# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2015-2023 Tanguy Fardet
# SPDX-License-Identifier: GPL-3.0-or-later
# nngt/core/graph.py
""" Graph class for graph generation and management """
import logging
import weakref
from collections import defaultdict
from copy import deepcopy
import numpy as np
import scipy.sparse as ssp
import nngt
import nngt.analysis as na
from nngt import save_to_file
from nngt.io.graph_loading import _load_from_file, _library_load, di_get_edges
from nngt.io.io_helpers import _get_format
from nngt.io.graph_saving import _as_string
from nngt.lib import InvalidArgument, nonstring_container
from nngt.lib.connect_tools import _set_degree_type, _unique_rows
from nngt.lib.graph_helpers import _edge_prop, _get_matrices
from nngt.lib.logger import _log_message
from nngt.lib.test_functions import graph_tool_check, is_integer
from .connections import Connections
logger = logging.getLogger(__name__)
# ----- #
# Graph #
# ----- #
[docs]
class Graph(nngt.core.GraphObject):
"""
The basic graph class, which inherits from a library class such as
:class:`graph_tool.Graph`, :class:`networkx.DiGraph`, or ``igraph.Graph``.
The objects provides several functions to easily access some basic
properties.
"""
#-------------------------------------------------------------------------#
# Class properties
__num_graphs = 0
__max_id = 0
[docs]
@classmethod
def num_graphs(cls):
''' Returns the number of alive instances. '''
return cls.__num_graphs
[docs]
@classmethod
def from_library(cls, library_graph, name="ImportedGraph", weighted=True,
directed=True, **kwargs):
'''
Create a :class:`~nngt.Graph` by wrapping a graph object from one of
the supported libraries.
Parameters
----------
library_graph : object
Graph object from one of the supported libraries (graph-tool,
igraph, networkx).
name : str, optional (default: "ImportedGraph")
**kwargs
Other standard arguments (see :func:`~nngt.Graph.__init__`)
'''
graph = cls(name=name, weighted=False, **kwargs)
graph._from_library_graph(library_graph, copy=False)
return graph
[docs]
@classmethod
def from_matrix(cls, matrix, weighted=True, directed=True, population=None,
shape=None, positions=None, name=None, **kwargs):
'''
Creates a :class:`~nngt.Graph` from a :mod:`scipy.sparse` matrix or
a dense matrix.
Parameters
----------
matrix : :mod:`scipy.sparse` matrix or :class:`numpy.ndarray`
Adjacency matrix.
weighted : bool, optional (default: True)
Whether the graph edges have weight properties.
directed : bool, optional (default: True)
Whether the graph is directed or undirected.
population : :class:`~nngt.NeuralPop`
Population to associate to the new :class:`~nngt.Network`.
shape : :class:`~nngt.geometry.Shape`, optional (default: None)
Shape to associate to the new :class:`~nngt.SpatialGraph`.
positions : (N, 2) array
Positions, in a 2D space, of the N neurons.
name : str, optional
Graph name.
Returns
-------
:class:`~nngt.Graph`
'''
mshape = matrix.shape
graph_name = "FromYMatrix_Z"
nodes = max(mshape[0], mshape[1])
if issubclass(matrix.__class__, ssp.spmatrix):
graph_name = graph_name.replace('Y', 'Sparse')
if not directed:
if mshape[0] != mshape[1] or not (matrix.T != matrix).nnz == 0:
raise InvalidArgument('Incompatible `directed=False` '
'option provided for non symmetric '
'matrix.')
matrix = ssp.tril(matrix, format=matrix.format)
else:
graph_name = graph_name.replace('Y', 'Dense')
if not directed:
if mshape[0] != mshape[1] or not (matrix.T == matrix).all():
raise InvalidArgument('Incompatible `directed=False` '
'option provided for non symmetric '
'matrix.')
matrix = np.tril(matrix)
edges = np.array(matrix.nonzero()).T
graph_name = graph_name.replace("Z", str(cls.__num_graphs))
# overwrite default name if necessary
if name is not None:
graph_name = name
graph = cls(nodes, name=graph_name, weighted=weighted,
directed=directed, **kwargs)
if population is not None:
cls.make_network(graph, population)
if shape is not None or positions is not None:
cls.make_spatial(graph, shape, positions)
weights = None
if weighted:
if issubclass(matrix.__class__, ssp.spmatrix):
weights = np.array(matrix[edges[:, 0], edges[:, 1]])[0]
else:
weights = matrix[edges[:, 0], edges[:, 1]]
if len(weights.shape) == 2:
weights = weights.A1
attributes = {"weight": weights} if weighted else None
graph.new_edges(edges, attributes, check_self_loops=False,
ignore_invalid=True)
return graph
[docs]
@staticmethod
def from_file(filename, fmt="auto", separator=" ", secondary=";",
attributes=None, attributes_types=None, notifier="@",
ignore="#", from_string=False, name=None,
directed=True, cleanup=False):
'''
Import a saved graph from a file.
.. versionchanged :: 2.0
Added optional `attributes_types` and `cleanup` arguments.
Parameters
----------
filename: str
The path to the file.
fmt : str, optional (default: deduced from filename)
The format used to save the graph. Supported formats are:
"neighbour" (neighbour list), "ssp" (scipy.sparse), "edge_list"
(list of all the edges in the graph, one edge per line,
represented by a ``source target``-pair), "gml" (gml format,
default if `filename` ends with '.gml'), "graphml" (graphml format,
default if `filename` ends with '.graphml' or '.xml'), "dot" (dot
format, default if `filename` ends with '.dot'), "gt" (only
when using `graph_tool <http://graph-tool.skewed.de/>`_ as library,
detected if `filename` ends with '.gt').
separator : str, optional (default " ")
separator used to separate inputs in the case of custom formats
(namely "neighbour" and "edge_list")
secondary : str, optional (default: ";")
Secondary separator used to separate attributes in the case of
custom formats.
attributes : list, optional (default: [])
List of names for the attributes present in the file. If a
`notifier` is present in the file, names will be deduced from it;
otherwise the attributes will be numbered.
For "edge_list", attributes may also be present as additional
columns after the source and the target.
attributes_types : dict, optional (default: str)
Backup information if the type of the attributes is not specified
in the file. Values must be callables (types or functions) that
will take the argument value as a string input and convert it to
the proper type.
notifier : str, optional (default: "@")
Symbol specifying the following as meaningfull information.
Relevant information are formatted ``@info_name=info_value``, where
``info_name`` is in ("attributes", "directed", "name", "size") and
associated ``info_value`` are of type (``list``, ``bool``, ``str``,
``int``).
