity

[nx-sp] networkx - algorithms.shortest_paths.weighted.multi_source_dijkstra

[nx-sp] networkx - algorithms.shortest_paths.generic.shortest_path

[Muldoon2016] Muldoon, Bridgeford, Bassett. Small-World Propensity and Weighted Brain Networks. Sci Rep 2016,
6 (1), 22057. DOI: 10.1038/srep22057, arXiv: 1505.02194.

[Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The Architecture of Complex Weighted Networks.
PNAS 2004, 101 (11). DOI: 10.1073/pnas.0400087101.

[Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence of Motifs in Weighted Complex Networks.
Phys. Rev. E 2005, 71 (6), 065103. DOI: 10.1103/physreve.71.065103, arxiv:cond-mat/0408629.

200 Bibliography

https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.weakly_connected_components.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.distance_measures.diameter.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra.html
https://graph-tool.skewed.de/static/doc/clustering.html#graph_tool.clustering.global_clustering
https://igraph.org/python/doc/igraph.GraphBase-class.html#transitivity_undirected
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html
https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1103/physreve.71.065103
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://arxiv.org/abs/physics/0612169
https://dx.doi.org/10.2202/1544-6115.1128
https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.transitivity.html
https://dx.doi.org/10.1145/3289600.3290991
https://www.cs.cornell.edu/~arb/papers/closure-coefficients-WSDM-2019.pdf
https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1016/j.chaos.2017.12.007
https://arxiv.org/abs/1706.07322
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://arxiv.org/abs/physics/0612169
https://dx.doi.org/10.1103/physreve.71.065103
https://arxiv.org/abs/cond-mat/0408629
https://dx.doi.org/10.1103/PhysRevE.75.027105
https://arxiv.org/abs/cond-mat/0608670
https://arxiv.org/abs/cond-mat/0608670
https://dx.doi.org/10.2202/1544-6115.1128
https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.cluster.clustering.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.reciprocity.overall_reciprocity.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html
https://dx.doi.org/10.1038/srep22057
https://arxiv.org/abs/1505.02194
https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1103/physreve.71.065103

NNGT Documentation, Release 2.3.0

[Estrada2005] Ernesto Estrada and Juan A. Rodríguez-Velázquez, Subgraph centrality in complex networks, PHYSI-
CAL REVIEW E 71, 056103 (2005), DOI: 10.1103/PhysRevE.71.056103, arXiv: cond-mat/0504730.

[Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The Architecture of Complex Weighted Networks.
PNAS 2004, 101 (11). DOI: 10.1073/pnas.0400087101.

[Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks. Phys. Rev. E 2007, 76, (2), 026107. DOI:
10.1103/PhysRevE.76.026107, arXiv: physics/0612169.

[Onnela2005] Onnela, Saramäki, Kertész, Kaski. Intensity and Coherence of Motifs in Weighted Complex Networks.
Phys. Rev. E 2005, 71 (6), 065103. DOI: 10.1103/physreve.71.065103, arXiv: cond-mat/0408629.

[Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical
Applications in Genetics and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128, PDF.

[Barrat2004] Barrat, Barthelemy, Pastor-Satorras, Vespignani. The Architecture of Complex Weighted Networks.
PNAS 2004, 101 (11). DOI: 10.1073/pnas.0400087101.

[Fagiolo2007] Fagiolo. Clustering in Complex Directed Networks. Phys. Rev. E 2007, 76, (2), 026107. DOI:
10.1103/PhysRevE.76.026107, arXiv: physics/0612169.

[Zhang2005] Zhang, Horvath. A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical
Applications in Genetics and Molecular Biology 2005, 4 (1). DOI: 10.2202/1544-6115.1128, PDF.