Additional notifiers are
``@type=SpatialGraph/Network/SpatialNetwork``, which must be
followed by the relevant notifiers among ``@shape``,
``@population``, and ``@graph``.
from_string : bool, optional (default: False)
Load from a string instead of a file.
ignore : str, optional (default: "#")
Ignore lines starting with the `ignore` string.
name : str, optional (default: from file information or 'LoadedGraph')
The name of the graph.
directed : bool, optional (default: from file information or True)
Whether the graph is directed or not.
cleanup : bool, optional (default: False)
If true, removes nodes before the first one that appears in the
edges and after the last one and renumber the nodes from 0.
Returns
-------
graph : :class:`~nngt.Graph` or subclass
Loaded graph.
'''
fmt = _get_format(fmt, filename)
if fmt not in di_get_edges:
# only partial support for these formats, relying on backend
libgraph = _library_load(filename, fmt)
name = "LoadedGraph" if name is None else name
graph = Graph.from_library(libgraph, name=name, directed=directed)
return graph
info, edges, nattr, eattr, struct, shape, pos = _load_from_file(
filename=filename, fmt=fmt, separator=separator, ignore=ignore,
secondary=secondary, attributes=attributes,
attributes_types=attributes_types, notifier=notifier,
cleanup=cleanup)
# create the graph
name = info.get("name", "LoadedGraph") if name is None else name
graph = Graph(nodes=info["size"], name=name,
directed=info.get("directed", directed))
# make the nodes attributes
lst_attr, dtpes, lst_values = [], [], []
if info["node_attributes"]: # node attributes to add to the graph
lst_attr = info["node_attributes"]
dtpes = info["node_attr_types"]
lst_values = [nattr[name] for name in info["node_attributes"]]
for nattr, dtype, values in zip(lst_attr, dtpes, lst_values):
graph.new_node_attribute(nattr, dtype, values=values)
# make the edges and their attributes
lst_attr, dtpes, lst_values = [], [], []
if info["edge_attributes"]: # edge attributes to add to the graph
lst_attr = info["edge_attributes"]
dtpes = info["edge_attr_types"]
lst_values = [eattr[name] for name in info["edge_attributes"]]
if len(edges):
graph.new_edges(edges, check_duplicates=False,
check_self_loops=False, check_existing=False)
for eattr, dtype, values in zip(lst_attr, dtpes, lst_values):
graph.new_edge_attribute(eattr, dtype, values=values)
if struct is not None:
if isinstance(struct, nngt.NeuralPop):
nngt.Network.make_network(graph, struct)
else:
graph.structure = struct
struct._parent = weakref.ref(graph)
for g in struct.values():
g._struct = weakref.ref(struct)
g._net = weakref.ref(graph)
if pos is not None or shape is not None:
nngt.SpatialGraph.make_spatial(graph, shape=shape, positions=pos)
return graph
[docs]
@staticmethod
def make_spatial(graph, shape=None, positions=None, copy=False):
'''
Turn a :class:`~nngt.Graph` object into a :class:`~nngt.SpatialGraph`,
or a :class:`~nngt.Network` into a :class:`~nngt.SpatialNetwork`.
Parameters
----------
graph : :class:`~nngt.Graph` or :class:`~nngt.SpatialGraph`
Graph to convert.
shape : :class:`~nngt.geometry.Shape`, optional (default: None)
Shape to associate to the new :class:`~nngt.SpatialGraph`.
positions : (N, 2) array
Positions, in a 2D space, of the N neurons.
copy : bool, optional (default: ``False``)
Whether the operation should be made in-place on the object or if a
new object should be returned.
Notes
-----
In-place operation that directly converts the original graph if `copy`
is ``False``, else returns the copied :class:`~nngt.Graph` turned into
a :class:`~nngt.SpatialGraph`.
The `shape` argument can be skipped if `positions` are given; in that
case, the neurons will be embedded in a rectangle that contains them
all.
'''
if copy:
graph = graph.copy()
if isinstance(graph, nngt.Network):
graph.__class__ = nngt.SpatialNetwork
else:
graph.__class__ = nngt.SpatialGraph
graph._init_spatial_properties(shape, positions)
if copy:
return graph
[docs]
@staticmethod
def make_network(graph, neural_pop, copy=False, **kwargs):
'''
Turn a :class:`~nngt.Graph` object into a :class:`~nngt.Network`, or a
:class:`~nngt.SpatialGraph` into a :class:`~nngt.SpatialNetwork`.
Parameters
----------
graph : :class:`~nngt.Graph` or :class:`~nngt.SpatialGraph`
Graph to convert
neural_pop : :class:`~nngt.NeuralPop`
Population to associate to the new :class:`~nngt.Network`
copy : bool, optional (default: ``False``)
Whether the operation should be made in-place on the object or if a
new object should be returned.
Notes
-----
In-place operation that directly converts the original graph if `copy`
is ``False``, else returns the copied :class:`~nngt.Graph` turned into
a :class:`~nngt.Network`.
'''
if copy:
graph = graph.copy()
if isinstance(graph, nngt.SpatialGraph):
graph.__class__ = nngt.SpatialNetwork
else:
graph.__class__ = nngt.Network
# set delays to 1. or to provided value if they are not already set
if "delays" not in kwargs and not hasattr(graph, '_d'):
graph._d = {"distribution": "constant", "value": 1.}
elif "delays" in kwargs and not hasattr(graph, '_d'):
graph._d = kwargs["delays"]
elif "delays" in kwargs:
_log_message(logger, "WARNING",
'Graph already had delays set, ignoring new ones.')
graph._init_bioproperties(neural_pop)
if copy:
return graph
#-------------------------------------------------------------------------#
# Constructor/destructor and properties
def __new__(cls, *args, **kwargs):
'''
Create a new Graph object.
'''
has_pop = False
is_sptl = False
for arg in args:
if isinstance(arg, nngt.geometry.Shape):
is_sptl = True
if isinstance(arg, nngt.NeuralPop):
has_pop = True
if "population" in kwargs:
has_pop = True
if kwargs.get("shape") is not None \
or kwargs.get("positions") is not None:
is_sptl = True
if is_sptl and has_pop:
cls = nngt.SpatialNetwork
elif is_sptl:
cls = nngt.SpatialGraph
elif has_pop:
cls = nngt.Network
return super().__new__(cls)
def __init__(self, nodes=None, name="Graph", weighted=True, directed=True,
copy_graph=None, structure=None, **kwargs):
'''
Initialize Graph instance
.. versionchanged:: 2.0
Renamed `from_graph` to `copy_graph`.
.. versionchanged:: 2.2
Added `structure` argument.
Parameters
----------
nodes : int, optional (default: 0)
Number of nodes in the graph.
name : string, optional (default: "Graph")
The name of this :class:`Graph` instance.
weighted : bool, optional (default: True)
Whether the graph edges have weight properties.
directed : bool, optional (default: True)
Whether the graph is directed or undirected.
copy_graph : :class:`~nngt.Graph`, optional
An optional :class:`~nngt.Graph` that will be copied.
structure : :class:`~nngt.Structure`, optional (default: None)
A structure dividing the graph into specific groups, which can
be used to generate specific connectivities and visualise the
connections in a more coarse-grained manner.
kwargs : optional keywords arguments
Optional arguments that can be passed to the graph, e.g. a dict
containing information on the synaptic weights
(``weights={"distribution": "constant", "value": 2.3}`` which is
equivalent to ``weights=2.3``), the synaptic `delays`, or a
``type`` information.
Note
----
When using `copy_graph`, only the topological properties are
copied (nodes, edges, and attributes), spatial and biological
properties are ignored.
To copy a graph exactly, use :func:`~nngt.Graph.copy`.
Returns
-------
self : :class:`~nngt.Graph`
'''
self.__id = self.__class__.__max_id
self._name = name
self._graph_type = kwargs["type"] if "type" in kwargs else "custom"
# check the structure
if structure is not None:
if nodes is None:
nodes = structure.size
else:
assert nodes == structure.size, \
"`nodes` and `structure.size` must be the same."
else:
nodes = 0 if nodes is None else nodes
self._struct = structure
# Init the core.GraphObject
super().__init__(nodes=nodes, copy_graph=copy_graph,
directed=directed, weighted=weighted)
# take care of the weights and delays
if copy_graph is None:
if weighted:
self.new_edge_attribute('weight', 'double')
self._w = _edge_prop(kwargs.get("weights", None))
if "delays" in kwargs:
self.new_edge_attribute('delay', 'double')
self._d = _edge_prop(kwargs.get("delays", None))
if 'inh_weight_factor' in kwargs:
self._iwf = kwargs['inh_weight_factor']
else:
self._w = getattr(copy_graph, "_w", None)
self._d = getattr(copy_graph, "_d", None)
self._iwf = getattr(copy_graph, "_iwf", None)
self._eattr._num_values_set = \
copy_graph._eattr._num_values_set.copy()
# check kwargs
kw_set = {"weights", "delays", "type", "inh_weight_factor"}
remaining = set(kwargs) - kw_set
for kw in remaining:
if kwargs[kw] is not None:
_log_message(logger, "WARNING", "Unused keyword argument '" +
kw + "'.")
# update the counters
self.__class__.__num_graphs += 1
self.__class__.__max_id += 1
def __del__(self):
''' Graph deletion (update graph count) '''
self.__class__.__num_graphs -= 1
def __repr__(self):
''' Provide unambiguous informations regarding the object. '''
d = "directed" if self.is_directed() else "undirected"
w = "weighted" if self.is_weighted() else "binary"
t = self.type
n = self.node_nb()
e = self.edge_nb()
return "<{directed}/{weighted} {obj} object of type '{net_type}' " \
"with {nodes} nodes and {edges} edges at 0x{obj_id}>".format(
directed=d, weighted=w, obj=type(self).__name__,
net_type=t, nodes=n, edges=e, obj_id=id(self))
def __str__(self):
'''
Return the full string description of the object as would be stored
inside a file when saving the graph.
'''
return _as_string(self)
@property
def graph(self):
'''
Returns the underlying library object.
.. warning ::
Do not add or remove edges directly through this object.
See also
--------
:ref:`graph_attr`
:ref:`graph-analysis`.
'''
return self._graph
@property
def structure(self):
'''
Object structuring the graph into specific groups.
.. versionadded: 2.2
Note
----
Points to :py:obj:`~nngt.Network.population` if the graph is a
:class:`~nngt.Network`.
'''
if self.is_network():
return self.population
return self._struct
@structure.setter
def structure(self, structure):
if self.is_network():
self.population = structure
else:
if issubclass(structure.__class__, nngt.Structure):
if self.node_nb() == structure.size:
if structure.is_valid:
self._struct = structure
else:
raise AttributeError(
"Structure is not valid (not all nodes are "
"associated to a group).")
else:
raise AttributeError("Graph and Structure must have same "
"number of nodes.")
else:
raise AttributeError(
"Expecting Structure but received '{}'.".format(
structure.__class__.__name__))
@property
def graph_id(self):
''' Unique :class:`int` identifying the instance. '''
return self.__id
@property
def name(self):
''' Name of the graph. '''
return self._name
@property
def type(self):
''' Type of the graph. '''
return self._graph_type
#-------------------------------------------------------------------------#
# Graph actions
[docs]
def copy(self):
'''
Returns a deepcopy of the current :class:`~nngt.Graph`
instance
'''
if nngt.get_config("mpi"):
raise NotImplementedError("`copy` is not MPI-safe yet.")
gc_instance = Graph(name=self._name + '_copy',
weighted=self.is_weighted(), copy_graph=self,
directed=self.is_directed())
if self.is_spatial():
nngt.SpatialGraph.make_spatial(
gc_instance, shape=self.shape.copy(),
positions=deepcopy(self._pos))
if self.is_network():
nngt.Network.make_network(gc_instance, self.population.copy())
return gc_instance
[docs]
def to_file(self, filename, fmt="auto", separator=" ", secondary=";",
attributes=None, notifier="@"):
'''
Save graph to file; options detailed below.
See also
--------
:py:func:`nngt.lib.save_to_file` function for options.
'''
save_to_file(self, filename, fmt=fmt, separator=separator,
secondary=secondary, attributes=attributes,
notifier=notifier)
#~ def inhibitory_subgraph(self):
#~ ''' Create a :class:`~nngt.Graph` instance which graph
#~ contains only the inhibitory edges of the current instance's
#~ :class:`graph_tool.Graph` '''
#~ eprop_b_type = self.new_edge_property(
#~ "bool",-self.edge_properties[TYPE].a+1)
#~ self.set_edge_filter(eprop_b_type)
#~ inhib_graph = Graph( name=self._name + '_inhib',
#~ weighted=self._weighted,
#~ from_graph=core.GraphObject(self.prune=True) )
#~ self.clear_filters()
#~ return inhib_graph
#~ def excitatory_subgraph(self):
#~ '''
#~ Create a :class:`~nngt.Graph` instance which graph contains only the
#~ excitatory edges of the current instance's :class:`core.GraphObject`.