Bibliography 201

https://dx.doi.org/10.1103/PhysRevE.71.056103
https://arxiv.org/abs/cond-mat/0504730
https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://arxiv.org/abs/physics/0612169
https://dx.doi.org/10.1103/physreve.71.065103
https://arxiv.org/abs/cond-mat/0408629
https://dx.doi.org/10.2202/1544-6115.1128
https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf
https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://dx.doi.org/10.1103/PhysRevE.76.026107
https://arxiv.org/abs/physics/0612169
https://dx.doi.org/10.2202/1544-6115.1128
https://dibernardo.tigem.it/files/papers/2008/zhangbin-statappsgeneticsmolbio.pdf

NNGT Documentation, Release 2.3.0

202 Bibliography

Python Module Index

n
nngt, 81
nngt.analysis, 112
nngt.core, 129
nngt.database.db_generation, 192
nngt.generation, 130
nngt.geometry, 143
nngt.lib, 152
nngt.plot, 155
nngt.simulation, 37

203

NNGT Documentation, Release 2.3.0

204 Python Module Index

Index

A
Activity (class in nngt.database.db_generation), 192
activity (nngt.database.db_generation.Simulation at-

tribute), 194
activity_id (nngt.database.db_generation.Simulation

attribute), 194
activity_types() (in module nngt.simulation), 38
ActivityRecord (class in nngt.simulation), 37
add_area() (nngt.geometry.Shape method), 146
add_hole() (nngt.geometry.Shape method), 146
add_meta_group() (nngt.Structure method), 77, 105
add_nodes() (nngt.Group method), 68, 92
add_subshape() (nngt.geometry.Area method), 145
add_to_group() (nngt.NeuralPop method), 71, 98
add_to_group() (nngt.Structure method), 77, 105
adjacency_matrix() (in module nngt.analysis),

112
adjacency_matrix() (nngt.Graph method), 48, 81
all_shortest_paths() (in module nngt.analysis),

112
all_to_all() (in module nngt.generation), 131
analyze_raster() (in module nngt.simulation), 39
Animation2d (class in nngt.plot), 155
AnimationNetwork (class in nngt.plot), 155
Area (class in nngt.geometry), 144
area (nngt.geometry.Shape attribute), 145
areas (nngt.geometry.Area attribute), 145
areas (nngt.geometry.Shape attribute), 146
assortativity() (in module nngt.analysis), 113
average_path_length() (in module

nngt.analysis), 113

B
bayesian_blocks() (in module nngt.analysis), 114
betweenness() (in module nngt.analysis), 115
betweenness_distrib() (in module

nngt.analysis), 116
betweenness_distribution() (in module

nngt.plot), 156

binning() (in module nngt.analysis), 116

C
centroid (nngt.geometry.Shape attribute), 145
chord_diagram() (in module nngt.plot), 157
circular() (in module nngt.generation), 131
clear_all_edges() (nngt.Graph method), 49
closeness() (in module nngt.analysis), 116
compare_population_attributes() (in mod-

ule nngt.plot), 157
completion_time (nngt.database.db_generation.Simulation

attribute), 194
compressed_file (nngt.database.db_generation.NeuralNetwork

attribute), 193
Computer (class in nngt.database.db_generation), 193
computer (nngt.database.db_generation.Simulation at-

tribute), 194
computer_id (nngt.database.db_generation.Simulation

attribute), 194
connect_groups() (in module nngt.generation), 132
connect_neural_groups() (in module

nngt.generation), 133
connect_neural_types() (in module

nngt.generation), 133
connect_nodes() (in module nngt.generation), 133
connected_components() (in module

nngt.analysis), 117
Connection (class in nngt.database.db_generation),

193
connections (nngt.database.db_generation.Simulation

attribute), 194
connections (nngt.database.db_generation.Synapse

attribute), 195
connections_id (nngt.database.db_generation.Simulation

attribute), 194
contains_neurons() (nngt.geometry.Shape

method), 146
copy() (nngt.geometry.Area method), 145
copy() (nngt.geometry.Shape method), 146
copy() (nngt.Graph method), 49, 82

205

NNGT Documentation, Release 2.3.0

copy() (nngt.Group method), 68, 92
copy() (nngt.NeuralGroup method), 71, 98
copy() (nngt.NeuralPop method), 72, 98
copy() (nngt.Structure method), 77, 105
cores (nngt.database.db_generation.Computer at-

tribute), 193
correlation_to_attribute() (in module

nngt.plot), 158
create_group() (nngt.NeuralPop method), 72, 98
create_group() (nngt.Structure method), 77, 106
create_meta_group() (nngt.NeuralPop method),