#~ .. warning ::
#~ Only works for graph_tool
#~ .. todo ::
#~ Make this method library independant!
#~ '''
#~ eprop_b_type = self.new_edge_property(
#~ "bool",self.edge_properties[TYPE].a+1)
#~ self.set_edge_filter(eprop_b_type)
#~ exc_graph = Graph( name=self._name + '_exc',
#~ weighted=self._weighted,
#~ graph=core.GraphObject(self.prune=True) )
#~ self.clear_filters()
#~ return exc_graph
[docs]
def to_undirected(self, combine_numeric_eattr="sum"):
'''
Convert the graph to its undirected variant.
.. note::
All non-numeric edge attributes will be discarded from the returned
undirected graph.
Parameters
----------
combine_numeric_eattr : str, optional (default: "sum")
How to combine numeric attributes from reciprocal edges.
Can be either:
- "sum" (attributes are summed)
- "min" (smallest value is kept)
- "max" (largest value is kept)
- "mean" (the average of both attributes is taken)
In addition, `combine_numeric_eattr` can be a dictionary with one
entry for each edge attribute.
'''
shape = self.shape if self.is_spatial() else None
pos = self.get_positions() if self.is_spatial() else None
# Network cannot be undirected so convert NeuralPop to Structure and
# Network to Graph if necessary
structure = None
if isinstance(self.structure, nngt.NeuralPop):
structure = nngt.Structure.from_groups(self.structure)
cls = nngt.SpatialGraph if isinstance(self, nngt.SpatialGraph) \
else nngt.Graph
g = cls(nodes=self.node_nb(), weighted=self.is_weighted(),
shape=shape, positions=pos, directed=False,
structure=structure)
# replicate node attributes
for nattr in self.node_attributes:
g.new_node_attribute(nattr, self.get_attribute_type(nattr, "node"),
self.node_attributes[nattr])
# prepare edges
eattrs = set(self.edge_attributes)
# prepare combine method
if isinstance(combine_numeric_eattr, str):
val = str(combine_numeric_eattr)
combine_numeric_eattr = defaultdict(lambda: val)
elif isinstance(combine_numeric_eattr, dict):
combine_numeric_eattr = defaultdict(
lambda: "sum", **combine_numeric_eattr)
# find integer eattr
numeric_eattr = "weight" if "weight" in eattrs else None
numeric_types = ("int", "double")
if numeric_eattr is None:
for eattr in eattrs:
if self.get_attribute_type(eattr, "edge") in numeric_types:
numeric_eattr = eattr
break
if numeric_eattr is not None:
eattrs.discard(numeric_eattr)
combine = combine_numeric_eattr[numeric_eattr]
_, umat = _get_matrices(
self, directed=False, weights=numeric_eattr, weighted=True,
combine_weights=combine, remove_self_loops=False)
umat = ssp.tril(umat, format="csr")
# create the initial edge attribute
g.new_edge_attribute(
numeric_eattr, self.get_attribute_type(numeric_eattr, "edge"))
indptr = umat.indptr
diff = np.diff(indptr)
keep = np.where(diff)[0]
sources = np.repeat(keep, diff[keep])
# make and add the edges and the first eattr
edges = np.array((sources, umat.indices)).T
g.new_edges(edges, attributes={"weight": umat.data},
check_self_loops=False)
# add all other edge attributes
for eattr in eattrs:
etype = self.get_attribute_type(eattr, "edge")
combine = combine_numeric_eattr[eattr]
if etype in numeric_types:
if np.all(self.edge_attributes[eattr] > 0):
_, umat = _get_matrices(
self, directed=False, weights=eattr, weighted=True,
combine_weights=combine, remove_self_loops=False)
umat = ssp.tril(umat, format="csr")
g.new_edge_attribute(
eattr, self.get_attribute_type(eattr, "edge"),
values=umat.data)
else:
aa = list(self.edge_attributes[eattr])
adict = {
tuple(e): val
for e, val in zip(self.edges_array, aa)
}
f = None
if combine == "max":
f = np.max
elif combine == "min":
f = np.min
elif combine == "mean":
f = np.mean
elif combine == "sum":
f = np.sum
else:
raise ValueError(
"Invalid combination mode '{}'.".format(
combine))
values = [
f([adict[e] for e in {tuple(e0), tuple(e0[::-1])}
if e in adict]) for e0 in g.edges_array
]
g.new_edge_attribute(
eattr, self.get_attribute_type(eattr, "edge"),
values=values)
else:
# hide existing edge warning
from nngt.lib.connect_tools import logger as lg
old_loglevel = lg.level
lg.setLevel(logging.ERROR)
g.new_edges(self.edges_array, ignore_invalid=True)
# restore previous logging level
lg.setLevel(old_loglevel)
return g
[docs]
def get_structure_graph(self):
'''
Return a coarse-grained version of the graph containing one node
per :class:`nngt.Group`.
Connections between groups are associated to the sum of all connection
weights.
If no structure is present, returns an empty Graph.
'''
struct = self.structure
if struct is None:
return Graph()
names = list(struct.keys())
nodes = len(struct)
g = nngt.Graph(nodes,
name="Structure-graph of '{}'".format(self.name))
eattr = {"weight": []}
if self.is_network():
eattr["delay"] = []
new_edges = []
for i, n1 in enumerate(names):
g1 = struct[n1]
for j, n2 in enumerate(names):
g2 = struct[n2]
edges = self.get_edges(source_node=g1.ids, target_node=g2.ids)
if len(edges):
weights = self.get_weights(edges=edges)
w = np.sum(weights)
eattr["weight"].append(w)
if self.is_network():
delays = self.get_delays(edges=edges)
d = np.average(delays)
eattr["delay"].append(d)
new_edges.append((i, j))
# add edges and attributes
if self.is_network():
g.new_edge_attribute("delay", "double")
g.new_edges(new_edges, attributes=eattr, check_self_loops=False)
# set node attributes
g.new_node_attribute("name", "string", values=names)
return g
#-------------------------------------------------------------------------#
# Getters
[docs]
def adjacency_matrix(self, types=False, weights=False, mformat="csr"):
'''
Return the graph adjacency matrix.
.. versionchanged: 2.0
Added matrix format option (`mformat`).
Note
----
Source nodes are represented by the rows, targets by the
corresponding columns.
Parameters
----------
types : bool, optional (default: False)
Wether the edge types should be taken into account (negative values
for inhibitory connections).
weights : bool or string, optional (default: False)
Whether the adjacecy matrix should be weighted. If True, all
connections are multiply bythe associated synaptic strength; if
weight is a string, the connections are scaled bythe corresponding
edge attribute.
mformat : str, optional (default: "csr")
Type of :mod:`scipy.sparse` matrix that will be returned, by
default :class:`scipy.sparse.csr_matrix`.
Returns
-------
mat : :mod:`scipy.sparse` matrix
The adjacency matrix of the graph.
'''
weights = "weight" if weights is True else weights
mat = None
if types:
if self.is_network():
# use inhibitory nodes
mat = nngt.analyze_graph["adjacency"](self, weights)
inh = self.population.inhibitory
if np.any(inh):
mat[inh, :] *= -1
elif 'type' in self.node_attributes:
mat = nngt.analyze_graph["adjacency"](self, weights)
tarray = np.where(self.node_attributes['type'] < 0)[0]
if np.any(tarray):
mat[tarray] *= -1
elif types and 'type' in self.edge_attributes:
data = None
if nonstring_container(weights):
data = weights
elif weights in {None, False}:
data = np.ones(self.edge_nb())
else:
data = self.get_edge_attributes(name=weights)
data *= self.get_edge_attributes(name="type")
edges = self.edges_array
num_nodes = self.node_nb()
mat = ssp.coo_matrix(
(data, (edges[:, 0], edges[:, 1])),
shape=(num_nodes, num_nodes)).tocsr()
if not self.is_directed():
mat += mat.T
return mat.asformat(mformat)
# untyped
mat = nngt.analyze_graph["adjacency"](self, weights, mformat=mformat)
return mat
@property
def node_attributes(self):
'''
Access node attributes.
See also
--------
:attr:`~nngt.Graph.edge_attributes`,
:attr:`~nngt.Graph.get_node_attributes`,
:attr:`~nngt.Graph.new_node_attribute`,
:attr:`~nngt.Graph.set_node_attribute`.
'''
return self._nattr
@property
def edge_attributes(self):
'''
Access edge attributes.
See also
--------
:attr:`~nngt.Graph.node_attributes`,
:attr:`~nngt.Graph.get_edge_attributes`,
:attr:`~nngt.Graph.new_edge_attribute`,
:attr:`~nngt.Graph.set_edge_attribute`.
'''
return self._eattr
[docs]
def get_nodes(self, attribute=None, value=None):
'''
Return the nodes in the network fulfilling a given condition.
Parameters
----------
attribute : str, optional (default: all nodes)
Whether the `attribute` of the returned nodes should have a specific
value.
value : object, optional (default : None)
If an `attribute` name is passed, then only nodes with `attribute`
being equal to `value` will be returned.
See also
--------
:func:`~nngt.Graph.get_edges`, :attr:`~nngt.Graph.node_attributes`
'''
if attribute is None:
return [i for i in range(self.node_nb())]
vtype = self._nattr.value_type(attribute)
if value is None and vtype != "object":
raise ValueError("`value` cannot be None for attribute '" +
attribute + "'.")
return np.where(
self.get_node_attributes(name=attribute) == value)[0]
[docs]
def get_edges(self, attribute=None, value=None, source_node=None,
target_node=None):
'''
Return the edges in the network fulfilling a given condition.
For undirected graphs, edges are always returned in the order
:math:`(u, v)` where :math:`u <= v`.
.. warning ::
Contrary to :func:`~nngt.Graph.edges_array` that returns edges
ordered by creation time (i.e. corresponding to the order of the
edge attribute array), this function does not enforce any specific
edge order.
This also means that, if order does not matter, it may be faster
to call ``get_edges`` that to call ``edges_array``.
Parameters
----------
attribute : str, optional (default: all nodes)
Whether the `attribute` of the returned edges should have a
specific value.
value : object, optional (default : None)
If an `attribute` name is passed, then only edges with `attribute`
being equal to `value` will be returned.
source_node : int or list of ints, optional (default: all nodes)
Retrict the edges to those stemming from `source_node`.
target_node : int or list of ints, optional (default: all nodes)
Retrict the edges to those arriving at `target_node`.
Returns
-------
A list of edges (2-tuples).
See also
--------
:func:`~nngt.Graph.get_nodes`, :attr:`~nngt.Graph.edge_attributes`,
:func:`~nngt.Graph.edges_array`
'''
edges = None
if is_integer(source_node) and is_integer(target_node):
# check that the edge exists, throw error otherwise
self.edge_id((source_node, target_node))
edges = [(source_node, target_node)]
else:
# backend-specific implementation for source or target
edges = self._get_edges(source_node=source_node,
target_node=target_node)
# check attributes
if attribute is None:
return edges
vtype = self._eattr.value_type(attribute)
if value is None and vtype != "object":
raise ValueError("`value` cannot be None for attribute '" +
attribute + "'.")
desired = (self.get_edge_attributes(edges, attribute) == value)
return [tuple(e) for e in self.edges_array[desired]]
[docs]
def get_edge_attributes(self, edges=None, name=None):
'''
Attributes of the graph's edges.
Parameters
----------
edges : tuple or list of tuples, optional (default: ``None``)
Edge whose attribute should be displayed.
name : str, optional (default: ``None``)
Name of the desired attribute.
Returns
-------
Dict containing all graph's attributes (synaptic weights, delays...)
by default. If `edge` is specified, returns only the values for these
edges. If `name` is specified, returns value of the attribute for each
edge.
Note
----
The attributes values are ordered as the edges in
:func:`~nngt.Graph.edges_array` if `edges` is None.
See also
--------
:func:`~nngt.Graph.get_node_attributes`,
:func:`~nngt.Graph.new_edge_attribute`,
:func:`~nngt.Graph.set_edge_attribute`,
:func:`~nngt.Graph.new_node_attribute`,
:func:`~nngt.Graph.set_node_attribute`
'''
if name is not None and edges is not None:
if len(edges):
return self._eattr.get_eattr(edges=edges, name=name)
return np.array([])
elif name is None and edges is None:
return {k: self._eattr[k]
for k in self._eattr.keys()}
elif name is None:
return self._eattr.get_eattr(edges=edges)
return self._eattr[name]
[docs]
def get_node_attributes(self, nodes=None, name=None):
'''
Attributes of the graph's edges.
.. versionchanged:: 1.0.1
Corrected default behavior and made it the same as
:func:`~nngt.Graph.get_edge_attributes`.
.. versionadded:: 0.9
Parameters
----------
nodes : list of ints, optional (default: ``None``)
Nodes whose attribute should be displayed.
name : str, optional (default: ``None``)
Name of the desired attribute.
Returns
-------
Dict containing all nodes attributes by default. If `nodes` is
specified, returns a ``dict`` containing only the attributes of these
nodes. If `name` is specified, returns a list containing the values of
the specific attribute for the required nodes (or all nodes if
unspecified).