72, 99
create_meta_group() (nngt.Structure method), 77,

106
culture_from_file() (in module nngt.geometry),

150

D
data (nngt.simulation.ActivityRecord attribute), 37
default_areas (nngt.geometry.Shape attribute), 146
degree_distrib() (in module nngt.analysis), 117
degree_distribution() (in module nngt.plot),

158
delete_edges() (nngt.Graph method), 49
delete_nodes() (nngt.Graph method), 49
delta_distrib() (in module nngt.lib), 152
diameter() (in module nngt.analysis), 118
directed (nngt.database.db_generation.NeuralNetwork

attribute), 193
disk() (nngt.geometry.Shape static method), 146
distance_rule() (in module nngt.generation), 134
DoesNotExist (nngt.database.db_generation.Activity

attribute), 192
DoesNotExist (nngt.database.db_generation.Computer

attribute), 193
DoesNotExist (nngt.database.db_generation.Connection

attribute), 193
DoesNotExist (nngt.database.db_generation.NeuralNetwork

attribute), 193
DoesNotExist (nngt.database.db_generation.Neuron

attribute), 194
DoesNotExist (nngt.database.db_generation.Simulation

attribute), 194
DoesNotExist (nngt.database.db_generation.Synapse

attribute), 195
draw_network() (in module nngt.plot), 159

E
edge_attributes (nngt.Graph attribute), 49, 82
edge_attributes_distribution() (in module

nngt.plot), 160
edge_id() (nngt.Graph method), 49
edge_nb() (nngt.Graph method), 49

edges (nngt.database.db_generation.NeuralNetwork at-
tribute), 193

edges_array (nngt.Graph attribute), 49
ellipse() (nngt.geometry.Shape static method), 147
erdos_renyi() (in module nngt.generation), 135
exc_and_inhib() (nngt.Network class method), 60,

94
exc_and_inhib() (nngt.NeuralPop class method),

72, 99
excitatory (nngt.MetaNeuralGroup attribute), 70, 94
excitatory (nngt.NeuralPop attribute), 73, 100

F
find_idx_nearest() (in module nngt.lib), 153
fixed_degree() (in module nngt.generation), 135
from_degree_list() (in module nngt.generation),

136
from_file() (nngt.geometry.Shape static method),

147
from_file() (nngt.Graph static method), 49, 82
from_gids() (nngt.Network class method), 61, 95
from_groups() (nngt.NeuralPop class method), 73,

100
from_groups() (nngt.Structure class method), 77,

106
from_library() (nngt.Graph class method), 50, 83
from_matrix() (nngt.Graph class method), 50, 83
from_network() (nngt.NeuralPop class method), 74,

101
from_polygon() (nngt.geometry.Shape static

method), 147
from_shape() (nngt.geometry.Area class method),

145
from_wkt() (nngt.geometry.Shape static method), 148

G
gaussian_degree() (in module nngt.generation),

137
gaussian_distrib() (in module nngt.lib), 153
generate() (in module nngt), 64, 108
get_attribute_type() (nngt.Graph method), 50,

83
get_b2() (in module nngt.analysis), 119
get_betweenness() (nngt.Graph method), 51, 83
get_config() (in module nngt), 65, 108
get_degrees() (nngt.Graph method), 51, 84
get_delays() (nngt.Graph method), 51, 84
get_density() (nngt.Graph method), 52, 84
get_edge_attributes() (nngt.Graph method), 52,

84
get_edge_types() (nngt.Graph method), 52, 85
get_edge_types() (nngt.Network method), 62, 95
get_edges() (nngt.Graph method), 52, 85
get_firing_rate() (in module nngt.analysis), 119

206 Index

NNGT Documentation, Release 2.3.0

get_group() (nngt.Structure method), 78, 107
get_nest_adjacency() (in module

nngt.simulation), 39
get_neuron_type() (nngt.Network method), 62, 95
get_node_attributes() (nngt.Graph method), 53,

85
get_nodes() (nngt.Graph method), 53, 86
get_param() (nngt.NeuralPop method), 74, 101
get_positions() (nngt.SpatialGraph method), 60,