See also
--------
:func:`~nngt.Graph.get_edge_attributes`,
:func:`~nngt.Graph.new_node_attribute`,
:func:`~nngt.Graph.set_node_attribute`,
:func:`~nngt.Graph.new_edge_attributes`,
:func:`~nngt.Graph.set_edge_attribute`
'''
res = None
if name is None:
res = {k: self._nattr[k] for k in self._nattr.keys()}
else:
res = self._nattr[name]
if nodes is None:
return res
if isinstance(nodes, (slice, int)) or nonstring_container(nodes):
if isinstance(res, dict):
return {k: v[nodes] for k, v in res.items()}
return res[nodes]
else:
raise ValueError("Invalid `nodes`: "
"{}, use slice, int, or list".format(nodes))
[docs]
def get_attribute_type(self, attribute_name, attribute_class=None):
'''
Return the type of an attribute (e.g. string, double, int).
Parameters
----------
attribute_name : str
Name of the attribute.
attribute_class : str, optional (default: both)
Whether `attribute_name` is a "node" or an "edge" attribute.
Returns
-------
type : str
Type of the attribute.
'''
if attribute_class is None:
is_eattr = attribute_name in self._eattr
is_nattr = attribute_name in self._nattr
if is_eattr and is_nattr:
raise RuntimeError("Both edge and node attributes with name '"
+ attribute_name + "' exist, please "
"specify `attribute_class`")
elif is_eattr:
return self._eattr.value_type(attribute_name)
elif is_nattr:
return self._nattr.value_type(attribute_name)
else:
raise KeyError("No '{}' attribute.".format(attribute_name))
else:
if attribute_class == "edge":
return self._eattr.value_type(attribute_name)
elif attribute_class == "node":
return self._nattr.value_type(attribute_name)
else:
raise InvalidArgument(
"Unknown attribute class '{}'.".format(attribute_class))
[docs]
def get_density(self, ignore_loops=True):
'''
Density of the graph.
Parameters
----------
ignore_loops : bool, optional (default: True)
Whether self-loops should be considered.
Note
----
The density is computed via :math:`(2 - d)\\frac{E}{N(N - 1)}` if
`ignore_loops` is True, or via :math:`\\frac{E}{N(N - 1) / (2 - d) + N}`
if it is False.
`E` is the number of edges, `N` the number of nodes, and `d` is 0 if
the graph is undirected and 1 if it is directed.
'''
E = self.edge_nb()
N = self.node_nb()
if ignore_loops:
return E / (N * (N - 1) / (2 - self.is_directed()) + N)
return (2 - self.is_directed()) * E / (N * (N - 1))
[docs]
def is_weighted(self):
''' Whether the edges have weights '''
return "weight" in self.edge_attributes
[docs]
def is_directed(self):
''' Whether the graph is directed or not '''
return self._graph.is_directed()
[docs]
def is_connected(self, mode="strong"):
'''
Return whether the graph is connected.
Parameters
----------
mode : str, optional (default: "strong")
Whether to test connectedness with directed ("strong") or
undirected ("weak") connections.
References
----------
.. [ig-connected] :igdoc:`is_connected`
'''
return super().is_connected()
[docs]
def get_degrees(self, mode="total", nodes=None, weights=None,
edge_type="all"):
'''
Degree sequence of all the nodes.
.. versionchanged:: 2.0
Changed `deg_type` to `mode`, `node_list` to `nodes`, `use_weights`
to `weights`, and `edge_type` to `edge_type`.
Parameters
----------
mode : string, optional (default: "total")
Degree type (among 'in', 'out' or 'total').
nodes : list, optional (default: None)
List of the nodes which degree should be returned
weights : bool or str, optional (default: binary edges)
Whether edge weights should be considered; if ``None`` or ``False``
then use binary edges; if ``True``, uses the 'weight' edge
attribute, otherwise uses any valid edge attribute required.
edge_type : int or str, optional (default: all)
Restrict to a given synaptic type ("excitatory", 1, or
"inhibitory", -1), using either the "type" edge attribute for
non-:class:`~nngt.Network` or the
:py:attr:`~nngt.NeuralPop.inhibitory` nodes.
Returns
-------
degrees : :class:`numpy.array`
.. warning ::
When using MPI with "nngt" (distributed) backend, returns only the
degrees associated to local edges. "Complete" degrees are obtained
by taking the sum of the results on all MPI processes.
'''
mode = _set_degree_type(mode)
if edge_type == "all":
return super().get_degrees(
mode=mode, nodes=nodes, weights=weights)
elif edge_type in {"excitatory", 1}:
edge_type = 1
elif edge_type in {"inhibitory", -1}:
edge_type = -1
else:
raise InvalidArgument(
"Invalid edge type '{}'".format(edge_type))
degrees = np.zeros(self.node_nb())
if isinstance(self, nngt.Network):
neurons = []
for g in self.population.values():
if g.neuron_type == edge_type:
neurons.extend(g.ids)
if mode in {"in", "all"} or not self.is_directed():
degrees += self.adjacency_matrix(
weights=weights,
types=False)[neurons, :].sum(axis=0).A1
if mode in {"out", "all"} and self.is_directed():
degrees += self.adjacency_matrix(
weights=weights,
types=False)[neurons, :].sum(axis=1).A1
else:
edges = np.where(
self.get_edge_attributes(name="type") == edge_type)[0]
w = None
if weights is None:
w = np.ones(len(edges))
elif weights in self.edge_attributes:
w = self.edge_attributes[weights]
elif nonstring_container(weights):
w = np.array(weights)
else:
raise InvalidArgument(
"Invalid `weights` '{}'".format(weights))
# count in-degrees
if mode in {"in", "all"} or not self.is_directed():
np.add.at(degrees, edges[1], weights)
if mode in {"out", "all"} and self.is_directed():
np.add.at(degrees, edges[0], weights)
if nodes is None:
return degrees
return degrees[nodes]
[docs]
def get_betweenness(self, btype="both", weights=None):
'''
Returns the normalized betweenness centrality of the nodes and edges.
Parameters
----------
g : :class:`~nngt.Graph`
Graph to analyze.
btype : str, optional (default 'both')
The centrality that should be returned (either 'node', 'edge', or
'both'). By default, both betweenness centralities are computed.
weights : bool or str, optional (default: binary edges)
Whether edge weights should be considered; if ``None`` or
``False`` then use binary edges; if ``True``, uses the 'weight'
edge attribute, otherwise uses any valid edge attribute required.
Returns
-------
nb : :class:`numpy.ndarray`
The nodes' betweenness if `btype` is 'node' or 'both'
eb : :class:`numpy.ndarray`
The edges' betweenness if `btype` is 'edge' or 'both'
See also
--------
:func:`~nngt.analysis.betweenness`
'''
from nngt.analysis import betweenness
return betweenness(self, btype=btype, weights=weights)
[docs]
def get_edge_types(self, edges=None):
'''
Return the type of all or a subset of the edges.
Parameters
----------
edges : (E, 2) array, optional (default: all edges)
Edges for which the type should be returned.
Returns
-------
the list of types (1 for excitatory, -1 for inhibitory)
'''
if TYPE in self.edge_attributes:
return self.get_edge_attributes(name=TYPE, edges=edges)
else:
size = self.edge_nb() if edges is None else len(edges)
return np.ones(size)
[docs]
def get_weights(self, edges=None):
'''
Returns the weights of all or a subset of the edges.
.. versionchanged:: 1.0.1
Added the possibility to ask for a subset of edges.
Parameters
----------
edges : (E, 2) array, optional (default: all edges)
Edges for which the type should be returned.
Returns
-------
the list of weights
'''
if self.is_weighted():
if edges is None:
return self._eattr["weight"]
if len(edges) == 0:
return np.array([])
return self._eattr.get_eattr(edges, "weight")
size = self.edge_nb() if edges is None else len(edges)
return np.ones(size)
[docs]
def get_delays(self, edges=None):
'''
Returns the delays of all or a subset of the edges.
.. versionchanged:: 1.0.1
Added the possibility to ask for a subset of edges.
Parameters
----------
edges : (E, 2) array, optional (default: all edges)
Edges for which the type should be returned.
Returns
-------
the list of delays
'''
if edges is None:
return self._eattr["delay"]
return self._eattr.get_eattr(edges, "delay")
[docs]
def neighbours(self, node, mode="all"):
'''
Return the neighbours of `node`.
Parameters
----------
node : int
Index of the node of interest.
mode : string, optional (default: "all")
Type of neighbours that will be returned: "all" returns all the
neighbours regardless of directionality, "in" returns the
in-neighbours (also called predecessors) and "out" retruns the
out-neighbours (or successors).
Returns
-------
neighbours : set
The neighbours of `node`.
'''
return super().neighbours(node, mode=mode)
[docs]
def is_spatial(self):
'''
Whether the graph is embedded in space (i.e. is a subclass of
:class:`~nngt.SpatialGraph`).
'''
return issubclass(self.__class__, nngt.SpatialGraph)
[docs]
def is_network(self):
'''
Whether the graph is a subclass of :class:`~nngt.Network` (i.e. if it
has a :class:`~nngt.NeuralPop` attribute).
'''
return issubclass(self.__class__, nngt.Network)
#-------------------------------------------------------------------------#
# Setters
[docs]
def set_name(self, name=None):
''' Set graph name '''
if name is None:
self._name = "Graph_" + str(self.__id)
else:
self._name = name
[docs]
def new_edge_attribute(self, name, value_type, values=None, val=None):
'''
Create a new attribute for the edges.
Parameters
----------
name : str
The name of the new attribute.
value_type : str
Type of the attribute, among 'int', 'double', 'string', or 'object'
values : array, optional (default: None)
Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)
val : int, float or str , optional (default: None)
Identical value for all edges.
'''
assert name != "eid", "`eid` is a reserved internal edge-attribute."
self._eattr.new_attribute(
name, value_type, values=values, val=val)
[docs]
def new_node_attribute(self, name, value_type, values=None, val=None):
'''
Create a new attribute for the nodes.
Parameters
----------
name : str
The name of the new attribute.
value_type : str
Type of the attribute, among 'int', 'double', 'string', or 'object'
values : array, optional (default: None)
Values with which the node attribute should be initialized.
(must have one entry per node in the graph)
val : int, float or str , optional (default: None)
Identical value for all nodes.
See also
--------
:func:`~nngt.Graph.new_edge_attribute`,
:func:`~nngt.Graph.set_node_attribute`,
:func:`~nngt.Graph.get_node_attributes`,
:func:`~nngt.Graph.set_edge_attribute`,
:func:`~nngt.Graph.get_edge_attributes`
'''
self._nattr.new_attribute(
name, value_type, values=values, val=val)
[docs]
def set_edge_attribute(self, attribute, values=None, val=None,
value_type=None, edges=None):
'''
Set attributes to the connections between neurons.
.. warning ::
The special "type" attribute cannot be modified when using graphs
that inherit from the :class:`~nngt.Network` class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the :class:`nngt.NeuralGroup` they
belong to.
Parameters
----------
attribute : str
The name of the attribute.
value_type : str
Type of the attribute, among 'int', 'double', 'string'
values : array, optional (default: None)
Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)
val : int, float or str , optional (default: None)
Identical value for all edges.
value_type : str, optional (default: None)
Type of the attribute, among 'int', 'double', 'string'. Only used
if the attribute does not exist and must be created.
edges : list of edges or array of shape (E, 2), optional (default: all)
Edges whose attributes should be set. Others will remain unchanged.
See also
--------
:func:`~nngt.Graph.set_node_attribute`,
:func:`~nngt.Graph.get_edge_attributes`,
:func:`~nngt.Graph.new_edge_attribute`,
:func:`~nngt.Graph.new_node_attribute`,
:func:`~nngt.Graph.get_node_attributes`
'''
if attribute not in self.edge_attributes:
assert value_type is not None, "`value_type` is necessary for " +\
"new attributes."
self.new_edge_attribute(name=attribute, value_type=value_type,
values=values, val=val)
else:
num_edges = self.edge_nb() if edges is None else len(edges)
if values is None:
if val is not None:
values = [deepcopy(val) for _ in range(num_edges)]
else:
raise InvalidArgument("At least one of the `values` and "
"`val` arguments should not be ``None``.")
self._eattr.set_attribute(attribute, values, edges=edges)
[docs]
def set_node_attribute(self, attribute, values=None, val=None,
value_type=None, nodes=None):
'''
Set attributes to the connections between neurons.
Parameters
----------
attribute : str
The name of the attribute.
value_type : str
Type of the attribute, among 'int', 'double', 'string'
values : array, optional (default: None)
Values with which the edge attribute should be initialized.
(must have one entry per node in the graph)
val : int, float or str , optional (default: None)
Identical value for all edges.
value_type : str, optional (default: None)
Type of the attribute, among 'int', 'double', 'string'. Only used
if the attribute does not exist and must be created.
nodes : list of nodes, optional (default: all)
Nodes whose attributes should be set. Others will remain unchanged.