104
get_properties() (nngt.Structure method), 78, 107
get_recording() (in module nngt.simulation), 40
get_results() (in module nngt.database), 191
get_spikes() (in module nngt.analysis), 119
get_structure_graph() (nngt.Graph method), 53,

86
get_weights() (nngt.Graph method), 53, 86
global_clustering() (in module nngt.analysis),

120
global_clustering_binary_undirected()

(in module nngt.analysis), 121
Graph (class in nngt), 48, 81
graph (nngt.Graph attribute), 53, 86
graph_id (nngt.Graph attribute), 54, 87
GraphObject (in module nngt.core), 130
grnd_seed (nngt.database.db_generation.Simulation

attribute), 194
Group (class in nngt), 68, 91
GroupProperty (class in nngt), 69, 92

H
has_model (nngt.NeuralGroup attribute), 71, 98
has_models (nngt.NeuralPop attribute), 74, 101
hive_plot() (in module nngt.plot), 161

I
id (nngt.database.db_generation.Activity attribute), 192
id (nngt.database.db_generation.Computer attribute),

193
id (nngt.database.db_generation.Connection attribute),

193
id (nngt.database.db_generation.NeuralNetwork at-

tribute), 194
id (nngt.database.db_generation.Neuron attribute), 194
id (nngt.database.db_generation.Simulation attribute),

194
id (nngt.database.db_generation.Synapse attribute), 195
id_from_nest_gid() (nngt.Network method), 62,

96
ids (nngt.Group attribute), 68, 92
ids (nngt.NeuralGroup attribute), 71, 98
ids (nngt.Structure attribute), 79, 107
inhibitory (nngt.MetaNeuralGroup attribute), 70, 94
inhibitory (nngt.NeuralPop attribute), 74, 101

int_connections (nngt.database.db_generation.Neuron
attribute), 194

InvalidArgument (class in nngt.lib), 152
is_clear() (in module nngt.database), 192
is_connected() (nngt.Graph method), 54, 87
is_directed() (nngt.Graph method), 54, 87
is_integer() (in module nngt.lib), 153
is_iterable() (in module nngt.lib), 153
is_metagroup (nngt.Group attribute), 68, 92
is_network() (nngt.Graph method), 54, 87
is_spatial() (nngt.Graph method), 54, 87
is_valid (nngt.Group attribute), 69, 92
is_valid (nngt.Structure attribute), 79, 107
is_weighted() (nngt.Graph method), 54, 87

L
lattice_rewire() (in module nngt.generation), 137
library_draw() (in module nngt.plot), 162
lin_correlated_distrib() (in module nngt.lib),

153
load_from_file() (in module nngt), 65, 108
local_closure() (in module nngt.analysis), 121
local_clustering() (in module nngt.analysis),

122
local_clustering_binary_undirected() (in

module nngt.analysis), 123
local_seeds (nngt.database.db_generation.Simulation

attribute), 194
log_correlated_distrib() (in module nngt.lib),

153
log_simulation_end() (in module nngt.database),

192
log_simulation_start() (in module

nngt.database), 192
lognormal_distrib() (in module nngt.lib), 153

M
make_nest_network() (in module nngt.simulation),

40
make_network() (nngt.Graph static method), 54, 87
make_spatial() (nngt.Graph static method), 54, 87
meta_groups (nngt.Structure attribute), 79, 107
MetaGroup (class in nngt), 69, 93
MetaNeuralGroup (class in nngt), 70, 93
migrate() (in module nngt.database.db_generation),

193
monitor_groups() (in module nngt.simulation), 40
monitor_nodes() (in module nngt.simulation), 41

N
name (nngt.database.db_generation.Computer at-

tribute), 193
name (nngt.Graph attribute), 55, 88
name (nngt.Group attribute), 69, 92