See also
--------
:func:`~nngt.Graph.set_edge_attribute`,
:func:`~nngt.Graph.new_node_attribute`,
:func:`~nngt.Graph.get_node_attributes`,
:func:`~nngt.Graph.new_edge_attribute`,
:func:`~nngt.Graph.get_edge_attributes`,
'''
if attribute not in self.node_attributes:
assert value_type is not None, "`value_type` is necessary for " +\
"new attributes."
self.new_node_attribute(name=attribute, value_type=value_type,
values=values, val=val)
else:
num_nodes = self.node_nb() if nodes is None else len(nodes)
if values is None:
if val is not None:
values = [deepcopy(val) for _ in range(num_nodes)]
else:
raise InvalidArgument("At least one of the `values` and "
"`val` arguments should not be ``None``.")
self._nattr.set_attribute(attribute, values, nodes=nodes)
[docs]
def set_weights(self, weight=None, elist=None, distribution=None,
parameters=None, noise_scale=None):
'''
Set the synaptic weights.
Parameters
----------
weight : float or class:`numpy.array`, optional (default: None)
Value or list of the weights (for user defined weights).
elist : class:`numpy.array`, optional (default: None)
List of the edges (for user defined weights).
distribution : class:`string`, optional (default: None)
Type of distribution (choose among "constant", "uniform",
"gaussian", "lognormal", "lin_corr", "log_corr").
parameters : dict, optional (default: {})
Dictionary containing the properties of the weight distribution.
Properties are as follow for the distributions
- 'constant': 'value'
- 'uniform': 'lower', 'upper'
- 'gaussian': 'avg', 'std'
- 'lognormal': 'position', 'scale'
noise_scale : class:`int`, optional (default: None)
Scale of the multiplicative Gaussian noise that should be applied
on the weights.
Note
----
If `distribution` and `parameters` are provided and the weights are set
for the whole graph (`elist` is None), then the distribution properties
will be kept as the new default for subsequent edges. That is, if new
edges are created without specifying their weights, then these new
weights will automatically be drawn from this previous distribution.
'''
if isinstance(weight, float):
size = self.edge_nb() if elist is None else len(elist)
self._w = {"distribution": "constant", "value": weight}
weight = np.repeat(weight, size)
elif not nonstring_container(weight) and weight is not None:
raise AttributeError("Invalid `weight` value: must be either "
"float, array-like or None.")
elif weight is not None:
self._w = {"distribution": "custom"}
elif None not in (distribution, parameters) and elist is None:
self._w = {"distribution": distribution}
self._w.update(parameters)
if distribution is None:
distribution = self._w.get("distribution", None)
if parameters is None:
parameters = self._w
Connections.weights(
self, elist=elist, wlist=weight, distribution=distribution,
parameters=parameters, noise_scale=noise_scale)
[docs]
def set_types(self, edge_type, nodes=None, fraction=None):
'''
Set the synaptic/connection types.
.. versionchanged :: 2.0
Changed `syn_type` to `edge_type`.
.. warning ::
The special "type" attribute cannot be modified when using graphs
that inherit from the :class:`~nngt.Network` class. This is because
for biological networks, neurons make only one kind of synapse,
which is determined by the :class:`nngt.NeuralGroup` they
belong to.
Parameters
----------
edge_type : int, string, or array of ints
Type of the connection among 'excitatory' (also `1`) or
'inhibitory' (also `-1`).
nodes : int, float or list, optional (default: `None`)
If `nodes` is an int, number of nodes of the required type that
will be created in the graph (all connections from inhibitory nodes
are inhibitory); if it is a float, ratio of `edge_type` nodes in the
graph; if it is a list, ids of the `edge_type` nodes.
fraction : float, optional (default: `None`)
Fraction of the selected edges that will be set as `edge_type` (if
`nodes` is not `None`, it is the fraction of the specified nodes'
edges, otherwise it is the fraction of all edges in the graph).
Returns
-------
t_list : :class:`numpy.ndarray`
List of the types in an order that matches the `edges` attribute of
the graph.
'''
inhib_nodes = None
if nonstring_container(edge_type):
return Connections.types(self, values=edge_type)
elif edge_type in ('excitatory', 1):
if is_integer(nodes):
inhib_nodes = self.node_nb() - nodes
elif nonstring_container(nodes):
inhib_nodes = list(range(self.node_nb()))
nodes.sort()
for node in nodes[::-1]:
del inhib_nodes[node]
elif nodes is not None:
raise ValueError("`nodes` should be integer or array of ids.")
elif edge_type in ('inhibitory', -1):
if is_integer(nodes) or nonstring_container(nodes):
inhib_nodes = nodes
elif nodes is not None:
raise ValueError("`nodes` should be integer or array of ids.")
return Connections.types(self, inhib_nodes, fraction)
[docs]
def set_delays(self, delay=None, elist=None, distribution=None,
parameters=None, noise_scale=None):
'''
Set the delay for spike propagation between neurons.
Parameters
----------
delay : float or class:`numpy.array`, optional (default: None)
Value or list of delays (for user defined delays).
elist : class:`numpy.array`, optional (default: None)
List of the edges (for user defined delays).
distribution : class:`string`, optional (default: None)
Type of distribution (choose among "constant", "uniform",
"gaussian", "lognormal", "lin_corr", "log_corr").
parameters : dict, optional (default: {})
Dictionary containing the properties of the delay distribution.
noise_scale : class:`int`, optional (default: None)
Scale of the multiplicative Gaussian noise that should be applied
on the delays.
'''
# check special cases and set self._d
if isinstance(delay, float):
size = self.edge_nb() if elist is None else len(elist)
self._d = {"distribution": "constant", "value": delay}
delay = np.repeat(delay, size)
elif not nonstring_container(delay) and delay is not None:
raise AttributeError("Invalid `delay` value: must be either "
"float, array-like or None")
elif delay is not None:
self._d = {"distribution": "custom"}
elif None not in (distribution, parameters):
self._d = {"distribution": distribution}
self._d.update(parameters)
if distribution is None:
if hasattr(self, "_d"):
distribution = self._d["distribution"]
else:
raise AttributeError(
"Invalid `distribution` value: cannot be None if "
"default delays were not set at graph creation.")
if parameters is None:
if hasattr(self, "_d"):
parameters = self._d
else:
raise AttributeError(
"Invalid `parameters` value: cannot be None if default"
" delays were not set at graph creation.")
return Connections.delays(
self, elist=elist, dlist=delay, distribution=distribution,
parameters=parameters, noise_scale=noise_scale)