Index 207

NNGT Documentation, Release 2.3.0

neighbours() (nngt.Graph method), 55, 88
nest_gids (nngt.Network attribute), 62, 96
nest_gids (nngt.NeuralGroup attribute), 71, 98
nest_gids (nngt.NeuralPop attribute), 74, 101
Network (class in nngt), 60, 94
network (nngt.database.db_generation.Simulation at-

tribute), 194
network_id (nngt.database.db_generation.Simulation

attribute), 194
network_type (nngt.database.db_generation.NeuralNetwork

attribute), 194
NeuralGroup (class in nngt), 70, 97
NeuralNetwork (class in

nngt.database.db_generation), 193
NeuralPop (class in nngt), 71, 98
Neuron (class in nngt.database.db_generation), 194
neuron_model (nngt.NeuralGroup attribute), 71, 98
neuron_param (nngt.NeuralGroup attribute), 71, 98
neuron_properties() (nngt.Network method), 62,

96
neuron_type (nngt.NeuralGroup attribute), 71, 98
new_edge() (nngt.Graph method), 55
new_edge_attribute() (nngt.Graph method), 55,

88
new_edges() (nngt.Graph method), 55
new_node() (nngt.Graph method), 56
new_node_attribute() (nngt.Graph method), 56,

88
newman_watts() (in module nngt.generation), 138
nngt (module), 81
nngt.analysis (module), 112
nngt.core (module), 129
nngt.database.db_generation (module), 192
nngt.generation (module), 130
nngt.geometry (module), 143
nngt.lib (module), 152
nngt.plot (module), 154, 155
nngt.simulation (module), 36, 37
node_attributes (nngt.Graph attribute), 57, 88
node_attributes() (in module nngt.analysis), 123
node_attributes_distribution() (in module

nngt.plot), 164
node_nb() (nngt.Graph method), 57
nodes (nngt.database.db_generation.NeuralNetwork at-

tribute), 194
non_default_areas (nngt.geometry.Shape at-

tribute), 148
nonstring_container() (in module nngt.lib), 154
num_graphs() (nngt.Graph class method), 57, 88
num_iedges() (in module nngt.analysis), 124
num_mpi_processes() (in module nngt), 66, 109
num_networks() (nngt.Network class method), 62, 96

O
on_master_process() (in module nngt), 66, 109
out_connections (nngt.database.db_generation.Neuron

attribute), 194

P
palette_continuous() (in module nngt.plot), 164
palette_discrete() (in module nngt.plot), 164
parent (nngt.geometry.Shape attribute), 148
parent (nngt.Group attribute), 69, 92
parent (nngt.Structure attribute), 79, 107
phases (nngt.simulation.ActivityRecord attribute), 37
platform (nngt.database.db_generation.Computer at-

tribute), 193
plot_activity() (in module nngt.simulation), 41
plot_shape() (in module nngt.geometry), 151
pop_largest() (in module nngt.geometry), 151
pop_sizes (nngt.database.db_generation.Simulation

attribute), 195
population (nngt.database.db_generation.Simulation

attribute), 195
population (nngt.Network attribute), 62, 96
post (nngt.database.db_generation.Connection at-

tribute), 193
post_id (nngt.database.db_generation.Connection at-

tribute), 193
pre (nngt.database.db_generation.Connection at-

tribute), 193
pre_id (nngt.database.db_generation.Connection at-

tribute), 193
price_scale_free() (in module nngt.generation),

139
properties (nngt.geometry.Area attribute), 145
properties (nngt.Group attribute), 69, 92
properties (nngt.MetaNeuralGroup attribute), 70, 94
properties (nngt.NeuralGroup attribute), 71, 98
properties (nngt.simulation.ActivityRecord at-

tribute), 38
python (nngt.database.db_generation.Computer

attribute), 193

R
ram (nngt.database.db_generation.Computer attribute),

193
random_obstacles() (nngt.geometry.Shape

method), 148
random_rewire() (in module nngt.generation), 140
random_scale_free() (in module nngt.generation),

141
randomize_neural_states() (in module

nngt.simulation), 43
raster (nngt.database.db_generation.Activity at-

tribute), 192

208 Index

NNGT Documentation, Release 2.3.0

raster_plot() (in module nngt.simulation), 43
reciprocity() (in module nngt.analysis), 124
rectangle() (nngt.geometry.Shape static method),

149
reproducible_weights() (in module

nngt.simulation), 44
reset() (in module nngt.database), 192
resolution (nngt.database.db_generation.Simulation

attribute), 195
return_quantity (nngt.geometry.Shape attribute),

149

S
save_spikes() (in module nngt.simulation), 44
save_to_file() (in module nngt), 66, 109
seed() (in module nngt), 66, 110
seed_neurons() (nngt.geometry.Shape method), 149
set_config() (in module nngt), 67, 110
set_delays() (nngt.Graph method), 57, 88
set_edge_attribute() (nngt.Graph method), 57,

89
set_minis() (in module nngt.simulation), 45
set_model() (nngt.NeuralPop method), 75, 101
set_name() (nngt.Graph method), 58, 89
set_neuron_param() (nngt.NeuralPop method), 75,

102
set_node_attribute() (nngt.Graph method), 58,

89
set_noise() (in module nngt.simulation), 45
set_parent() (nngt.geometry.Shape method), 150
set_poisson_input() (in module nngt.simulation),

45
set_positions() (nngt.SpatialGraph method), 60,

104
set_properties() (nngt.Structure method), 79, 107
set_return_units() (nngt.geometry.Shape

method), 150
set_step_currents() (in module nngt.simulation),

46
set_types() (nngt.Graph method), 58, 90
set_types() (nngt.Network method), 62, 96
set_types() (nngt.SpatialNetwork method), 64, 104
set_weights() (nngt.Graph method), 59, 90
Shape (class in nngt.geometry), 145
shape (nngt.SpatialGraph attribute), 60, 104
shapes_from_file() (in module nngt.geometry),

151
shortest_distance() (in module nngt.analysis),

124
shortest_path() (in module nngt.analysis), 125
simplify() (nngt.simulation.ActivityRecord method),

38
simulated_time (nngt.database.db_generation.Simulation

attribute), 195

Simulation (class in nngt.database.db_generation),
194

simulations (nngt.database.db_generation.Activity
attribute), 192

simulations (nngt.database.db_generation.Computer
attribute), 193

simulations (nngt.database.db_generation.Connection
attribute), 193

simulations (nngt.database.db_generation.NeuralNetwork
attribute), 194

simulator (nngt.database.db_generation.Simulation
attribute), 195

size (nngt.Group attribute), 69, 92
size (nngt.Structure attribute), 79, 108
small_world_propensity() (in module

nngt.analysis), 125
SpatialGraph (class in nngt), 59, 103
SpatialNetwork (class in nngt), 63, 104
spectral_radius() (in module nngt.analysis), 127
start_time (nngt.database.db_generation.Simulation

attribute), 195
Structure (class in nngt), 76, 105
structure (nngt.Graph attribute), 59, 91
subgraph_centrality() (in module

nngt.analysis), 127
syn_spec (nngt.NeuralPop attribute), 75, 102
Synapse (class in nngt.database.db_generation), 195
synapse (nngt.database.db_generation.Connection at-

tribute), 193
synapse_id (nngt.database.db_generation.Connection

attribute), 193

T
to_file() (nngt.Graph method), 59, 91
to_nest() (nngt.Network method), 63, 96
to_undirected() (nngt.Graph method), 91
total_firing_rate() (in module nngt.analysis),

127
transitivity() (in module nngt.analysis), 128
triangle_count() (in module nngt.analysis), 128
triplet_count() (in module nngt.analysis), 129
type (nngt.Graph attribute), 59, 91

U
uniform() (nngt.Network class method), 63, 96
uniform() (nngt.NeuralPop class method), 76, 103
uniform_distrib() (in module nngt.lib), 154
unit (nngt.geometry.Shape attribute), 150
use_backend() (in module nngt), 67, 110

W
watts_strogatz() (in module nngt.generation), 141

Index 209

NNGT Documentation, Release 2.3.0

weight_distribution
(nngt.database.db_generation.NeuralNetwork
attribute), 194

weighted (nngt.database.db_generation.NeuralNetwork
attribute), 194

210 Index

	Overview
	Main classes
	Generation of graphs
	Interacting with NEST

	The docs
	Installation
	Intro & user manual
	Tutorial
	Gallery
	Contributing to NNGT
	Database module

	Indices and tables
	Bibliography
	Python Module Index
	Index

